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Abstract. This article presents the stability analysis of integro-differential equa-

tions with a delay and a fractional order derivative via some approximation tech-

niques for the derived nonlinear terms of characteristic exponents. Based on these

techniques, the existence of some analytical solutions at the neighborhood of their

equilibrium points is proved. Stability charts are constructed and so both of the

critical time delay and the critical frequency formulae are obtained. The impact

of this work into general RLC circuit applications containing delays and fractional

order derivatives is discussed.

Integro-differential equations; Fractional calculus; Stability analysis; Periodic solu-

tions:

1. INTRODUCTION

Delayed fractional dynamical systems are systems characterized by the exis-
tence of fractional order derivatives and time delay parameters depending on their
past states. During the last decades, the combination of the past effect and the
fractional order rate has a significant interest in the field of fractional order differ-
ential equations(FODEs), since it could be a closer step to describe real processes
or a finer approach to describe real states of systems, cf. Bellen and Zennaro [6],
Bhalekar et al. [7] and Chen and Moore [10].
Obviously, it can be noticed that the descriptive modeling using only the integer
order derivative for such applied processes may differ significantly from their actual
or experimental behaviors, cf. Deng et al. [11], Miller and Ross [29] and Podlubny
et al. [31, 32].
However, many physical models can display the two coupled effects such as anoma-
lous diffusion systems, feedback amplifiers and capacitor systems, electrode-electrolyte
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interface models, fractional multipoles, viscoelasticity models, electrical circuital
systems, electroanalytical chemistry, economical models, polymer models, and con-
trol systems, cf. Baleanu et al. [3], Kempfle et al. [18], Kilbas et al. [19], Machado
et al. [24], Mainardi [25], Manabe et al. [26] and Rossikhin and Shitikova [36].
Even for fractional order models of happiness and love which have been developed
in recent years, it is claimed that they give a better representation than the classical
approach, cf. Song et al. [38].
Similar to classical differential systems, the study of stability is also considered the
central task for fractional differential systems. Many works e.g. Chen and Moore
[10], Qian et al. [34] and the references therein are studied the stability of FODEs
(with/without retarded time) under a variety of methods with various directions.
In this work, it is devoted to discuss the stability of integro-differential equations
that have the combination of the delay and fractional derivative. In particularly, it
is focused on disclosing some new qualitative aspects for the given physical systems
via new approximation techniques.
The model which has to be studied is

toD
q
t y(t) = f(y(t), yτ ) + k

∫ t

t−τ
y(z)dz, 0 < q ≤ 2, (1)

where q is the fractional order derivative, k is a constant, yτ = y(t − τ) and
f : (−∞,∞)×C→ R, where C is the space of continuous functions, is a nonlinear
function. To specify the solution completely, it is required an initial time to ∈ R
and the history φ ∈ C(to) where φ : [−τ, to] → R. The linearized form at the
equilibrium points(y∗) is

toD
q
t y(t) = a(y − y∗) + b(yτ − y∗) + F (y − y∗, yτ − y∗) + k

∫ t

t−τ
y(z)dz. (2)

Then, the linearized form is generalized with x(·) = y(·)− y∗ as follows:

toD
q
tx(t) = ax+ bxτ + k

∫ t

t−τ
x(z)dz, (3)

where a, b and k are constants in general, taking in your account the function of
nonlinear terms F (x, xτ ) satisfies

lim
(x,xτ )→(0,0)

F (x, xτ )√
x2 + x2τ

= 0. (4)

The typical example to describe the linearized form (Eq.(3)) is the shown voltage-
current circuit in FIGURE 1. This figure explains RLC circuit with a source (Es),
resistance (Ra and Rb), capacitance (C), inductance (L) and a linear amplifier as
shown with phase shifting network producing a constant time delay between the
input and the output of the amplifier. The resulting delayed fractional integro-
differential equation takes the form

L toD
q
t i(t) + (Ra + Rb)i(t) + Rbi(t− τ) +

1

C

∫ t

t−τ
i(z)dz = Es, 0 < q ≤ 1. (5)



76 Mohamed El-Borhamy and Alaa Ahmed

Figure 1. RLC with phase shifting network producing a con-
stant time delay(τ) .

where q is the fractional order derivatives and i(t) is the current. To regard the
detailed of the classical circuit(q = 1), cf. Burton [9].
The common definitions that concerning with the fractional derivative being Grünwald-
Letnikov fractional derivative, Riemann-Liouville fractional derivative, and Ca-
puto’s fractional derivative, are the mostly used to express the fractional dynamical
systems, cf. Babakhani et al. [2], Jarad et al. [17], Miller and Roos [29], Oldham
and Spanier [30] and Podlubny [32]. The definitions of Caputo and Riemann-
Liouville fractional derivatives and their properties are given in the following defi-
nition.

Definition 1.1. For a function x(t) defined on an interval [to, T ], the Riemann−Liouville
fractional integral of x(t) of order q > 0 is defined by

RLIqtox(t) =
1

Γ(q)

∫ t

to

(t− ξ)q−1x(ξ)dξ, t ≥ to, (6)

and Riemann-Liouville fractional derivative of x(t) of order q > 0 defined by

RL
toD

q
tx(t) =

dn

dtn
{In−qto x(t)}, (7)

where n − 1 < q < n and Γ(q) is the gamma function. The definition of Caputo
fractional derivative of order q > 0 is

C
toD

q
tx(t) = In−qto {x

(n)(t)}. (8)
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The relation between Caputo and Riemann-Liouville fractional derivatives is illus-
trated by the following expression:

RL
toD

q
tx(t) = C

toD
q
tx(t) +

n−1∑
j=1

x(j)(to)

