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Abstract. Let Γ be a finite group and let S ⊆ Γ be a subset. The Cayley graph,

denoted by Cay(Γ, S) has vertex set Γ and two distinct vertices x, y ∈ Γ are joined

by a directed edge from x to y if and only if there exists s ∈ S such that x = sy.

In this manuscript, we characterize the generating sets S for which Cay(Γ, S) is

isomorphic to some algebraic graphs, namely, unit graphs, co-unit graphs, total

graph and co-total graphs.
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1. Preamble

The research in algebraic combinatorics is aims at exposing the relationship
between algebra and graph theory and at advancing applications of one to the other.
In the last decade, many authors have studied algebraic graphs(Viz., zero-divisor
graph, total graph, unit graph, co-total graph, maximal graph, co-unit graphs,
prime graph, etc) associated to algebraic structures. Perhaps the best known one
is the Cayley graph [2] of a group.

Let Γ be an abelian group. For Zn, the group of integer modulo n, the sets
Z(Zn) and U(Zn) are defined as; U(Zn) = {x : gcd(x, n) = 1} and Z(Zn) = {y :
gcd(y, n) 6= 1}. For generating set S of Γ we define the Cayley graph of Γ to be the
(simple) graph Cay(Γ, S) with vertices Γ, the set of elements of Γ, and two distinct
vertices x and y are adjacent if and only if there exists s ∈ S such that x = sy.
Thus Cay(Γ, S) is connected graph when S ⊆ U(Γ), and Cay(Γ, S) is disconnected
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when S ⊆ Z(Γ). With this motivation in Section 2, we characterize the generating
set S for which Cay(Γ, S) is isomorphic to one of the graph, namely, unit graphs,
co-unit graphs, total graph and co-total graphs. However, for convenience of the
reader, we shall also gather some definitions and results for Cayley graphs which
will be used in the sequel.

In Section 3, we give several basic results about Cayley graphs associated
with some specific generating sets. We have also established the results that gives
the relation between Cayley graph and unit graphs, co-unit graphs, total graph and
co-total graphs. Further, in view of Theorem 3.3 we have shown that the study
on the notion of unit graph, co-unit graphs, co-total graphs and total graph for
the group Zn is a particular case for the study on the Cay(Zn, S) associated with
specify generating sets, viz., U(Zn) and Z0(Zn). Throughout, many examples are
given to illustrate the theory, and we pose several questions. For detail study about
co-total graph, and co-unit graphs, we refers to reader [5].

In what follows, all consider graphs are simple, i.e., undirected graphs in which
any two vertices are joined by at most one edge and without loops. Throughout,
Zn will denote the group of integers modulo n; and Cn, Kn, and will denote an
n-cycle, and the complete graph on n vertices, respectively. To avoid trivialities,
we implicitly assume when necessary that graphs are nonempty. For terminology
and notation from group theory or graph theory not defined in this paper, we refer
the reader to [4] and [3], respectively.

2. Generating Sets

In general, given any group Γ, a generating set S of Γ is merely a nonempty
set such that e /∈ S and if a ∈ S, then a−1 ∈ S, where ‘e’ is the identity element
of Γ. Consequently, S 6= φ and if all the elements of Γ are self inverse, then all
possible generating sets are 2n − 2. In view of this definition, the following result
recognize the structure of such generating set. In 2011, Beny and Rakhmonov [1]
have derived a formula for number of Cayley graphs on Zn.

Theorem 2.1. Let Γ ∼= Zn and S be a generating set of Γ and N(S) be the
collection of all generating sets. Then

i) If n is odd, then |N(S)| = 2
n−1
2 − 1;

ii) If n is even, then |N(S)| = 2
n
2 − 1.

Example 2.2. Consider the group Z4, then there are precisely three generating sets
{1, 3}, {2} and {1, 2, 3}. If we take n = 4 in Theorem 2.1, then we get |N(S)| = 3.
In the similar vein, consider the group Z5, then there are precisely three generating
sets {1, 4}, {2, 3} and {1, 2, 3, 4}. If we take n = 5 in Theorem 2.1, then we get
|N(S)| = 3.

Theorem 2.3. Let Γ ∼= Zt
2 × Z2n. Then the number of generating sets consisting

of only nonzero self-inverse elements are 2(2
t+1−1) − 1.

