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Abstract. In this note we will discuss some results related to complex interpolation
of Morrey spaces. We first recall the Riesz-Thorin interpolation theorem in Section
1. After that, we discuss a partial generalization of this theorem in Morrey spaces
proved in [19]. We also discuss non-interpolation property of Morrey spaces given
in [3, 17]. In Section 3, we recall the definition of Calderén’s complex interpolation
method and the description of complex interpolation of Lebesgue spaces. In Section
4, we discuss the description of complex interpolation of Morrey spaces given in
[6, 10, 14, 15]. Finally, we discuss the description of complex interpolation of sub-
spaces of Morrey spaces in the last section. This note is a summary of the current
research about interpolation of Morrey spaces, generalized Morrey spaces, and their
subspaces in [6, 9, 10, 11, 12, 14, 15].

Key words and phrases: Morrey spaces, generalized Morrey spaces, complex inter-
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1. THE RIESZ-THORIN INTERPOLATION THEOREM

We first recall the definition of Lebesgue spaces. Let 1 < p < oco. The
Lebesgue space LP = LP(R™) is defined to be the set of all measurable function f
on R” such that the norm

I1fllLe = (Jan [F (@) dx)% , 1<p<oo, "
inf{M > 0:|f(x)| < Ma.e x € R"}, p= oo

is finite. An example of LP-function is the simple function
k
=Y ajxa,
j=1
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138 D. HAKIM

where a; € C and {Aj};?zl is a collection of disjoint subsets of R™ with finite
measure. In this case,

1
) ;
(Zhilaiag)” p<os,

jmax lagl, p=oc.

[ fllze =

Note that the LP space is a Banach space with the norm defined in (1) Moreover,
we also have the log-convexity property of LP-norm as follows.

Lemma 1.1. [7, Exercise 1.1.16] Let 0 < 0 < 1, 1 < pg,p1 < o0, and 1% = 1};0 —I—p%.
Then for every f € LP° N LP* we have

e < WA Es 11

—~

2)

Proof. Without loss of generality, assume that pgy, p; < co. Since
1 1

/(L= 00p) " pi/6p)

)

we have

_ 1-6
[Rali :/R @) PO f ()P da < | £ 11 F 115 -
Taking pth root gives (2). d

Note that, Lemma 1.1 can be viewed as the inclusion LP° N LP* C LP. A
complement to this result is the following lemma.

Lemma 1.2. Keep the same assumption as in Lemma 1.1. Then
LP g LPo + LP1,

Here, LP° + LP' s defined to be the set of all functions f for which f = fo+ f1 for
some fo € LP° and f; € LP*.

Proof. Without loss of generality, assume that 1 < pg < p; < oco. Let f € LP.
Define fo := fxyf/>1} and f1:= f — fo. Since py < p1, we have py < p < p1, so

/ | fo(@)[P* dz < / | fo() PP f(2)[P do < || fI|7» < 00
]Rn Rn
and
/ |fi(z)["* d S/ |fr(@) [P f ()P doe < || f|fs < oo
R’n, Rn

Therefore, fo € LPo and f; € LP'. Since f = fy + f1, we conclude that f €
LPo + [P1, (]

As a preparation for proving the Riesz-Thorin interpolation theorem, we
prove Hadamard’s three lines lemma.
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Lemma 1.3. Let S :={z € C:0 < Re(z) < 1} and S be its closure. Let F be any
continuous function on S such that F is holomorphic in S and F is bounded on S.
Then, for every 6 € (0,1) and s € R, we have

0

|F(0 +is)| < <§1€1D[§ |F(it)>1(9 (i‘éﬁ |F(1+ zt)|)

Proof. Let My := sup,cp |F(it)|, My := sup,cg |[F'(1+it)|, and M := sup, 5 [F(2)].
Define

2
G(z) = ngF—(zZ)]le and Gp(z) = G(z)ezT_1 (n €N).
Since
\ME7 M7 = My ME) > min(1, My) - min(1, M),
we have

F2)| M
|Mg~*M7| — min(1, My) - min(1, M)
Consequently, for every o € (0,1) and r € R, we have

=:C.

1G(2)] <

o2—r 2

21 21 r2
|Grp(oc+ir)| =|Glo+ir)le = <Ce n e » <Ce =.

Therefore, | llirn Gy (o +ir) = 0 unifrormly over o € [0,1]. Hence, we can choose
T|—00

R = R(n) > 0 such that for every r > R and o € [0, 1], we have
|G (o +ir)] < 1. (3)
Observe that for every r € R, we have
- [F(ir)|  =2=1 _ My
Gulir)| = ——t—e 7 < — =1 (4)
‘M& M| Mo
and
, |F(1+4r)] =2 M
Go(1+ir)| = 2 T == 0L g 5
| ( )l |M&—WM{T‘ ]\41 ( )
By the maximum modulus principle and (3)-(5), we have
Gn(2)] <1 (6)
whenever 0 < Re(z) <1 and —R < Im(z) < R. Combining (3) and (6), we have
Gn(2)] <1
for every z € S. Taking n — oo, we get
IG(z)] <1

for every z € S. This implies
|F(0 4 is)| = |G(6 +is)| ME M < M3~ M?,
as desired. 0

We now state and prove the Riesz-Thorin interpolation theorem as follows.
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Theorem 1.4. Let 0 < 0 <1 and 1 < pg,p1,90,q1 < 00. Suppose that T is a
bounded linear operator from LP° to L% and LP* to LY. Then T is bounded from
LP to L9, where p and q are defined by

1 1-0 0 1 1-606 6

+— and - := +—. (7
p Po b1 q do q1

Moreover,
1T o ze < ITU L0 pao ITNE1 - s -
Proof. The proof follows the idea in [7]. We only handle the case where py and

p1 are finite. Let My := ||T||zro 0 and My := ||T||r1—ra. Let f be a simple
function and write

k
_ § 100
f_ (lje JXAJ')
=1

where a; > 0, o; € R, and {4; }?:1 is a collection of pairwise disjoint subsets of
R™ with |A4;| < co. Note that

(®)

ITfllza = sup
g is simple, |lg|| ;=1

[ ri@gta) ds).

Now, let g be fixed and write

m
g = Zbgeiﬁsz,{
(=1

where b, > 0, B, € R, and {B,}}2, is a collection of pairwise disjoint subsets of R™
with finite measure. Then, by linearity of T', we have

k. m
/ Tf ZZ wzjbeeiﬁe/ TXAJ (,]j‘)XBZ (3;) dzx. (9)
n == .