Γ(j − q + 1)
(t− to)j−q. (9)

Moreover, Caputo derivative of x(t) = c (constant) is always 0, whereas in the case
of zero value of the lower terminal to, Riemann-Liouville fractional derivative of
x(t) = c is different from zero as

RLDq
t c =

c

Γ(1− q)
t−q. (10)

However, by setting to −→ −∞ in both definitions and requiring reasonable
behavior of x(t) and its derivatives, we end up with the same formula for both of
them as the following,

−∞
RLDq

tx(t) = −∞
CDq

tx(t) = −∞D
q
tx(t) =

1

Γ(n− q)

∫ t

−∞

x(n)(ξ)

(t− ξ)q−n+1
dξ, (11)

From Parra-Hinojosa et al. [33] and Tavazoei [39], the fractional derivatives of sine
or cosine functions in the Riemann-Liouville sense have no periodic behavior and
they are,

RL
0 Dq

t cos(ωt) = (ωt)−qE2,1−q(−ω2t2), (12a)

RL
0 Dq

t sin(ωt) = (ωt)1−qE2,2−q(−ω2t2), (12b)

where Eq1,q2(t) is the two-parameter Mittag-Leffler function,

Eq1,q2(t) =

∞∑
k=0

tk

Γ(q1k + q2)
, q1 > 0, q2 > 0. (13)

When the time tends to go to infinity which is corresponding to Weyl’s definition
of fractional derivative, then Eq.(12) converges to the following periodic functions:

0D
q
t cos(ωt) = ωq cos(ωt− πq

2
), t −→∞, (14a)

0D
q
t sin(ωt) = ωq sin(ωt− πq

2
), t −→∞. (14b)

By setting to −→ −∞ in Eq.(7) which is corresponding to Liouville’s definition of
fractional derivative, it also gives a periodic result, i.e.,

−∞D
q
t cos(ωt) = ωq cos(ωt+

πq

2
), (15a)

−∞D
q
t sin(ωt) = ωq sin(ωt+

πq

2
), (15b)

−∞D
q
t exp(ωt) = ωq exp(ωt). (15c)

When q = 1 and k = 0 in Eq.(3), it results the simplest examples of delayed
differential equations(DDEs) which is Hayes’ equation introduced in Hayes [14] as
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follows:

x′(t) = ax(t) + bx(t− τ) for a, b ∈ C, ()′ =
d

dt
. (16)

This linear equation (Eq.(16)) is widely taken as a prototype model of analytical
stability of zero solution for several studies involving constant past history, cf.
Diekmann et al. [12], Michiels and Niculescu [28] and Smith [37]. In Hayes [14], the
stability of the zero solution is elucidated and the stability chart of the parameters
space (a, b) is drawn. In particular, it is showed that in Barwell [4] and Koto [21],
if a and b satisfies

|b| < −<{a}, (17)

where <{a} is the real part of a, then the zero solution of Eq.(16) is asymptotically
stable for any τ ≥ 0.
However, the stability analysis of Eq.(16) w.r.t. the parameters a and b is largely
discussed, cf. Bellen and Maset [5], Breda [8], Diekmann et al. [13] and Insperger
et al. [15], and the resulting stability chart or the transition curves exhibiting that
(a, b)-plane is divided into stable and unstable regions as shown in FIGURE 2.

The significant modification into Eq.(16) is to include an integral term with

Figure 2. Stability chart for Eq.(16) with τ = 1.

time delay turns into delay integro-differential equation introduced in the following
formula

x′(t) = ax(t) + bx(t− τ) + k

∫ t

t−τ
x(z)dz. (18)

where τ ≥ 0 and (a, b, k) ∈ R3.
Obviously, by setting k = 0 turns Eq.(18) into Eq.(16). As mentioned in Koto
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[20, 21], the zero solution of Eq.(18) is asymptotically stable for any τ ≥ 0 if and
only if the space (a, b, k) ∈ R3 satisfies the following:

a+ b+ kτ 6= 0, for any τ ≥ 0, (19a)

λ2 − aλ− k = 0, λ ∈ C, λ 6= 0 =⇒ <{λ} < 0, (19b)∣∣∣∣ bλ− k
λ2 − aλ− k

∣∣∣∣ < 1, for any <{λ} = 0 with λ 6= 0, (19c)

where λ is the characteristic exponent of the system. When the space (a, b, k) ∈ R3

and k 6= 0, these conditions are reduced to the simple condition a < 0, k < 0 and
b2 < a2 + 2k.
In Insperger et al. [16], the fractional version of Hayes equation is tackled,

0
CDq

t = ax(t) + bx(t− τ), 0 < q ≤ 2, (20)

having different treatments employed to obtain the transition curves on the first
Riemann sheet for different values of fractional order derivative.
However, delayed fractional integro-differential equations would provide valuable
tools for modeling physical phenomena by giving explanations behaved alike real
processes. Computational difficulties that face researchers in solving many of de-
layed fractional integro-differential equations have leaded them to use approxima-
tions and numerical methods. Therefore, different studies have been done to build
up approximate methods for giving approximate solutions, cf. Li et al [22, 23], Ren
et al. [35] and Zarebnia [41].
Motivated by the previous arguments, in this work we consider the stability anal-
ysis of the extended fractional order linear integro-differential equations with time
delay τ ,

toD
q
tx(t) = ax(t) + bx(t− τ) + k

∫ t

t−τ
x(z)dz, (21)

where 0 < q ≤ 2 for τ ≥ 0 and the space (a, b, k) ∈ R3 with one equilibrium point
x∗ = 0.
Eq.(21) can be easily transformed to the following delayed fractional differential
system

toD
q∗

t x = Ax(t) + Aτx(t− τ), (22)

with initial value xo = x(to), where q∗ ∈ (q1, q2, ..., qn), qj ∈ (0, 1], x = (x1, x2, ..., xn),
A ∈ Rn×n and Aτ ∈ Rn×n. The initial value in Riemann-Liouville sense is given
by