Proof. Let us consider Γ ∼= Zt
2 × Z2n and our aim is to show that number of

generating sets consisting of only self-inverse elements are 2(2
t+1−1) − 1. Note that
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each element of Zt
2 is self inverse and there are precisely two self inverse elements

namely ‘0’ and ‘n’ in Z2n. By fixing exactly one from ‘0’ and ‘n’ at (t+1)th position
all self inverse elements can be obtained. Firstly, by fixing zero at (t+1)th position
in (t+1) tuple, i.e. (a1, a2, . . . , at, 0), there are 2t−1 choices for ai and hence 2t−1
nonzero self inverse elements. In the similar way, by fixing ‘n’ at (t+ 1)th position
in (t+ 1) tuple, i.e., (a1, a2, . . . , at, n) there are 2t choices for ai and hence for self
inverse elements. Therefore the total number of non-zero self inverse elements in Γ
are 2t+1-1. Now it is easy to see that the number of generating sets consisting of

only self-inverse elements are 2(2
t+1−1) − 1. �

Remark 2.4. Let Γ ∼= Z2×Z2n. Then there are exactly three nonzero self-inverse
elements and hence six generating set consisting of nonzero self-inverse elements.

3. Cayley Graphs and Algebraic Graphs

Let (A, ∗) be an algebraic structure. A graphG := (V,E) is called an algebraic
graph, if V ⊆ A and the adjacency rule is due to binary operation ‘∗’ of algebraic
structure. In this section, we establish the results that gives the relation between
Cayley graph and algebraic graphs, namely, unit graph, co-unit graph, total graphs
and co-total graphs.

Theorem 3.1. Let G̃(Zn) and T̃ (Γ(Zn)) be co-unit graph, and co-total graph,
respectively. Then for a positive integer ‘n’ the following holds:

(1) Cay(Zn, S) ∼= G̃(Zn), when S = U(Zn);

(2) Cay(Zn, S) ∼= T̃ (Γ(Zn)), when S = Z0(Zn).

Proof. It is clear that the vertex set of both Cay(Zn, S) and G̃(Zn) are same. Let
vi, vj ∈ V (Cay(Zn, S)). Then vi is adjacent to vj if and only if vi − vj ∈ S.

First, when S = U(Zn), this implies that vi − vj ∈ U(Zn). This shows

that (vi, vj) ∈ E(Cay(Zn, S)) if and only if (vi, vj) ∈ E(G̃(Zn)). Therefore,

Cay(Zn, S) ∼= G̃(Zn).

On the other hand, when S = Z0(Zn). This implies that vi − vj ∈ Z0(Zn).

This shows that (vi, vj) ∈ E(Cay(Zn, S)) if and only if (vi, vj) ∈ E(T̃ (Γ(Zn))).

Therefore, Cay(Zn, S) ∼= T̃ (Γ(Zn)). �

Lemma 3.2. Let n be an even positive integer. Then for all a, b ∈ Zn the following
holds:

(i) For S = U(Zn); a− b ∈ S if and only if a+ b ∈ S;
(ii) For S = Z0(Zn); a− b ∈ S if and only if a+ b ∈ S ∪ {0}.

Proof. For the case (i); (⇒) Let n be an even positive integer and S = U(Zn).
Then U(Zn) consists of all odd positive integer less than n. If a− b ∈ S = U(Zn),
then a− b must be an odd number. Note that a+ b = a− b+ 2b, which is an odd
number, and hence a+ b ∈ S.
(⇐) If a + b ∈ S = U(Zn), then a + b must be an odd number. Note that in this
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case exactly one a or b must be odd and hence a− b is an odd number. Therefore
a− b ∈ S.

For the case (ii); (⇒) if S = Z0(Zn). Then Z0(Zn) consists of all even
positive integer less than n. If a − b ∈ S = Z0(Zn), then a − b must be an even
number. Note that a+ b = a− b+ 2b, which is an even number may be zero, and
hence a+ b ∈ S ∪ {0}.
(⇐) If a + b ∈ S = Z0(Zn) ∪ {0}, then a + b must be an even number. Note that
in this case either both a and b are even or both are odd. Then a − b is an even
number, and hence a− b ∈ S. �

Theorem 3.3. Let G(Zn) and T (Γ(G(Zn))) be unit graph and total graph, respec-
tively. Then for an even positive integer ‘n’ the following holds:

(1) Cay(Zn, S) ∼= G(Zn), when S = U(Zn);
(2) Cay(Zn, S) ∼= T (Γ(Zn)), when S = Z0(Zn).