Let S:={2€ C:0<Re(z) <1} and S be its closure. For every z € S, define

mop(-z) 0=z 'z
o p1 iav a0 a1 L ifs
D= Y a e, e [ Ty @ (e) do
j=1¢6=1 "
where ¢, := q:—ﬂl,q'l = ﬁ, and ¢’ . Since a; and by are positive, we see

that F is continuous on S and F is holomorphlc in S. Morever, by (7) and (9), we
have

FO) = [ Ti@)gls) d. (10)
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By Hélder’s inequality and the boundedness of T from LP° to L%, for every z € S,
we have

p(1— Re(z))+pRe(z) M+q RC( )

P1 aj
a; b,

Mw
NE

[F'(2)]

/n Txa,(x)xB,(v) dv

1

~
I

1

.
Il

‘.c
,_\ ~

P 1 1
(a; s +aj )(bq° +by* )Mo |Aj| 70| Bl 0.

M-
Ms

<
Il
—
~
Il
-

Therefore, sup |F(2)| < oo. Note that F'(z) can be rewritten as

z€S
F(z)= / Tf.(x)g.(x) dz,
where
k P(1*Z)+E . m q/(1l—z) z
£, = Zaj () P1 6ZanAj and ¢, := sz a0 ql zB/XB[.
i=1 =

By Holder’s inequality and the boundedness of T' from LP° to L%, for every t € R,
we have

[F(@t)| < IT fitll oo gitll oy < Moll fiell oo llgiel o - (11)

Since A;’s are pairwise disjoint, we have

I1fit |20 Za”IA = IfIIZs

so || fitlloro = Hf||p/p0 Likewise, [|gitll o = llgll7 "/ — 1. Combining these calcu-

lations with (11), we obtain
|F(it)] < Mol fI15F°. (12)
Similarly,
|F(1+it)] < My||f|[2F". (13)

By the three-lines lemma and (12)-(13), we have

p(1—6)

L
EO) < MM 117 = MM fll o

Combining this inequality with (8) and (10), we have
ITfllLe < Mo =" MY || £l (14)

for every simple function f. Finally, (14) can be extended for all f € LP by using
the density of simple functions in LP. O
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2. INTERPOLATION OF LINEAR OPERATORS IN MORREY SPACES

Definition 2.1. For 1 < ¢ < p < oo, the Morrey space M} = MP(R™) is defined
to be the set of all functions f € LL (R™) such that

loc

=

1 q
flipme :=  sup  |B(a, R _ f@)|? dz
| HMq aeRn,R>o| (@ R) |B(a, R)| B(a,R)l (@)

is finite.

Remark:
(1) For p = ¢, we have M¥ = L4.
(2) If 1 < g <p < oo, then f(z) := ||~ » € ME\ L.

G. Stampacchia proved the following extension of the Riesz-Thorin interpo-
lation theorem.

Theorem 2.2. Let § € (0,1), 1 < pg,p1 <00, 1 <59 <rg <00, andl < s <
r1 < 0o. Define p, r, and s by

111 1 1 1 1 1 1
<a 7) = (1 _9) (73 ) +9 <77) .
prs Po To So P11 S1

If T is a bounded linear operator from LP° to M and from LP* to MG, then T
is bounded from LP to M.

Unfortunately, if the domain of the operator T is Morrey spaces, there are
some counterexamples given by A. Ruiz and L. Vega [17] for the case n > 1 and by
O. Blasco et al. in [3] for the case n = 1. Let us recall the result in [3].

Theorem 2.3. [3] Letn=1, 0 € (0,1), and 1 < q1 < qo. Define

1 1—-0 6 2 1 1—-60 6
= —, ry:=q, and — ;= + —.

: TO = T3 s
q o @ min(- + 2.2) r ro 1

Then there exists a bounded linear operator T from L% = Mo to L™ and from
M0 to L™ such that T' is not bounded from MJ° to L.

Proof. According to the definition of ¢, we know that ¢; < ¢ < qo. Hence, we may
choose

B> L. (15)
a4 @
Let Ny € N be such that
1 N+1
B+ < +7 (16)
log 2 log N

for every N € NN [Ny, 00). Let N € NN [Ny, 00) be fixed. We define
IV =[N+ jNP N4 jNP +1]
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where j = 0,1,...,N — 1 and set Ey := U;y;OleV. Observe that the choice of 3

allows {En}X_; to be disjoint. Note that ro < 71, so rg < r < ry. Therefore, we

may choose
2 2
ve(2.2). a7)
T r

With this choice of 7, we construct an operator 7' by the formula

Tf(x):= Y N 7xmy(@)f(x)

N=N,

for every measurable function f. By the Holder inequality, for every f € L% we

have
oo oy A
T q0
1o < ( > viss ([ i) )
N=Nj En

1

e} o To
< S N ) .

N=Ny

ITf]

It follows from (17) that
2 2 1
reri- R By (2o
o T o @ 9
Consequently,

1T fllzro < CollfllLao
for some constant Cy > 0. We now show that

ITfllLr < Cullfll o (18)

for some C > 0 and for every f € M. Since {EN}?VO:NO is a collection of disjoint
sets and q; = r1, we get

1

T1

') N-1
me| 2 vy | Js@r ) (19)
7= J

N=Ng

1T f]

Combining (19) and
1-4 1
[ @I do < B 1Gg = 1%
J

for each j =0,1,...,N — 1, we get

o T
ITfllzr < < > Nl_””) LAl o -

N=Ny

According to (17), we have

2
l—yr<1l——r; =-1,
T1
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SO
oo

Z NI < .
N=Ny
This implies (18). The proof of the unboundedness of 7" from M to L" goes as

follows. Define
fo:= Z XEn -
N=Ny

Note that, for every N € N, we have

a | INE
o]l a0 = sup|z]is LOEN]
M1 ICR |I|

o N
S ((N=DNF 4 1)% (N—1)NP 11
a ] a(B+1)
+1\4q N T B
SN GE =N

Let Jy := (No!, N! + (N — 1)N# 4+ 1) for every N € NN [Ny, 00). Since

fol g = NS0 oo = lfoll o

1 1

we have
g oo
4
ol = sup 157 [ 3" xlw) dy
I€Z(R) I N,
M
9 _q
551412§{|JM|% /J > Xex(y) dy, IIXEMIIMq;}
M N=N, 1

M? a(B+1) g
< max — [ .
MeN (M"i‘(M—].)Mﬁ"‘l—N()') 40

It follows from (15) that % — B < 0. This implies

1 foll pqgo < o0
On the other hand, we claim

T follr = oo. (20)
Indeed, (20) follows from

= (5 ) = (5 )

N=No N=Np
and 1 — yr > —1. This ends the proof of Theorem 2.3. ]

In view of Theorem 2.3, the Riesz-Thorin theorem can not be naturally gen-
eralized to Morrey spaces. However, by adding some mild assumptions, there are
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recent researches about complex interpolation interpolation of Morrey spaces and
their generalization (see [6, 9, 10, 11, 12, 13, 14, 15]).