RL
to D

q∗−1
t xj(t) = φj(t), 1 ≤ j ≤ n, t ≤ to, (23)

and in Caputo’s sense, it is given by

xj(t) = φj(t), 1 ≤ j ≤ n, t ≤ to, (24)

where the history φi(t) ∈ C(to) and φj : [−τ, to]→ R.
To consider the stability problem in this work, it is necessary to introduce the
stability definition related to the system (Eq.(22)) as follows, cf. Qien et al. [34]
and Zhang et al. [42].
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Definition 1.2. The zero solution of the system (Eq.(22)) with orders q∗ = (q1, q2, ..., qn)
and qj ∈ (0, 1], j = 1, 2, ... is said to be
i) stable if, for any initial value xo , there exists an ε > 0 such that ||x(t)|| ≤ ε for
all t > to .
ii) (locally) asymptotically stable if, in addition to being stable, ||x(t)|| → 0 as
t→∞ if x ∈ D where D ⊂ Rn (i.e. the assumptions hold locally on D).
iii) (globally) asymptotically stable if, in addition to being stable, ||x(t)|| → 0 as
t→∞ if x ∈ Rn(i.e. the assumptions hold globally on Rn).

In the following, the main work is explicated in the section of main results
which is organized as follows: the first two parts present general conditions of
zero stability by Liapunov function for the classical problem and the properties
of the characteristic function for the fractional version. The third part presents
necessary conditions for the existence of the special analytical solutions. The fourth
part presents the stability analysis of the fractional order version with different
approximation techniques. The fifth part presents the construction of stability
charts and transition curves. In the final part, the impact of the work in the shown
RLC circuit is discussed. In the last, some concluded remarks are given.

2. MAIN RESULTS

2.1. Stability Analysis Of The Classical Version. General conditions of sta-
bility can be obtained in its classical case of Eq.(21) using the second method of
Liapunov, cf. Merkin [27]. The necessary conditions to obtain the asymptotic sta-
bility of the zero solution and the existence of a periodic solution are stated in the
following theorem.

Theorem 2.1. Necessary condition to obtain a stable or an asymptotically stable
zero solution for

x′(t) = ax(t) + bx(t− τ) + k

∫ t

t−τ
x(z)dz. (25)

is

a+ b+ kτ ≤ 0.

Moreover, a periodic solution might be existed for some values of time delay(τ).

Proof. Now, consider the functional with u = t+ v,

V (x) = x2 + γ

∫ 0

−τ

∫ t

t+v

x(u)2dudv. (26)

Differentiate w.r.t time and then we obtain

dV

dt
= 2ax2+2bx(t)x(t−τ)+2k

∫ 0

−τ
x(t)x(t+v)dv+γ

∫ 0

−τ
(x2(t)−x2(t+v))dv. (27)

Using the fact that

2x(t)x(t− τ) ≤ x2(t) + x2(t− τ). (28)
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Then, we obtain

dV

dt
≤
∫ 0

−τ
(
2a

τ
+
b

τ
+ γ + k)x2(t)dv +

∫ 0

−τ
(
b

τ
+ k − γ)x2(t+ v)dv. (29)

In order to take dV
dt ≤ 0, choose that

γ =
b

τ
+ k, (30)

then
dV

dt
≤ (

2a

τ
+

2b

τ
+ 2k)

∫ 0

−τ
x2(t)dv ≤ τ(

2a

τ
+

2b

τ
+ 2k)x2(t). (31)

V (x) is bounded from below and from the Cauchy criteria for convergence of∫ ∞
0

x2(t)dt→ 0, (32)

it follows that ∫ 0

−τ

∫ t

t+v

x2(u)dudv → 0, (33)

as t→∞. Since dV
dt ≤ 0 and this depends on (a, b, k) and τ such that

a+ b+ kτ ≤ 0. (34)

Thus, the zero solution might be stable or asymptotically stable.
In case of k = 0, the functional can be taken as

V (x) = x2 + b

∫ t

t−τ
x2(u)du, (35)

then, we have
dV

dt
≤ (a+ b)x2. (36)

Hence, the asymptotic stability can be obtained if

a+ b ≤ 0. (37)

If the solution is represented by x(t) = x(t, to, ψ) and then integrate Eq.(36), so
that one obtains

x2(t) ≤ V (t, x) ≤ V (to, ψ|to), (38)

and this yields

x2(t) ≤ ψ2(to) + b

∫ to

to−τ
ψ2(s)ds ≤ (1 + bτ)|ψ(to)|2. (39)

Hence, in general, it is easily to conclude that x(t), x(t − τ), x′ are all bounded,
and x2(t) ∈ L1[0,∞). Thus, depending on τ and the space (a, b, k) with the fact
that if the solution is bounded in the future, then the model could have a constant
or a nontrivial periodic solution, cf. Burton [9]. �
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2.2. The Characteristic Function. The characteristic function of Eq.(21) can
be obtained by setting x(t) = exp(λt) with to → −∞ as follows:

Λ(λ) = a− λq +
k

λ
+ (b− k

λ
) exp(−λτ). (40)

In general, the basic rule to obtain asymptotically stable solution is that, the real
parts of the eigenvalues(λ = α + iω) of the characteristic function( i.e. roots of
Λ(λ) = 0) should be negative, cf. Wilson [40]. So that, for given values of τ and
(a, b, k) a necessary condition for Hopf bifurcation to occur at the equilibrium so-
lution of Eq.(21) can be obtained if there exists an ω 6= 0 such that λ = iω is a
solution of Eq.(40) with α′ 6= 0 where the derivative w.r.t the problem parameters
space.