Proof. To show the result it is suffices to show the isomorphism between the given
graphs. Let ‘n’ be an even positive integer. To tackle the case (1), define a function
f : V (Cay(Zn, S))→ V (G(Zn)) such that

f(v) =

{
v, if v is odd;
n− v, otherwise.

Clearly f is a bijective function. Now we want to show that under this f adjacency
is preserved. To do this, let vi and vj be two vertices of Cay(Zn, S). Then vi is
adjacent to vj , if vi − vj ∈ S = U(Zn) which is odd and this is possible only when
either both vi, vj ∈ Z0(Zn) or exactly one of them vi or vj belong to U(Zn).

For the first possibility, one of vi or vj must be odd although belong to Z0(Zn),
then f(vi) = vi and f(vj) = n− vj , this implies that f(vi) + f(vj) = vi + n− vj =
n + (vi − vj) ∈ U(Zn). Next, if vi ∈ U(Zn) and vj ∈ Z0(Zn), then f(vi) = vi and
f(vj) = n−vj and the sum f(vi)+f(vj) = vi+n−vj = n+(vi−vj) ∈ U(Zn). This
implies that f(vi) + f(vj) ∈ U(Zn). This shows that (vi, vj) ∈ E(Cay(Zn, S)) ⇔
(f(vi), f(vj)) ∈ E(G(Zn)). Therefore Cay(Zn, S) ∼= G(Zn), when S = U(Zn).

For the case (2), again define a function f : V (Cay(Zn, S)) → V (T (Γ(Zn)))
such that

f(v) =

{
v, if v is even
n− v, otherwise.

Clearly f is a bijective function. Now we want to show that under this f adjacency
is preserved. To do this, let vi and vj be two vertices of Cay(Zn, S). Then vi is
adjacent to vj , if vi − vj ∈ S = Z0(Zn). Then there are two possibilities, either
vi − vj is even or odd.

First, if vi−vj is even, then either both vi, vj are even or odd. Let us suppose
both vi and vj are even. Then the sum f(vi) + f(vj) = vi + vj which is even and
belong to Z(Zn) (using Lemma 3.2). Now, if both vi, vj are odd, then the sum
f(vi)+f(vj) = (n−vi)+(n−vj) = 2n− (vi +vj) again belong to Z(Zn). Hence in
the first possibility, vi− vj ∈ Z0(Zn) if and only if f(vi) + f(vj) ∈ Z(Zn). Next, in
the second possibility, if vi− vj ∈ Z0(Zn) and it is odd, then note that at least one
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of vi or vj must be odd. Let us suppose vi be odd. Then the sum f(vi) + f(vj) =
(n− vi) + vj = n− (vi − vj). Consequently, f(vi) + f(vj) ∈ Z(Zn). Hence in both
the possibilities adjacency is preserved under f . Therefore Cay(Zn, S) ∼= T (Γ(Zn)),
when S = Z0(Zn). �

Remark 3.4. It may hence be observed from Theorem 3.3 that the study on the
notion of unit graph and total graph for Zn is a particular case for the study on
the Cay(Zn, S) associated with specify generating sets, viz., U(Zn) and Z0(Zn).

Theorem 3.5. If S1 ⊆ S2, then Cay(Zn, S1) is a subgraph of Cay(Zn, S2).

Proof. Let S1 ⊆ S2. Clearly, the vertex set of Cay(Zn, S1) and Cay(Zn, S2) is
same and is equal to {0, 1, 2, . . . , n − 1}. Let vi and vj be two arbitrary vertices
in Cay(Zn, S1). If vi and vj are adjacent in Cay(Zn, S1), then vi − vj ∈ S1. This
implies that vi − vj ∈ S2 as S1 ⊆ S2. Therefore each edge of Cay(Zn, S1) is also
an edge of Cay(Zn, S2). Hence, Cay(Zn, S1) is a subgraph of Cay(Zn, S2). �

Theorem 3.6. Let Γ ∼= Zt
2×Z2n and S be the collection of all self inverse elements

of Γ.