3. CALDERON’S COMPLEX INTERPOLATION METHOD

In this section we recall the complex interpolation method introduced by
Calderén in [4]. We follow the terminology and presentation in [1, 4, 12]. In
Subsections 3.1 and 3.2, we recall the definition of Calderén’s first and second
complex interpolation method. For the proof of our results in the next section, we
shall discuss the Calderén product of Banach spaces in Section 3.3.

3.1. The first complex interpolation method. A pair (Xj, X;) is said to be a
compatible couple of Banach spaces if there exists a Hausdorff topological vector
space Z such that Xy and X; are subspaces of Z and that the embedding of X
and X into Z is continous. From now on, let S := {z € C:0 < Re(z) < 1} and S
be its interior.

Definition 3.1 (Calderén’s first complex interpolation functor). Let (Xo, X1) be a
compatible couple of Banach spaces. Define F(Xo,X1) as the set of all continuous
functions F : S — Xy + X1 such that

(1) sup | F(2)] xo+x, < o0,

z€S
(2) F is holomorphic on S,

(3) the functionst € R — F(j+it) € X; are bounded and continuous on R for
j=0,1.

The norm on F(Xo, X1) is defined by
Il = e sup [P0 . sup | (14 D),
teRr teR

Definition 3.2 (Calderdn’s first complex interpolation spaces). Let 6 € (0,1) and
(X0, X1) be a compatible couple of Banach spaces. The complex interpolation space
[Xo, X1]o with respect to (Xo, X1) is defined by

[Xo, X1]o :={f € Xo+ X1 : f = F(0) for some F € F(Xy, X1)}
The norm on [Xo, X1]g is defined by
1/ lixo,x100 == LI F 2 (x0,x,) : f = F(0) for some F € F(Xo, X1)}.
The fact that [Xo, X1]p is a Banach space can be seen in [4] and [1, Theo-

rem 4.1.2]. When X, and X; are Lebesgue spaces, Calderén gave the following
description of [Xg, X1]g.
Theorem 3.3. [4] Let 6 € (0,1), 1 < py < o0, and 1 < p; < oo. Then
[LPO?LIH]O =[P
where p is defined by
1 1-0 0

+ —.
p DPo P1
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Note that the Riesz-Thorin complex interpolation theorem can be seen as a
corollary of Theorem 3.3 and the following Calderén’s result.

Theorem 3.4. [4] Let 0 € (0,1). Let (Xo,X1) and (Yp,Y1) be two compatible
couples of Banach spaces. If T is a bounded linear operator from X; to Y; for
j=0,1, then T is bounded from [Xg, X1]g to [Yo, Y1]e.

We also invoke the following useful lemma.

Lemma 3.5. [4], [1, Theorem 4.2.2] Let 6 € (0,1) and (Xo, X1) be a compatible
couple of Banach spaces. Then we have Xy N X, is dense in [Xo, X1]g.

3.2. The second complex interpolation method. First let us recall the defi-
nition of Banach space-valued Lipschitz continuous functions. Let X be a Banach
space. Denote by Lip(R, X) the set of all functions f : R — X such that

||fHLip(]R7X) = sup M

—00<s<t <00 |t — s
is finite.
Definition 3.6. [1, 4] (Calderdn’s second complex interpolation functor) Let (Xo, X1)

be a compatible couple of Banach spaces. Denote by G(Xo, X1) the set of all con-
tinuous functions G : S — Xo + X1 such that:

1) su H G(z)
() zeg 1+|z] Xo+ X,
(2) G is holomorphic on S,
(3) the functions

< 00,

teR—G(j+it) — G(j) € X,
are Lipschitz continuous on R for j =0, 1.

The space G(Xo, X1) is equipped with the norm
1Gllg(x0.x,) = max {|G(@) | Lipr.x0)> |G+ 3) || Lipe,x1) } - (21)

Definition 3.7. [1, 4](Calderdn’s second complex interpolation space) Let 6 €
(0,1). The second complex interpolation space [Xq, X1] with respect to (Xo, X1) is
defined to be the set of all f € Xo+X; such that f = G'(0) for some G € G(Xo, X1).
The norm on [Xo, X1)? is defined by

I fllixo,x270 := f{[|Gllg(xo,x1) : f = G'(0) for some G € G(Xo, X1)}.

The relation between the second complex interpolation and the interpolation
of linear operators is given as follows.

Theorem 3.8 (Calderén, 1964). Let 6 € (0,1) and j € {0,1}. Suppose that T is
a bounded linear operator from X; to Y;. Then, T is bounded from [Xo, X1]? to
Yo, Y1),

We now describe the second complex interpolation of Lebesgue spaces.
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Theorem 3.9 (Calderdn, 1964). Let 6 € (0,1), 1 < pg,p1 < 00, and% =104 8
Then
[Lpo7Lp1]9 — [P,

The relation between the inclusion and the second complex interpolation
spaces is given as follows.
Lemma 3.10. [11, Lemma 2.8] If Xy — Yy and X; < Y7, then
[Xo, X117 < [Yo, V1),
Proof. Let f € [Xo,X1]?. Then f = G'(6) for some G € G(Xo, X1). By using the

following inequalities

HwO”YO S HwOHXm ||x1||Y1 S} ||x1||X1’ and Hx”YOJFYl 5 ||xHX0+X17
for every z¢ € Xo, z1 € X1, and x € Xy + X1, we can show that G € G(Yp, Y1).
Thus, f S [Y07Y1]9. O

The relation between the first and second complex interpolation functors is
given in the following lemma:

Lemma 3.11. [10, Lemma 2.4] For G € G(X¢,X1), 2 € S, and k € N, define

G(z+27%) — G(z)

Hy(z) := 5=k

Then we have Hy(0) € [Xo, X1]o-

(22)

Proof. We give a simplified proof of [10, Lemma 2.4]. The proof is adapted from
[11]. The continuity and holomorphicity of Hy, is a consequence of the corresponding
property of G. Let j € {0,1} be fixed. Since t € R+ G(j + it) € X, is Lipschitz-
continuous, we see that t € R — Hy(j + it) € X; is bounded and continuous on R.
Therefore, H, € F(Xo, X1). Moreover,

[ Hk(O)l1x0,x170 < HEllF(x0,50)
G +i(t+27%) -GG +it)

7k. H
27rg X,

= max sup
J=0,1 ¢er

IN

HGHQ(Xo,Xl) < o9,
as desired. O

We shall also use the following useful connection between the first and second
complex interpolation, obtained by Bergh [2].