Proposition 2.2. If λ = iω, ω > 0 for a given values of τ , q and (a, b, k), is a
solution to Eq.(40) if and only if the following pair of real equations hold

ωq cos(
πq

2
)− a = b cos(ωτ) +

k

ω
sin(ωτ), (41a)

ωq sin(
πq

2
) = −b sin(ωτ)− k

ω
+
k

ω
cos(ωτ). (41b)

Proof. If we substitute λ = iω into Eq.(40), we obtain

(iω)q = (a+
k

iω
) + (b− k

iω
) exp(−iωτ), (42)

where

i = cos(
π

2
) + i sin(

π

2
) = exp(i

π

2
), (43)

from Eq.(43) we can get the following

iq = cos(
πq

2
) + i sin(

πq

2
) = exp(i

πq

2
). (44)

By substituting Eq.(44) into Eq.(42) we can easily obtain Eq.(41a) and Eq.(41b).
�

Remark 2.3. By substituting λ = −iω into Eq.(40), then Eq.(42) also yields.
Thus, we can show that the characteristic equation Eq.(40) is invariant under the
reflection ω → −ω.

Remark 2.4. By squaring both Eq.(41a) and Eq.(41b) then add them to yield

(ωq)2 − 2a cos(
πq

2
)ωq + a2 = b2 +

2kb

ω
sin(ωτ)− 2(

k

ω
)2(cos(ωτ)− 1). (45)

Proposition 2.5. Suppose k = 0, then Eq.(21) and Eq.(40) turn into

−∞D
q
tx(t) = ax(t) + bx(t− τ), (46a)

λq = a+ b exp(−λτ). (46b)
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λ = iω, ω > 0 for a given values of τ and (a, b) is a solution to Eq.(46b) if and
only if the following pair of real equations hold:

ωq cos(
πq

2
)− a = b cos(ωτ), (47a)

ωq sin(
πq

2
) = −b sin(ωτ). (47b)

Proof. Substitute λ = iω into Eq.(46b), we obtain

(iω)q = a+ b exp(−iωτ), (48)

by substituting Eq.(44) into Eq.(48), then one can easily obtain Eq.(47a) and
Eq.(47b). �

Squaring both Eq.(47a) and Eq.(47b) and adding them together yields

(ωq)2 − 2a cos(
πq

2
)ωq + a2 = b2. (49)

Now, we are going to find some special explicit solutions for Eq.(21) under certain
conditions on the parameters: τ , q and the space (a, b, k).

2.3. Special Explicit Solutions.

Theorem 2.6. Consider the delayed fractional integro-differential equation (Eq.(21)),
suppose that 0 < q ≤ 1 and there exists x∗ ∈ R such that x∗ = 0, τ > 0 and
(a, b, k) ∈ R3.

(1) If ωτ = 2nπ and |b| > |a|, then there exists a real value ω such that x(t) =
exp(iωt) is a periodic solution for Eq.(21), where n = 1, 2, 3, ....

(2) If ωτ = 2nπ, a2 cos2(πq2 ) > |b2 − a2| and |a| > |b|, then there exists a real
value ω such that x(t) = exp(iωt) is a periodic solution for Eq.(21), where
a > 0 and n = 1, 2, 3, ....

(3) If |b| > |a| and k = 0, then there exists a real value ω such that x(t) =
exp(iωt) is a periodic solution for Eq.(46a).

(4) If |a| > |b|, a2 cos2(πq2 ) > |b2 − a2| and k = 0, then there exists a real value
ω such that x(t) = exp(iωt) is a periodic solution for Eq.(46a) where a > 0.

(5) If a = 0 and b = 0, then −∞D
q
tx(t) = k

∫ t
t−τ x(z)dz has a constant solution

x(t) = c, when τ −→∞.
(6) If a = 0, b = 0 and k < 0, then there exists a real value of ω such that

x(t) = exp(iωt) is a periodic solution for −∞D
q
tx(t) = k

∫ t
t−τ x(z)dz.

Proof.

(1) By using Eq.(45) if we set cos(ωτ) = 1 and sin(ωτ) = 0 hence ωτ = 2nπ,
then Eq.(45) turns into Eq.(49), hence

ωq = a cos(
πq

2
) +

√
b2 − a2 sin2(

πq

2
) > 0, (50)

Eq.(50) satisfies when ωτ = 2nπ and |b| > |a|, where n = 1, 2, 3, ... . Hence,
x(t) = exp(iωt) is a periodic solution for Eq.(21).
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(2) From Eq.(49), we can obtain

ωq = a cos(
πq

2
)−

√
a2 cos2(

πq

2
) + b2 − a2 > 0, (51)

Eq.(51) satisfies when ωτ = 2nπ, a2 cos2(πq2 ) > |b2 − a2| and |a| > |b|,
where a > 0 and n = 1, 2, 3, ... . Hence, x(t) = exp(iωt) is a solution for
Eq.(21).

(3) From Eq.(49), we have

ωq = a cos(
πq

2
) +

√
b2 − a2 sin2(

πq

2
) > 0, (52)

Eq.(52) satisfies when |b| > |a| . Hence x(t) = exp(iωt) is a solution for
Eq.(46a).