(1) If S′ ⊆ S and |S′| = 1, then Cay(Γ, S′) ∼= K2 ∪K2 ∪ · · · ∪K2︸ ︷︷ ︸
(2tn)−times

;

(2) If S′ = S, then Cay(Γ, S) ∼= K|S+1| ∪K|S+1| ∪ · · · ∪K|S+1|︸ ︷︷ ︸
n−times

.

Proof. Case (1): Let S′ ⊆ S and |S′| = 1. Then Cay(Γ, S′) is 1-regular graph. The
only possible 1-regular graph is either K2 or copies of K2. Since there are 2t+1.n
vertices in Cay(Γ, S′), this indicates that Cay(Γ, S′) is isomorphic to copies of K2.
Also to form K2 only two vertices are required. Hence, there are 2t · n copies of
K2. Therefore Cay(Γ, S′) ∼= K2 ∪K2 ∪ · · · ∪K2︸ ︷︷ ︸

(2tn)−times

.

Case (2): From the Theorem 2.3 clearly, (2t+1 − 1) non-zero self inverse
elements in Γ. This implies that |S| = 2(t+1) − 1. Then, Cay(Γ, S) is 2(t+1) − 1
regular graph. Let V ′ = {(a1, a2, . . . , at, at+1) : ai ∈ {0, 1}(1 ≤ i ≤ t) and at+1 ∈
{0, n}}. The set V ′ is subset of V (Cay(Γ, S)) and specifically it is the collection
of all self inverse elements, i.e., V ′ = S ∪ (0, 0, . . . , 0, 0). Let vi and vj be two
arbitrary vertices of V ′. Then vi − vj = (c1, c2, . . . , ct, ct+1) \ (0, 0, , . . . , 0) : ci ∈
{0, 1}(1 ≤ i ≤ t) and ct+1 ∈ {0, n}. This implies that vi − vj ∈ S, also vi and vj
are arbitrary which indicates that for all vi, vj ∈ V ′, vi − vj ∈ S. Therefore all

the vertices of V ′ are mutually adjacent and each of them have degree 2(t+1) − 1.
Also no vertex of V ′ is adjacent to other vertices of Cay(Γ, S) as Cay(Γ, S) is
2(t+1) − 1 regular. Let V ′′ = {(a1, a2, . . . , at, at+1 + 1) : ai ∈ {0, 1}(1 ≤ i ≤
t) and at+1 ∈ {0, n}}. Let v′i and v′j be two arbitrary vertices of V ′′. Then
v′i − v′j = (d1, d2, . . . , dt, dt+1) \ (0, 0, , . . . , 0, 0) : di ∈ {0, 1}(1 ≤ i ≤ t) and dt+1 ∈
{0, n}. This implies that v′i − v′j ∈ S, also v′i and v′j are arbitrary which indicates
that for all v′i, v

′
j ∈ V ′′, v′i − v′j ∈ S. Therefore all the vertices of V ′′ are again
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mutually adjacent and each of them have degree 2(t+1)−1. Also no vertex of V ′′ is
adjacent to other vertices of Cay(Γ, S) as Cay(Γ, S) is 2(t+1)−1 regular. Following
the same procedure, one get the copies of K2t+1 . Since there are n.2(t+1) vertices
in Cay(Γ, S), so there will be precisely n copies of K2t+1 are obtained. Therefore,
Cay(Γ, S) ∼= K|S+1| ∪K|S+1| ∪ · · · ∪K|S+1|︸ ︷︷ ︸

n−times

. �

Corollary 3.7. Let Γ ∼= Zt
2 and S be the collection of all self inverse elements of

Γ. Then the followings holds:

(1) If S′ ⊆ S and |S′| = 1, then Cay(Γ, S′) ∼= K2 ∪K2 ∪ · · · ∪K2︸ ︷︷ ︸
(2t−1)−times

;

(2) If S′ = S, then Cay(Γ, S′) ∼= K2t .

Proof. By taking n = 1 in Theorem 3.6, the proof follows. �

Theorem 3.8. Let Γ ∼= Zt
2×Z2n and S be the collection of all self inverse elements

of Γ. Then for n = 1, Cay(Γ, S) is connected.