Lemma 3.12. [2] Let (Xo, X1) be a compatible couple and 6 € (0,1). Then we
have

(X0, X1]p = Xo N XXX, (23)
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3.3. Calderoén product. In order to describe the first complex interpolation spaces,
sometimes it is easier to calculate the Calderén product of Banach lattices and ap-

plying the result of Sestakov in [18]. The definition of the Calderén product and

Sestakov’s lemma are given as follows.

Definition 3.13. Let 6 € (0,1) and (Xo,X1) be a compatible couple of Banach

spaces of measurable functions in R™. The Calderdn product Xo'=9X,? of Xo and

X1 is defined by

X1 79x,% .= U {f:R" > C: |f(2)] <|folx)* I fi(x)]? ae. z € R"}.
fo€Xo,fr€X1

For f € Xo'=?X,%, we define

1 llxpr-0x10
= mf{{lfollx," I1£1ll%, ¢ fo € Xo, fr € X1, [f(@)] < [fo(@)' | f1()]” ae. x € R"}.

Theorem 3.14. Let § € (0,1) and (Xo, X1) be a compatible couple of Banach
spaces of measurable functions in R™. Then Xé_eXle is a Banach space.

Proof. This result was due to Calderén [4]. For the convenience of the reader, we
give the detailed proof. We first prove the triangle inequality in X&‘QX{’ . Let
f.9 € Xo'79X1%. Choose A € (|| f|lx,1-0x,0,00) and p € (||g||xy1-¢x,0,00). Then
there is a decomposition

[f(@)] < Mfo@)* 1 (@), lg(@)] < pgol@)* g1 (2))? (24)

such that fo,g0 € Xo and f1,91 € X; have norm 1. Observe that (24) is equivalent
to:

|[f(@)] < (1= 0)p(x) "N folx)] + 8(2)' Al fi(2))]
and

l9(@)] < (1= 0)p(x) " plgo(x)| + Op(2)' " plgar ()]
for any measurable function ¢ : R™ — (0, 00). Since

[f(x) + g(x)] < (1= 0)¢™ (A fo(2)] + plgo(@)]) + 00 (AL fr(@)] + plgr (2)]),

we conclude that

(@) + g(2)| < (Al fo(@)] + plgo(@)))! (AL fr(@)] + ploa(x)])°-
This implies that ||f + gl x,1-ex,0 < [[fllx,1-0x,0 + |9l xo1-0x,0-
The proof of completeness of Xo'=?X,% goes as follows. Let {f7 21 C
Xo'7X,? be a sequence satisfying

o0
DI llxg-ox,0 < o0

Jj=1

Let A\j € (|| fllx,1-¢x,¢,00). Then, there exists fg € Xp and ff € X3 have norm 1
such that

7 (@) < M1 @) 0 ] ()] (25)
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Then as before,

1—

0
PTACIES D IPYFIN N D BPHFE]

0

Since Xy and X; are Banach spaces, we see that > 72, Aj|f2] and PRyl Ml
o]

converge in Xy and X, respectively. Consequently, Z fj(z) converges absolutely
j=1
for almost all z € R™ and belongs to X'~ X,? together with the estimate

o0 o0

ij < Z 1 fillxor-0x,0,
Jj=1 Xol—0X,° Jj=1
or more generally

>
j=J

S Z ||fj||X0179X197 (J E N)
j=J

Xol—0X,0

which also yields that Z f; converges in Xo!=0X,9. O
j=1

By virtue of the Holder inequality and factorization, for 1 < pg,p; < o0
(L)' =0(Lm)? = L7,
where p is defined by % = 110;09 + 1%' We now recall the following result by Sestakov.

Lemma 3.15. [18] Let (Xg, X1) be a compatible couple of Banach spaces of mea-
surable functions in R™. Then for every 6 € (0,1), we have

1—6 6
[Xo, X1]o = Xo N X, 0 1.

4. THE DESCRIPTION OF COMPLEX INTERPOLATION OF MORREY SPACES

In this section, we will discuss the first and second complex interpolation
of Morrey spaces. The interpolation by using the first method can be found in
[6, 9, 10, 15]. Meanwhile, the result on the second complex interpolation is given
by Lemarié-Rieusset [14]. The presentation in this section and Section 5 follows
[12].

4.1. The first complex interpolation of Morrey spaces. The first result about
the description of the first complex interpolation of Morrey spaces was due to Cobos
et al. [6].
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Theorem 4.1. [6] Let 6 € (0,1), 1 < go < pg < 00, and 1 < g1 < p; < 00. Define
p and q by
1 1—-6 0 1 1-6 6
— = + — and — := +—, (26)
p Po D1 q do q1

respectively. Then
[MBo, MEt]g C M. (27)

qo0”’

Assuming ’;—3 = 5—1, Lu et al. [15] improved the description of [M?o, MP1]y in

Theorem 4.1. Morever, their result are in the setting of Morrey spaces over metric
measure space.

Theorem 4.2. [15] Let 0 € (0,1), 1 < g0 < pp < o0, and 1 < ¢1 < p; < o0.

Assume that 22 = 2L Then
qo0 q1

7'/\/1?
[Mie, Mitle = Mg n Mg, (28)

where p and q are defined by (26).

The key parts of the proof of Theorem 4.2 are Lemma 3.15 and the calculation
of the Calderén product between M20 and M1

Proposition 4.3. Let 0 € (0,1), 1 < qgo <pp < 00, and 1 < ¢1 < p1 < 00. Assume
that p“ = pl . Define p and q by (26). Then
1-6 10 _
(ME) P (MEL)? = M. (29)

q

Proof. Let B = B(a,r) be any ball in R” and & > 0. Let f € (M#B0)1=0(MP1)0.
Then, there exist some functions fo € M0 and f; € ME! such that

@] < [fol@)'°If1(2)]’, ae. z € R (30)
and
||f0||MP0 1Al < U+l Fllaezey-o e (31)
By using Hoélder’s inequality and (30), we have

|f(@)|* dx % < | fo(@)| =D fi ()| da ‘
(o s’ = (fseen-ommiomae)”
< (/B | fo(z)|% dx)qo (/B )] dm)ql. )

Combining 22 = £, (26), and inequalities (31)~(32), we obtain

6

6
1_1 |B| po b1
s (f |f<m>|qu) < e 1 ollato i
B |B| a0

< HfOHMPonlHMm

<(1+ €)Hf||(Mgg)1‘ (M)
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Since ¢ is arbitary, we have f € M with || f[|yz < ||fH(MZg)1*9(M§11)9' Thus,
Po\1—0 p1)0 P
(ME) T (ME)" € My

Conversely, let f € M?P. Define fj = |f|% where j € {0,1}. It follows from (26)
and Z—S = % that

p_Po_DP1 (33)
qa do a1
Then fj € MYy with ”f]”/‘/‘f;? = ||f|\/€g for j =0,1. Observe that, we have
~ ~ a(1-6) q9
ol O LAN = 115 L f1m = 1] (34)

and

a(1—-6) | 49
F1=60 11 £ 10 ta
170 gy ey < ol Nl = A0 = I fllagg < oo (35)

Consequently, f € (./\/lgg)l_e (Mfﬁ)e. Therefore, M? C (Mgg)l_e(/\/lg;)e. Thus,
we have proved (29). O

The description of the right-hand side of (28) and can be refined as follows.