(4) From Eq.(52) we also have

ωq = a cos(
πq

2
)−

√
a2 cos2(

πq

2
) + b2 − a2 > 0, (53)

Eq.(53) satisfies when |a| > |b| and a2 cos2(πq2 ) > |b2 − a2| . Hence x(t) =
exp(iωt) is a periodic solution for Eq.(46a).

(5) If we set a = 0 and b = 0, then Eq.(41a) and Eq.(41b) become as follows

ωq cos(
πq

2
) =

k

ω
sin(ωτ), (54a)

ωq sin(
πq

2
) = − k

ω
+
k

ω
cos(ωτ), (54b)

by squaring both Eq.(54a) and Eq.(54b) then adding them together yields

(ωq+1)2 = 2k2(1− cos(ωτ)). (55)

If cos(ωτ) = 1, then ωτ = 2nπ, where n = 1, 2, 3, ... so Eq.(55) yields ω = 0,
and hence τ −→∞. Therefore x(t) = c is a solution.

(6) If we set a = 0 and b = 0, then Eq.(41a) and Eq.(41b) turn into

ωq cos(
πq

2
) =

k

ω
sin(ωτ), (56a)

ωq sin(
πq

2
) +

k

ω
=
k

ω
cos(ωτ), (56b)

by squaring both Eq.(56a) and Eq.(56b), then adding them together yields

ωq(ωq +
2k

ω
sin(

qπ

2
)) = 0. (57)

Note that ω 6= 0, therefore,

ωq+1 = −2k sin(
qπ

2
) > 0, where k < 0 and 0 < q ≤ 1, (58)

hence, x(t) = exp(iωt) is a solution.�
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2.4. Stability Analysis. Some approximation techniques are employed to obtain
some values for the characteristic exponents(λ′s) of the characteristic equation
Eq.(40), since there are infinite number of them due to the existence of time delay(τ)
and fractional order (q) under certain conditions. The strategy here is to find a
suitable better approximation for λq and exp(−λτ) expansions. So that, we can
obtain an approximate quadratic algebraic equation for Eq.(40) with two domi-
nant eigenvalues and all the remaining eigenvalues are clustered around these two
eigenvalues when time delay is going to be very small(0 < τ � 1).

Theorem 2.7. Consider the delayed fractional Integro-differential equation Eq.(21)
so that (0 < q ≤ 1). Suppose that τ � 1, <{λ} <

∣∣ 1
τ

∣∣. If it is considered that,

λq ≈ 1

τ q
(qλτ − q + 1) , (59)

then the system represented by Eq.(21) is stable under the following condition

1

q + bτ q
((1− q)τ−q − (a+ b+ τk)) ≥ 0. (60)

If bτ ≈ 0 and q = 1 then, the classical case condition of stability

a+ b+ τk < 0. (61)

holds

Proof. Suppose that

λq =
1

τ q
(λτ)

q
=

1

τ q
exp (q ln (τλ)) , (62)

then the following approximations could be obtained when τ � 1 and <{λ} <
∣∣ 1
τ

∣∣
exp(−λτ) ≈ 1− λτ, (63a)

ln(λτ) ≈ λτ − 1. (63b)

By substituting both of Eq.(63) into Eq.(62), we obtain Eq.(59). Now, by sub-
stituting Eq.(59) and Eq.(63a) into Eq.(40), we obtain an approximate quadratic
algebraic equation for the characteristic equation as follows,

λ2
(
qτ1−q + τb

)
+ λ

(
(1− q)τ−q − a− b− τk

)
= 0, (64)

the eigenvalues could be obtained easily as follows

λ1 = 0, λ2 = − ((1− q)τ−q − a− b− τk)

qτ1−q + τb
, (65)

where λ1 and λ2 are the dominant eigenvalues that all the remaining eigenvalues
are clustered around both of them when the time delay is very small, after that
we used both of Eq.(63) to have a quadratic equation. The system is stable when
λ2 < 0, and unstable when λ2 > 0. �

From FIGURE 3, it is shown that when τ � 1 and <{λ} <
∣∣ 1
τ

∣∣, and Eq.(59)
is supposed to be a better approximation for λq than the first approximation of λq
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that was introduced in Atherton [1] as follows

λq ≈ (1 + q)λ+ (1− q)
(1− q)λ+ (1 + q)

. (66)

Now, we are going to do the same as discussed in the previous theorem but the

Figure 3. The Comparison shows that Eq.(59) has a better
approximation for λq than Eq.(66).

case of k = 0 is illustrated in the following theorem.

Theorem 2.8. Consider the model Eq.(46a), so that 0 < q ≤ 2. Suppose that
τ � 1 and <{λ} <

∣∣ 1
τ

∣∣. If

λq ≈ 1

τ q

(
τ2λ2

2
(q2 − q) + τλ(2q − q2) + 1 +

q

2
(q − 3)

)
, (67)

then a periodic solution occurs at q = 1 if 1 + τb ≈ 0 and a + b + 1
2τ < 0, and at

q = 2 if τb ≈ 0 and a+ b < 0.

Proof. First of all, we are going to expand approximations of exp(−λτ) and
ln(λτ) to the second order in order to obtain a quadratic approximate algebraic
characteristic equation, thus we have the following

exp(−λτ) ≈ 1− λτ +
τ2λ2

2!
, (68a)

ln(λτ) ≈ λτ − 1− (λτ − 1)2

2
. (68b)

By substituting both of Eq.(68) into Eq.(62), we obtain Eq.(67) an approxima-
tion for λq, substituting Eq.(67) and Eq.(68a) into the corresponding characteristic
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equation Eq.(46b) , we obtain an approximate quadratic algebraic equation for the
characteristic equation as follows:

λ2
(
τ2−q(q2 − q)− bτ2

2

)
+λ
(
τ1−q(2q − q2) + bτ

)
+
q
2 (q − 3) + 1

τ q
−(a+b) = 0 (69)

eigenvalues are obtained as in the following,

λ1,2 =
−B ±

√
B2 − 4AC

2A
, (70)

where A = qτ2−q(q−1)−bτ2

2 , B = qτ1−q(2− q) + bτ and C = q(q−3)+2
2τq − (a+ b).