Proof. Invoking Theorem 3.6 and Corollary 3.7, Cay(Γ, S′) ∼= K2t+1 , and hence
connected. �

Theorem 3.9. Let S = {(1, 1, . . . , 1, at), at ∈ U(Z2n)}. Then Cay(Zt
2×Z2n, S) ∼=

G(Zt
2 × Z2n) ∼= G̃(Zt

2 × Z2n).

Proof. Let us consider Z2n and we want to show that Cay(Zt
2 × Z2n, S) ∼= G(Zt

2 ×
Z2n) ∼= G̃(Zt

2 × Z2n). For this first we will show Cay(Zt
2 × Z2n, S) ∼= G(Zt

2 × Z2n)

and then Cay(Zt
2 × Z2n, S) ∼= G̃(Zt

2 × Z2n). To do this let us suppose on contrary
that

Cay(Zt
2 × Z2n, S) � G(Zt

2 × Z2n) (1)

Although V (Cay(Zt
2 × Z2n, S)) = V (G(Zt

2 × Z2n)). Let vi = (a1, a2, . . . , at, at+1)
and vj = (b1, b2, . . . , bt, bt+1) be two vertices of Cay(Zt

2 × Z2n, S). Then vi and
vj are adjacent in Cay(Zt

2 × Z2n, S) whenever vi − vj ∈ S, i.e., (a1 − b1, a2 −
b2, . . . , at − bt, at+1 − bt+1), ai − bi = 1 for all 1 ≤ i ≤ t and at+1 − bt+1 ∈ U(Z2n).
Since ai, bi ∈ Z2, ai − bi = 1 gives us that one of ai or bi must be ‘0’. This implies
that ai + bi = 1 for all 1 ≤ i ≤ t. As at+1 − bt+1 ∈ U(Z2n), this implies that
at+1 + bt+1 ∈ U(Z2n). Hence (vi, vj) ∈ E(Cay(Zt

2 × Z2n, S)). This implies that
(vi, vj) ∈ E(G(Zt

2×Z2n)). This shows that each edge of Cay(Zt
2×Z2n, S) is also an

edge of G(Zt
2 × Z2n). Therefore only possibility is to be (1) is that two vertices v′i

v′j are adjacent in G(Zt
2×Z2n) but not in Cay(Zt

2×Z2n, S), i.e., v′i + v′j ∈ U(Z2n),
but v′i− v′j /∈ S. From Lemma 3.2, v′i + v′j ∈ U(Z2n) implies that v′i− v′j ∈ U(Z2n).

This gives us S ⊂ U(Zt
2 × Z2n), a contradiction. Hence our assumption is wrong.

Therefore Cay(Zt
2 × Z2n, S) ∼= G(Zt

2 × Z2n).

Now to show that Cay(Zt
2 × Z2n, S) ∼= G̃(Zt

2 × Z2n). Let vi = (a1, a2, . . . ,
at, at+1) and vj = (b1, b2, . . . , bt, bt+1) be two vertices of Cay(Zt

2×Z2n, S), although

V (Cay(Zt
2×Z2n, S)) = V (G̃(Zt

2×Z2n)). Then vi and vj are adjacent in Cay(Zt
2×
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Z2n, S) whenever vi − vj ∈ S. Since S = {(1, 1, . . . , 1, ak), ak ∈ U(Z2n)}, which

indicates that (vi, vj) ∈ E(Cay(Zt
2×Z2n, S)) if and only if (vi, vj) ∈ E(G̃(Zt

2×Z2n)).

This shows that each edge of Cay(Zt
2 × Z2n, S) is also an edge of G̃(Zt

2 × Z2n).

Therefore Cay(Zt
2 × Z2n, S) ∼= G̃(Zt

2 × Z2n). �

Theorem 3.10. Let S = {(a1, a2, . . . , at−1, at)}, with either at least one ai = 0
for 1 ≤ i ≤ t − 1 and at ∈ Z2n \ {0} or ai = 1 for all i, 1 ≤ i ≤ t − 1 and

at ∈ Z(Z2n) ∪ {0}. Then Cay(Zt
2 × Z2n, S) ∼= T (Γ(Zt

2 × Z2n)) ∼= T̃ (Γ(Zt
2 × Z2n)).

Proof. The proof can be obtained by the arguments that are analogous to those
given in the proof of Theorem 3.9. �
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