Theorem 4.4. [10] Keep the same assumption as in Theorem 4.2 and assume also
that qo # q1. Then we have

(Mo, Mitlo = {f e Mg dim [ = xig<ipeny Fllavg = 0}- (36)

Note that Theorem 4.4 is an improvement of Theorems 4.2, in the sense that,
[MPo, MP] is now written in terms of the parameters p and ¢ only and this
description is more explicit than the right-hand side of (28). In order to prove
Theorem 4.4, we need two lemmas. The first one is the fact that the set in the
right-hand side of (36) is closed. The second lemma tells us that this set contains

MEe N ML
Lemma 4.5. Let 1 <p < g <oo. Then the set

A= {f € Mg lim Hf _X{%SIfISN}fHMg = 0} (37)
is a closed subset /\/lg.

Proof. Let {f;}32, C A be such that f; converges to f in M}. Fix j € N. For
every N € N, we have

Peasi<arf g S W= Fillag + HX{If\%}ﬂ{\fjlz%}fﬂ'HMg * Hx{lm%}ffHMg
and

x5l < 1 = Fillaag + HX{‘f|>N}m{\fj|§%}fjHM;, + HX{Ifjb%}fjHMp :
q q
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On the set {|f| < &} N{|f;| = %}, we have
<15 = IR <15 = fl+ 5 <165 = L+ 515,
and hence |f;| < 2|f — f;]. Consequently,
Peasi<an ]y <807 = il + |xgi< 23] (38)
Meanwhile, on the set {|f| > N} N {|f;| < &}, we have
5 Vil 16

N
< = o MT
|f]|_2<2_ 2 2

and hence, |f;| < |f — f;|. Therefore,

||X{|f\>N}f||M’; <2|f - fjH/vts + \|X{|fj\>%}fj||M§~ (39)
By combining (38) and (39), we get

|7 - X{%gmgN}fHMg < HX{W%}JCHM,& + s vyl e

<5 = fillmg +

‘X{|f1|<%}fjHM§; * HX{|fﬂ>%}fjHM§ '
Since f; € A, we have

lilffn_ilop If— X{%g\ﬂgzv}f”/vlé’ < 5If = fillag-
By taking j — oo, we have A}gnoo If=X¢2<isi<nyfllaaz = 0, and hence, f € A. O

Lemma 4.6. [10] Maintain the same conditions as Proposition 4.3 and let A be
defined by (37). Then

MES O MPL C A

Proof. Without loss of generality, we assume that ¢; > qo. Then, ¢ > g > qo-
Consequently, for every f € Mbo N MP!, we have

_%, , 9% 191, 9
|7 =xexcinemf|, < Ixanegn P F1A0F g + sl 11 g

Fika I

a0—49 a—q1

+ N q
My

q

<N

Mg

049 a—a1

g0 a1
= N g + N7 g — 0

as N — oo, which implies f € A. O
We are now ready to prove Theorem 4.4.
Proof of Theorem 4.4. By virtue of Theorem 4.2 and Lemmas 4.5 and 4.6, we have

7'/\/[17
MEo, M2ty = MG M € A,

q0”’
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Conversely, let f € A. For every N € N, define fy := X{%SIfISN}f' As in the
proof of Lemma 4.6, we may assume that gy < q1. Then ¢y < ¢ < ¢1. This implies

a—4d0

SN ||f|3E < oo

1-49, . 4
I lnezg < g <l
and

q1

—4q
SNTE | fI%8 < oo

1—L a

[Nl gz < HX{|f\<N}|f| | fla s
7’/\/{?

Therefore, f € ML N ML by the definition of A. According to Theorem 4.2,

we have f € [MFo, MP1]g as desired. O

qo0’ 1

4.2. The second complex interpolation of Morrey spaces. Observe that the
function f(z) := |2|~™/? does not belong to the set in the right-hand side of (36),
but this function is in M?%. From this observation, one may inquire whether we
can interpolate Morrey spaces and that the output is also Morrey spaces. The
affirmative answer was given by Lemarié-Rieusset [14]. He proved the following
result about the second complex interpolation of Morrey spaces.

Theorem 4.7. [14] Keep the same asssumption as in Theorem 4.2. Then

[ME MET? = MP.

qo”’

It is written in the book [1, p. 90] that the first complex interpolation space is
the main interest in this book and the second complex interpolation method is
considered as a technical tool. Therefore, Theorem 4.7 can be seen as an example
of the importance of the second complex interpolation method.

In order to prove Theorem 4.7, we prove the following lemmas about the
construction of the second complex interpolation functor.

Lemma 4.8. [9, Lemma 4] Let qo > ¢1 and f € L°. Defineq:S —C,F:S — LY
and G : S — L° by:
1 1-=z z

@ o @ (40)
= sgn(f) exp [ —L zeS
P = s f) e (Lloglfl) (€ 5) (41)
and .
G(z) = (2—0)/0 FO+ (z—0)t)dt (z€089), (42)
respectively. Define Fy, Fy,Go,G1: S — L° by:
FO(Z) = F(Z)X{|f\§1}a Fl(z) = F(Z)X{|f‘>1}, (43)
and
Go(2) = G(2)xqf<1y,  G1(2) = G(2)xy 5|51} (44)

Then, for any z € S, we have
G(2)] < (1+ [ (|| % + | fl7/m). (45)
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For any z € C with e < Re(z) <1 —¢ and w € C with |w| < 1, we have

’Go(z +w) — Go(2)

w

— Fo(2)| < Celw| - |f]7,

— Fi(2)| < CJwl - |f]7,

’Gl(z+wu)} — Gi(2)

where the constant C. depending only on ¢ € (0,1/2).