Easily, one can study the stability conditions for Eq.(46a) using its corresponding
approximate characteristic equation Eq.(69). The following table(Table 1) shows
the needed necessary conditions for the existence of a periodic solution to occur. �
As shown in FIGURE 4, it is shown that when τ � 1 and <{λ} <

∣∣ 1
τ

∣∣, Eq.(67) is

Table 1. Conditions of periodic solution to occur for Eq.(46a)
using Eq.(67) as an approximate formula for λq.

case Nature of eigenvalues Region of stability conditions

q=1 λ1,2 = ±iω Center (periodic solution) 1 + τb ≈ 0, and a+ b+ 1
2τ < 0.

q=2 λ1,2 = ±iω Center (periodic solution) τb ≈ 0, and a+ b < 0.

a better approximation for λq than Eq.(66).

2.5. Stability Charts. The construction of stability charts for Eq.(21) using the
D-subdivision method for the space (a, b) under different values of k and q is illus-
trated. The construction is based on the numbers of stable/unstable characteristic
exponents using the following analytic ways.

Proposition 2.9. If we set b = k = 0 in Eq.(21), then stability of the scalar
fractional-order differential equation Eq.(71) alternates from stable to unstable and
vice versa depending on the value of fractional order (q).

−∞D
q
tx(t) = ax(t). (71)

Proof. Assume that b = k = 0, then Eq.(21) reduces to the scalar fractional-order
differential equation Eq.(71). With the characteristic function

Λ(λ) = λq − a, (72)

when the characteristic function Eq.(72) vanishes, we obtain its characteristic equa-
tion which is

λq = a, (73)
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Figure 4. The Comparison shows that Eq.(67) has a better ap-
proximation for λq than Eq.(66).

consequently, we have infinite characteristic exponents. In the following cases, we
illustrate that the stability of the system introduced by Eq.(71) is affected by the
value of the fractional order (q).

Case 1.:
If q = 1, then the system Eq.(71) reduces to a characteristic equation λ = a
which is asymptotically stable when a < 0, and unstable when a > 0.

Case 2.:
If q = 1

2n , then Eq.(73) turns into λ = a2n > 0, hence the system is unstable
for all a, where n ∈ Z+.

Case 3.:
If q = 1

2n+1 , then Eq.(73) turns into λ = a2n+1, hence the system is asymp-

totically stable when a < 0, and unstable when a > 0, where n ∈ Z+.
Case 4.:

If q = m
n , then Eq.(73) turns into λ = m

√
an. If m and n are even numbers,

then an > 0 and one of its mth roots is positive, one is negative and the
rest (when m > 2) are complex. Hence the system is unstable.

Case 5.:
If q = 2m+1

2n , then Eq.(73) turns into λ =
2m+1
√
a2n. As 2m + 1 is odd,

then one of the (2m+ 1)th roots is real and has the same sign as a2n > 0,
where the remaining 2m roots are not real. This implies that the system is
unstable, where n and m ∈ Z+. �
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The presence of the two parameters b 6= 0 and k 6= 0 makes the stability
properties of the system more complex. This is due to the nature of the delayed
system, since it has an infinite-dimensional nature as well as the presence of the
fractional order. Therefore, in the following theorem, we show that the effect of
the changing of parameters b and k on the stability properties of Eq.(21).

Theorem 2.10. Let x∗ be an equilibrium point for the model Eq.(21).

(1) If(
qωq−1 sin

(
πq
2

)
+ bτ cos(ωτ) + k

(
τ sin(ωτ)

ω + cos(ωτ)
ω2 − 1

ω2

))
cos(ωτ)

+
(
qωq−1 cos

(
πq
2

)
+ bτ sin(ωτ) + k

(
sin(ωτ)
ω2 − τ cos(ωτ)

ω

))
sin(ωτ) > 0,

then there exists a number bcr such that the equilibrium x∗ is asymptotically
stable for b < bcr and unstable for b > bcr.

(2) If
sin(ωτ)
ω

(
qωq−1 sin

(
πq
2

)
+ bτ cos(ωτ) + k

(
τ sin(ωτ)

ω + cos(ωτ)
ω2 − 1

ω2

))
− (cos(ωτ)−1)

ω

(
qωq−1 cos

(
πq
2

)
+ bτ sin(ωτ) + k

(
sin(ωτ)
ω2 − τ cos(ωτ)

ω

))
> 0,

then there exists a number kcr such that the equilibrium x∗ is asymptotically
stable for k < kcr and unstable for k > kcr.