Proof. For t € [0,1], define v := (z — )t + 6. Since Re(v) € [0, 1], we have

|F(’U)| S |f|%(l—Re(’U))+%Re(v)

< (1= Re(w)) ] + Re(u)|f| < || + ]
By the triangle inequality, we have
G < J2 = 0] (115 + 1713 ) < (L4 |2 (1715 + 117

Writing out the definitions in full, we obtain

’Go(z + wu)] — Go(2) ~ Ry(2)
exp g (Z2+ 2 )log|fl| -1
= |FO(R9(Z)>‘ [ ,Lg(q — q))10g|f| } -
Since qo > q1, we have
GQ(Z + w) — GQ(Z) _ Fo(Z)

lfRe(z))Jr%Re(z) eXp |:q (q;) T Zl) log |f|j| -1 _
’W(qﬁ - qj)log|f|

B 4 g lexplg( 2+ 2 ) logl|f|| —1
< Xqif1<ipl 1 1) {ug(zq - Z1)>10g|f| } -
1 q0

= xq 1<yl £]70 ¢

. o), |eXP {q (1"+%) logt} -1 .
<|f1% sup ¢(E%) T 1| < Cfu] 1

0<t<1 w(qi1 - qio)logt

(48)
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By a similar argument, we also have
Gi(z+w) —G1(2)

w

— Fi(z2)

—w w
() ke | 2P o (G + ) oglrl] -1 ~
w(L = L) log/]

, o 4. |exp [q (—_w +H) 10g|f|} -1
< a1 - (q 01)5 i - -
< xqfsuplfla - [ f o w( L — 1) log|f|

exp [q (lﬂ + ﬂ) logt] -1
< 117 sup (5 3)° "
t>1 w(qll — q%)logt

9
= X{lf|>p 1 fl

— 1) < Ccfu] - | |7

as desired. O

Lemma 4.9. [9, Lemma 12] Let f € ME. Via (40) define F : S — Mo + MP:
and G : S — Mo+ MBL by (41) and (42), respectively. Then, the function G
belongs to G(MBO, MBL).

Proof. 1t follows from (45) that G(z) € M%° + MF! and

1G ) aazg sz
I A + 1A

sup
2€8 1 + |Z|

Now let 21,22 € S. Then, by inequality (48), we get
1G 1) = Glea)ll g aegy < 21— 2 (171 + 1715 ) -
This shows the continuity of G : S — MEBo + MPL. The proof of holomorphicity of
G: S — MPo+ ME goes as follows. Let ¢ € (0, 3) and define
Se:={z€8:e<Re(z) <1—¢}
According to (46) and (47), we have

Glz+w)—G(2) F(2)
v MGG+ M
- H Go(z +w) — Go(2) Fo(2) H Gi(z+w) = Gi(z) (2
v MiS v M

< Celol (IF1%8 + 1715 )
Taking w — 0, we see that G': S. — M¥P° + MP! is holomorphic. Since € > 0 is
arbitrary, we conclude that G : S — Mo + MP! is holomorphic.

We now verify that G(j + it1) — G(j + it2) € My’ for every t1,t2 € R and
j €{0,1} and also

GG + ) gy nizsy < (17 aep) . (49)
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for every j € {0,1}. Combining |F(j + it)| = |f\% and

2
Gl +itr) — G + ita) = —z’/ F(j +it) dt,

t1

we get
q

GG +it1) — G+ ztg)Hng < |ty — t2H|f||§t§'
This implies (50). Thus, G € G(ME2, Mb1) with

q0”’
G geamzo pzsy < IFI1%E (50)

as desired. O

Note that we can not use the function F' defined by (41) as the first complex
interpolation functor because F' does not belong to F(M&bo, MP1) when f(z) :=
|z|~/P. This fact is a consequence of the following proposition.

Proposition 4.10. [9, Proposition 4] Let f(x) := |x|~"/? and define F by (41).
Then the mapping t € R — F(it) € MEY is not continuous at t = 0.

1

Proof. Assume that pg > p; and define Q := p% —

O<t<$,wehave

Using £0 = % = o+, for every

[F(it) = F(0)] = || 7 |[a| =@ = 1| = 2fa| 7

Using (51) and letting R := exp((Qt)~1), we get
IF(it) — F(0) gy

t 1
sin (QOglﬂ)‘ . (51)
2
1 1 __nag
> 2B(0,2R) |75 / 2|~ 5%
B(0,2R)\B(0,R)

t1 q0 a0
n (Qogwl) dx)
2
1
n_n _ 49 “°
ZRPO a0 / ‘C(,‘l ro  dx Z 1, (52)
B(0,2R)\ B(0,R)

where we use
[ Qtlog|z| . (1
sm| ——— >sm | =
2 2

for every R < |z| < 2R. Thus, (52) implies
Tim [[F(it) ~ F(0) vz #0.

as desired. i

Now we arrive at our main result in this section.
Theorem 4.11. [9, p. 316] Keep the same assumption as in Proposition 4.3. Then
0
[MPEo M{ﬁ] = M7, (53)

qo”’
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Proof. Let f € MJ. By a normalization, we may suppose [|f|[,z = 1, for the
purpose of proving f € [MPFo, MP1]? For every z € S, define F(z) and G(z) as
we did in Lemma 4.8. Thanks to Lemma 4.9, we have G € G(M¥?, ME1). Since

q0°
G'(0) = F(0) = f, we have
1 lnazg azye < GGz aazty = max IGG + )l (e aqz) = 1-

This shows that [ME0, MP11? 5 ME. Conversely, let f € [ME, MP1]? with

q0° qo?

1 lnazs azye = 1.

g0

Suppose f is realized as G'(¢), where G € G(MPbe, MP1) and ||G||Q(M287M§}) < 2.
For every k € N and z € S, we define Hy(z) by (22). According to Lemma 3.11

and Theorem 4.4, we obtain
1E )y S I1ERO) vy att, < [Gllgonagg aiy <2 ()

Meanwhile, since f = G'(0) = klim Hj,(0) in Mo+ MP1 there exists a subsequence
— 00

{Hk,; }52, such that f(z) = lim Hg,(0)(z) for almost every z € R". Consequently,
j—oo
by virtue of the Fatou lemma and (54), we have

1 laag S Y |y (6)]Lagg < 2

This implies [MPEo,

p110 P
MEL]T — MP. O
5. THE DESCRIPTION OF COMPLEX INTERPOLATION OF SUBSPACES OF MORREY
SPACES

The first result on the complex interpolation of subspaces of Morrey spaces
P

o
can be traced back to [20]. They investigated the space M? := CgoMq, where
C° is the set of all infinitely differentiable functions with compact support. Their
result is given as follows.