Proof. The corresponding characteristic function of Eq.(21) is as follows

Λ(λ) = λq − (a+
k

λ
)− (b− k

λ
) exp(−λτ). (74)

According to the D-subdivision method, substitution of λ = α+iω = r exp(iθ), ω >
0, r > 0 and 0 < θ < 2π into the characteristic equation (Eq.(40)) and decom-
position into real(<) and imaginary(=) parts yields

< : rq cos(qθ) = a+
k

r
cos(θ)

+ exp(−ατ)

(
b cos(ωτ)− k

r
cos(ωτ) cos(θ) +

k

r
sin(ωτ) sin(θ)

)
(75)

= : rq sin(qθ) = −k
r

sin(θ)

+ exp(−ατ)

(
−b sin(ωτ) +

k

r
cos(ωτ) sin(θ) +

k

r
sin(ωτ) cos(θ)

)
(76)

If we set α = 0 as in Eq.(41a) and Eq.(41b)), we can obtain the transition curves
as a parametric function of ω in the following form



90 Mohamed El-Borhamy and Alaa Ahmed

if ω 6= 0, ωτ 6= nπ, n ∈ Z :

a = ωq cos
(πq

2

)
− k

ω
sin (ωτ) + cot(ωτ)

(
ωq sin

(πq
2

)
+
k

ω
− k

ω
cos (ωτ)

)
,

b = −
ωq sin( qπ2 )

sin(ωτ)
− k

ω

(1− cos(ωτ))

sin(ωτ)
, (77)

with the corresponding limits for ωτ = nπ, n ∈ Z.
Because of the continuity of the function Λ(λ) with respect to changes in the sys-
tem parameters (a, b, k, τ), these curves divide the parameter plane (a, b) into stable
and unstable regions separated by the transition curves. In some cases, it is noted
that the numbers of unstable characteristic exponents are constant and typically
the change of these numbers along the curves can be determined by the analysis of
the exponent-crossing direction. This change is measured by the sign of the partial
derivative of eigenvalue real part, α, with respect to one of the system parameters,
cf. Inspeger et al. [15].
Normally, ω appears in the denominator of the transition curves in Eq.(77), thus
ω can not vanish. Hence, we can not get a form for transition curve associated
with a real critical characteristic exponent crossing the imaginary axis at 0. The
transition curves given by Eq.(77) are associated with a complex conjugate pair of
eigenvalues in the form λ = ±iω.
Now, we are going to study the effect of b on stability by taking the partial deriva-
tives of Eq.(75) and Eq.(76) with respect to b and considering that α = 0 along the
transition curves to obtain

cos(ωτ) =

(
qωq−1 sin

(πq
2

)
+ bτ cos(ωτ) + k

(
τ sin(ωτ)

ω
+

cos(ωτ)

ω2
− 1

ω2

))
αb

+

(
qωq−1 cos

(πq
2

)
+ bτ sin(ωτ) + k

(
sin(ωτ)

ω2
− τ cos(ωτ)

ω

))
ωb,

(78)

− sin(ωτ) =

(
−qωq−1 cos

(πq
2

)
− bτ sin(ωτ) + k

(
τ cos(ωτ)

ω
− sin(ωτ)

ω2

))
αb

+

(
qωq−1 sin

(πq
2

)
+ bτ cos(ωτ) + k

(
τ sin(ωτ)

ω
+

cos(ωτ)

ω2
− 1

ω2

))
ωb,

(79)

where αb and ωb are the partial derivatives of α and ω with respect to b. The
solution of Eq.(78) and Eq.(79) for αb is

αb =
cos(ωτ)

β

(
qωq−1 sin

(πq
2

)
+ bτ cos(ωτ) + k

(
τ sin(ωτ)

ω
+

cos(ωτ)

ω2
− 1

ω2

))
+

sin(ωτ)

β

(
qωq−1 cos

(πq
2

)
+ bτ sin(ωτ) + k

(
sin(ωτ)

ω2
− τ cos(ωτ)

ω

))
,

(80)
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where,

β =

(
qωq−1 sin

(πq
2

)
+ bτ cos(ωτ) + k

(
τ sin(ωτ)

ω
+

cos(ωτ)

ω2
− 1

ω2

))2

+

(
qωq−1 cos

(πq
2

)
+ bτ sin(ωτ) + k

(
sin(ωτ)

ω2
− τ cos(ωτ)

ω

))2

.

(81)

Hence,

sign [αb] =

sign

[(
qωq−1 sin

(
πq
2

)
+ bτ cos(ωτ) + k

(
τ sin(ωτ)

ω + cos(ωτ)
ω2 − 1

ω2

))
cos(ωτ)

+
(
qωq−1 cos

(
πq
2

)
+ bτ sin(ωτ) + k

(
sin(ωτ)
ω2 − τ cos(ωτ)

ω

))
sin(ωτ)

]
. (82)

Obviously Eq.(82) tells us if αb > 0, all the roots crossing the imaginary axis
at iω cross from left to right as b increases, i.e., α get closer to positivity and
farther from negativity thus after a critical value of b stable characteristic exponent
becomes unstable and this results in loss of stability.
Now we are going to study the effect of k on stability by taking the partial derivative
of Eq.(75) and Eq.(76) with respect to k and considering that α = 0 along the
transition curves to obtain

sin(ωτ)

ω
=

(
qωq−1 sin

(πq
2

)
+ bτ cos(ωτ) + k

(
τ sin(ωτ)

ω
+

cos(ωτ)

ω2
− 1

ω2

))
αk

+

(
qωq−1 cos

(πq
2

)
+ bτ sin(ωτ) + k

(
sin(ωτ)

ω2
− τ cos(ωτ)

ω

))
ωk,

(83)

1

ω
(cos(ωτ)− 1) =

(
−qωq−1 cos

(πq
2

)
− bτ sin(ωτ) + k

(
τ cos(ωτ)

ω
− sin(ωτ)

ω2

))
αk

+

(
qωq−1 sin

(πq
2

)
+ bτ cos(ωτ) + k

(
τ sin(ωτ)

ω
+

cos(ωτ)

ω2
− 1

ω2

))
ωk,

(84)

where αk and ωk are the partial derivatives of α and ω with respect to k. The
solution of Eq.(83) and Eq.(84) for αk is

αk =
sin(ωτ)

βω

(
qωq−1 sin

(πq
2

)
+ bτ cos(ωτ) + k

(
τ sin(ωτ)

ω
+

cos(ωτ)

ω2
− 1

ω2

))
− (cos(ωτ)− 1)

βω

(
qωq−1 cos

(πq
2

)
+ bτ sin(ωτ) + k

(
sin(ωτ)

ω2
− τ cos(ωτ)

ω

))
,

(85)
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where β is defined in Eq.(81), hence

sign [αk] =

sign

[
sin(ωτ)
ω

(
qωq−1 sin

(
πq
2

)
+ bτ cos(ωτ) + k

(
τ sin(ωτ)

ω + cos(ωτ)
ω2 − 1

ω2

))
− (cos(ωτ)−1)

ω

(
qωq−1 cos

(
πq
2

)
+ bτ sin(ωτ) + k

(
sin(ωτ)
ω2 − τ cos(ωτ)

ω

))]
.

(86)

Obviously Eq.(86) tells us if αk > 0, all the roots crossing the imaginary axis at iω
cross from left to right as k increases, i.e., α get closer to positivity and farther from
negativity thus after a critical value of k stable characteristic exponent becomes
unstable and this results in loss of stability. �

Remark 2.11. One can do the previous work and study the stability of Eq.(46a)
w.r.t b by setting k = 0 to obtain the following;

sign [αb] = sign

[(
qωq−1 sin

(πq
2

)
+ bτ cos(ωτ)

)
cos(ωτ)

+
(
qωq−1 cos

(πq
2

)
+ bτ sin(ωτ)

)
sin(ωτ)

]
,

(87)

if αb > 0, all the roots crossing the imaginary axis at iω cross from left to right as
b increases, i.e., α gets closer to positivity and farther from negativity thus after a
critical value of b stable characteristic exponent becomes unstable and this results
in loss of stability.

Remark 2.12. If k = 0 and q = 1 (Hayes equation), then the results coincides
with those in Insperger et al. [15].

Stability charts at different values of q and k are presented by figures: FIG-
URE 5, FIGURE 6, FIGURE 7, FIGURE 8, FIGURE 9, FIGURE 10, FIGURE
11, FIGURE 12 and FIGURE 13. In each figure, the angular frequency limits (ω)
along the transition curves are shown. From these figures, one can notice that the
angular frequency limits have a rather change due to the change of k and q, and it
is correspondingly followed by the change of stable and unstable regions separated
by transition curves. Particularly, it is resulted that, the stability state of a system
can be influenced by the fractional order derivative terms and the transition curves
as well.

2.6. The impact in fractional RLC circuits. By applying the deduced results
to RLC shown in FIGURE 1 as an example to look for the impact of the work on
the applied sciences. So then, it can be deduced the following states of the circuit
under dissipative resistances Ra and Rb as follows,
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Case (i): The state of the circuit has stable behavior at q = 1 if

Ra + 2Rb +
τ

C
≥ 0. (88)

Case (ii): The state of the circuit has stable behavior at q < 1, τ < 1 if

Ra + 2Rb +
τ

C
+

1− q
τ q
≥ 0, and qL > τ qRb. (89)

Case (iii): The state of the circuit has periodic behavior at q = 1 if

τ =
L

Rb
, τ <

1

2

L

Ra + Rb
and τ < 1. (90)

Case (iv): The state of the circuit has periodic behavior at q = 2 if

Rb =: 0. (91)

Case (v): The state of the circuit has periodic behavior at q = 1, if

τ = nν, ν =
2π

ω
and n = 0, 1, 2, 3, .... (92)

Case (vi): The state of the circuit has periodic behavior at q < 1, if

τ = nν, ν =
2π

ω
and (Ra + Rb) sin

πq

2
> Rb. (93)

Case (vii): The state of the circuit has constant behavior at q < 1, if Ra =: 0 and
Rb =: 0.

Figure 5. Stability chart with τ = 1, k=0 and q=1 for Eq.(21).
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Figure 6. Stability chart with τ = 1, k=0 and q=0.5 for Eq.(21).

Figure 7. Stability chart with τ = 1, k=0 and q=1/3 for Eq.(21).
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Figure 8. Stability chart with τ = 0.9, k=1 and q=1 for Eq.(21).

Figure 9. Stability chart with τ = 0.9, k=1 and q=0.5 for Eq.(21).
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Figure 10. Stability chart with τ = 0.9, k=1 and q=1/3 for Eq.(21).

Figure 11. Stability chart with τ = 0.9, k=-1 and q=1 for Eq.(21).
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Figure 12. Stability chart with τ = 0.9, k=-1 and q=0.5 for Eq.(21).

Figure 13. Stability chart with τ = 0.9, k=-1 and q=1/3 for Eq.(21).
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3. CONCLUDING REMARKS

In this work, the stability analysis of delayed linear integro-differential equa-
tions within the existence of fractional derivative operators and their impact in
RLC circuit applications is studied. Such analysis is based on new approximations
of fractional powered eigenvalue (λq) and the transcendental terms around the small
values of time delay. It is resulted that, the deduced conditions to guarantee the
stability generalize the classical cases conditions as well as the other correspond-
ing results of fractional cases. The stability charts using D-division method are
constructed and the influences of the fractional derivative on the transition curves
are shown. Moreover, the necessary conditions for the existence of some explicit
analytical solutions for the given system are concluded.



DELAYED FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS 99

REFERENCES

[1] Atherton, P.D., Tan, N., Yeroglu, C., Kavuran, G. and Yüce, A., Limit cycles in nonlinear
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