Theorem 5.1. Let 0§ € (0,1), 1 < go < pg < 00, and 1 < g1 < p; < 0o. Assume
Po _ P1
that qg = qi. Define p and q by
1 1-6 0 1 1-6 6

: + — and - := + —.
p Po b q do q1

Then

A5, Mo = (MBS, M0y = [A32, M3y = 3.
Let 1 < g <p < oo. We now consider the following subspaces:
—_ 7./\/(17
(1) MP:=Len My * (see [5]).
(2) Denote by L2 the set of all measurable functions with compact support and
* MP
define MP := LIN MG * (see [21]).
—_— —_ p
(3) M= LgoMq (see [9]).
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—~ p
Observe that M? coincides with CgOMq. These subspaces can be unified by intro-
ducing the following definition.

Definition 5.2. Assume that a linear subspace of measurable functions U satisfies
the condition: g € U whenever f € U and |g| < |f|. For 1 < q <p < oo, define

7‘/\/11)
UMb :=UnMg .

Example 5.3. If U := L, L0, L, then UME = MP, M?, M?.

Theorem 5.4. Let 6 € (0,1), 1 < qo <pg <00, 1 <q <p; <oo, 22 =2 gnd

7 qo q’
qo # q1. Define
1 1-0 0 1 1-60 0
- = +— and - := +
Po b1 q q0 q1

Then
UME UMy = {7 € UM - T [IF —xyg<i2m fllaeg = 0}

In order to prove Theorem 5.4, we need to prove the following lemmas:

Lemma 5.5. [9, Lemma 4.2] Assume the same paramaters as in Theorem 5.4. Let
E be a measurable set such that xgp € UMYE. Then

xg € UM NUMI.

Proof. Let xg € UMY and choose {gx}72; € U N M? for which
lim [|xg — gkllame = 0.
k— o0

Define hy, := x{g,20ynEe- Then, for each k = 0,1, we have

Ixe = hellgs = llxe = bl < lxe — el i — 0

as k — oo. Thus, xg € UM NUMZP!. O

Lemma 5.6. [9, Lemma 4.1] Assume the same paramaters as in Theorem 5.4.
Then UME "UMEL C UMY,

Proof. Without loss of generality assume that ¢1 > qo. Let f € UME NUMZ!. In
view of Lemma 4.6, we may assume f = x(i/n<|f|<n}f for some N € N. By the
lattice property of the spaces UMP, UMP! and UMY, we may assume [ = xg
for some measurable set E. Choose a sequence {g;}32, C U N M?E! such that

Jim 1S = gillagy =0

Define F; := {g; # 0} N E. Hence |f — xp;| < 2 and [f — xr,| < |f — g4l
Consequently,

1—a °
[y <27 03l -

This shows that f € UM?. O

_4a a1
1 = xm lag = |[1F =, 15 1F = x| 5

The proof of Theorem 5.4 is given as follows:
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Proof of Theorem 5.4. We assume that q; > qg. By using Lemma 5.6, the inclu-
sions

[UMPO UMPl] [MPO MPI] CMP

q0’ q0’
and the fact that XoN X, is a dense subset of [Xo, X1]g, we have [UMEo, UMBL]y C
UM?E. Consequently,

UM, UM C UME 0 [MP, MP!],

90’ 907
—{reumys tim IIf =y <ipien flag =0}
Conversely, let f € UMY be such that
Hm If - X{%gﬂgzv}f”xvt’; =0

Then, f € UME N [MBo, MBi]y. Note that, for any 0 < b < ¢ < oo, we have a
pointwise estimate:

|f|
X{p<|fl<er < bX{b<\f\<c}|f‘ < (55)

SO X{b<|fl<c} € UME. From Lemma 5.5, it follows that X{b<|fl<ey € UM N
UM, For every N € Nand z € S, define

1=z, =
Fn(z) = Sgn(f)|f|q( “ +q1)X{%§|f\§N}'
Decompose Fi(2) := Fy(2) + Fn,1(2) where Fix o(2) := Fn(2)x{fj<1}- Since

[Fno(2)] € Xpi<ipi<y and  [Fna(2)] < (N% +NH> X{1<|fI<N}
we have Fy(z) = Fino(2) + Fni(2) € UMP + UM?E!. Moreover, we also have
SUBHFN( )||UM§3+UM§§ < HX{N<|f\<1}HUMpU + (N% +NE) ||X{1§|f|gN}||UM{;11~
zeS

Observe that for every w € S, we have

q
Pl < (£ - L) (N5 4 8% ) (0p M) < xggaipieny 60
Then we have
I1F(2) = i)l sesgaez

z

= Fy(w) dw
UMGS+U MG
q
(q - 1) N““ +N‘“) (log V) x (”X{%SUEN}HUMZ(‘;-&-UMZ}) |z — 2|
q 2 q
4_4 Nqo +Nq1)1ogN
qo0 q

X (HX{}V<\f|<1}HUMPO + HX{KU\SN}HUMZi) |2 = 2|
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forall 2,2/ € S. Thus, Fnx : S — UMP +UMZE! is a continuous function. Likewise
we can check that Fiy|g : S — UMEB + UMZ! is a holomorphic function. Note
that, for all t € R and 7 =0, 1, we have

g g
[En (G + a0l = 1" Xy <in1eny S N9 XL <ip120)
so, Fn(j +it) € UMY . Furthermore, by using (56), we get

j+it
/ F§ (w) dw
J+it!

|En (5 +it) — Fn(j + it/)”UMij = ‘

UM

i
< (q = q) (N + N ) log N
G Q1
X ||X{1/N§|f\§N}||UM§]aj It —¢|
for all ¢,¢/ € R. This shows that ¢t € R — Fy(j + it) € UMy’ are continuous

functions. In total, we have showed that Fy € F(UMF, UM?E). Note that, for
M,N € N with N < M, we have

A

[0 (0) — FN(Q)H[UMgg,UMQ]g < ||Fm — FNHf(UMT;g,UMi;}

P ,_
massup [|Far (4 it) = (5 + it) ly pezy

/a; v
P A X <1< dyoen<isisan e

— qa/4;
= max lfx( <ini<hyovsisienn g
a/4;
< max If— X{%g\f\gzv}f”,\/lé
Since ]\}E)noo If = X2 <ip1<nyfllmz = 0, we see that

1E2(0) = En (O)ljp sz vty =0

whenever M, N — oo. Thus, Fy(f) converges to g € [UMP,UMPb']y. Hence,

g0
lim Fy(0) = g in MPO + MPbr. Meanwhile, by combining M? C MPo + MP! and

N—oc0
J (L = <gpemy fllag =0,
we have A}im Fn(0) = f in MBS + MPL, which implies f = g. Thus, f €
—00
[UMEe, UMP1]g as desired. O

qo”’ 1

Theorem 5.7. Let 6 € (0,1), 1 < go <pg <00, 1<q <p; <00, and ’q’—g = 5—1.
Define
1 1-6 0 1 1-0 0
= + — and -:= + —.
Po P1 q q0 q1

Then we have

(UMb, UM

q0°
={f e MV X{a<ifi<ty f € UMY for all 0 < a < b < oo}
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From now on, we shall always use the assumption of Theorem 5.7. To prove
Theorem 5.7, we shall invoke and prove several lemmas.

Lemma 5.8. [10] Keep the assumption in Theorem 5.7. Then
U sa M C [UMP, UM (57)

qo”’

Proof. Without loss of generality, assume that g0 > ¢1. Let f € U 1 MP. Since
X{a<|f|<b} < %X{aﬁ\f\gbﬂf'a we have X{a<|fl<b} € UMY. From Lemma 5.5, we
have x(a<|f|<by € UMEB NUMPEL. For z € S, define

g(1—=z)

. 1
F(z):= sgn(f)|f|gTJ+ a and G(z) == (z — 9)/0 F0+ (z—0)t) dt. (58)

Decompose G(z) = Go(z) + G1(z) where Go(z) := xqfj<13G(2). Let 0 < e < 1.
Since X {c<|f|<1} € UME? and

X{5S|f\S1}|G0(Z)| < (1 + ‘Z|)(|f|Q/qo + |f|q/q1)X{s§|f|§1} < 2(1 + |Z|)X{E§|f\§1}a

(59)
we have X (.<|f|<1}Go(z) € UMLC. Observe that
F(z) - F(6)
1Go(2) = XqeinsnyGo(Dllage = \Xunzey 77—~
(qT - qj) log | f] MP0
a/a
o T
CERTN
2| FII% % .

- 4 _ 9 -1
(# — ) tose
as ¢ — 07, Hence Go(z) € UMEo. Similarly, G1(z) € UMP!. Thus G(z) €
UMgg + UMIq)ll Lett € R and R > 1. Since X{R*lgng} S UMZq)g and

(G(it) = G(O0) Ixtr-1<f1<ry < 2+ [E)(RY® + RY%)xprqii<ry,  (61)
we have [G(it) — G(0)]x{r-1<|f|<r} € UME. Note that

2 a/90
| 17198
&) = GOxem\(r1<ip1<m Mgy < 77— —— =0 (62)
(q—l - %) log R
as R — oo. Thus G(it) —G(0) € UMPO. Similarly, G(1+it) - G(1) € UMPEL. Since
G € GMPo, MEY), we have G € G(UMP , UM?E!). From f = G'(0), it follows that
felUME UMB. O

q0°’

Lemma 5.9. [10] Let G € G(MEo, MPY) and 6 € (0,1). For z € S and k € N,

qo0”’
p

—_————M
define Hy(z) by (22). Then Hy(0) e UM NUME
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Proof. 1t follows from Lemma 3.11, that Hy,(0) € [UME0, UMP1]y. Let € > 0. Since

q0’
UMP N UME! is dense in [UMB, UMDB! ]y, we can find Ji(0) € UME N UME!

g0’ 1
such that
1Hk(0) = Tk Oz vrzry, <&
Since [UMPEe, UMPE g C [MPo, MP1]p € MP, we have

1Hk(0) = Jr(O)laeg S I1HEO) = k(O aze vae), <&
—MP
This shows that Hg(0) € UML NUME™ . O

Lemma 5.10. [10] Under the assumption of Theorem 5.7, we have

MPEO 4 MPL

MEATMG " C UMD

FMP
. Choose {f;}32, € UM} such that

—_MPO
Proof. Let f € MPNUMg
Jim (= fill vz agy = 0-

Then, we can find {k;}32, C UM and {h;}52; C UM}! convergent to 0 in

UME and UMZP!, respectively, such that f — f; = k; + h; for all j. Assume

0<a<1<b< ooasbefore. Let © € C.(R) be a piecewise linear function defined
by
) 2 1
o'(t) := EX(a/Q,a)(t) - 6X(b,2b)(t) (63)
except at t = §,a,b,2b. Let Cyp = % + %. Since
|©O(t) — O(s)| < Cuplt — 5| and |O(t) — O(s)| < 2,
we have

O(7) = ©(/;D| < Cap min(L, [|f] = [f;]) < Capmin(L, |f = f;])-
Let B = B(xg,r) be any ball in R™. Then,

/BX[a,b](lf(x)lﬂ@(lf(x)l) —O(f;(x)))|* dx
S [ Xan(f@D) min(L, (@) - F(@)[7) da.
B
By using the decomposition f = f; + k; + h;, we obtain
/X[a,b](\f(x)l)\@(\f(w)l)—@(lfj(x)l)lqu
B
S/BX[a,b](lf(x)l)min(l»|kj($)|q)dff+/BX[a,b}(lf(x)Dmin(l»\hj(ff)|q)dx.
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Keeping in mind, gy > ¢ > g1 and g—g = ;% = %. Then

Bl /BX[a,b](lf(x)l)l@(lf(x)l) = O(|f;(x)D[" dx

< (B3 /B 1y ()| dx
1— 4

#1557 ([ vwntirona) ([ min(lej(m)mdx)"%

1— -2
a_ a0 q
< Ulhsll )™ + (|B|p : /B If(x)lqdar> (1185 ez )

1_a
q 0 q
S sl + (1857 [ 1r@ras) " (Ihslae)

q2

q1 g 1
S Ukl )™ + (10aeg) " (Whsllaaze )
Thus, it follows that
Jim IXta<1r1<6yOfil) = X{a<)p1<6yOUf DI Mz = 0.

Since x{a<|f1<e} O fi]) < a7 f;], we have x{a<f1<5}O(|f]) € UMP. From the
equality

X{a§|f|§b}|f| = bX{aS\ﬂSb}@(‘ny
it follows that X (a<|fj<p)f € UME. O

Now, we are ready to prove Theorem 5.7.

Theorem 5.7. In view of Lemma 5.8, we only need to show that
[UMP UME? C U b MP.

Let f € [UMP UMP? Then there exists G € GUME, UM?E') such that

G'(0) = f. For z € S and k € N, define Hy(z) by (22). By virtue of Lemmas 5.6
and 5.9, we have Hy(0) € UM?. Since Hy(6) converges to G'(6) = f in MPo+MP!

q1?
we see that f € U b1 MP. O

By substituting U := L°, L%, L>°, we have the following result.

Corollary 5.11. Keep the same assumption as in the previous theorems. Then

(Mg, Mitlo = (M3, Mi)s = My,

g0’ q0°

[(Meo, Mit]g = {f € M} : A X< gyl = 03

iPo AqP110 — [ AqPo AAP110
[MZO’MII;] - [MSO’M;;]
= () {feM:Xacipicn f € M2},

0<a<b<oo
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and [MPE

qo”’

MO = MP.

q
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