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Abstract. For any connected graph G, the distance energy, £p (G) is defined as the
sum of the absolute eigenvalues of its distance matrix. Distance energy was intro-
duced by Indulal et al. in the year 2008 [10]. It has significant importance in QSPR
analysis of molecular descriptor to study their physico-chemical properties. Our

interest in this article is to establish new lower and upper bounds for distance energy.
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1. INTRODUCTION

In chemistry, Huckle molecular Orbital(HMO) theory is used to calculate
m-electron energy of conjugated hydrocarbon. Later it was proved this quantity
n

is equivalent to £(G) = Z |A;|, where Ay > X2 > --- > A, are eigenvalues of

the respective molecular g;aph and called it as energy of graph. The studies on
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graph energy can be seen in papers [5, 6]. For detailed survey on applications on
graph energy, see papers [2, 3, 4, 7]. The bounds for £(G) can be found in papers
[12, 13, 14, 11].

In what follows in this paper, we take the graph G as simple undirected graph
G with n vertices and m edges. For any two vertices v; and v;, the distance between
them is denoted by d;; and is defined as the shortest path from v; to v;. Two pa-
rameters that are of interest are Wiener index, W(G) and distance matrix Ap(G).
They are respectively defined by W(G) = Zdij and A(G) = Ap(G) = [d;;]. For

i<j
the sake of simplicity Wiener index is written as W. Clearly Ap(G) is a symmetric
matrix, its eigenvalues are root of equation ¢(G : p)=|ul — A(G)| = 0. These eigen-
values are called D—eigenvalues or D—spectrum which are generally ordered in the
form py > po > -+ > py. The largest eigenvalue py is called the distance spectral
radius of the graph G. Given a graph G, the distance energy of G is defined by
n

Ep(G) = Z |-

For a connected graph G, Koolen and Moulton upper bound [8] for distance
energy in terms of W, M and n is

Ep(G) < (ﬂ) n \/(n 1) (2M - (?)2) for 2W >n (1)

n

n
where M = Z dfj. Further results on upper bounds can also seen in the paper [9].
i<j
McClelland bounds [8] for distance energy of graph which is true for any
connected graph G

V2M + nn — 1)|det(A)[} < Ep(G) < V2Mn, @)

For all studies on distance energy refer papers [1, 10, 15]. We use the following two
lemmas, which followed from the properties of distance eigenvalues [8].

Lemma 1.1. Let G be a graph with n > 3 vertices and m edges. Let p1 > pg >
<o > Uy be D—eigenvalues of G then

Z ui =0
i=1
and

zn:,uf =2M.
i=1
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Lemma 1.2. If 41 (G) is distance spectral radius of the graph G then ui(G) > %
Since 2W >n, up > 1.

n
Throughout this paper, during proof of the theorems we use notations M = Z dfj
i<j

and Ap(G) = A. Notethat M = > d; > > dij=Wand VM = |y d} <Y dyy=W.

i<j i<j i<j i<j

2. MAIN RESULTS
2.1. Lower bound for spectral distance radius.

Lemma 2.1. If A is adjacency distance matriz of a graph G with n vertices and
m edges then

[det(4)] < (2M)% . (3)
Proof. Derivation follows from |det(A)| = |u1p2---pin| = |p1||p2]---|pn]- But
|det(A)] < |pallpal-pa] = | < (V2M)".
This gives |det(A)| < (2M)?2. O

Lemma 2.2. If G is a connected graph with n vertices and m edges then the largest
distance eigenvalue, py of G satisfies

|a| > |det(A)|7. (4)

Proof. Using the relation py + po + -+ + py, = 0 on distance eigenvalues of the
graph G gives ps+- -+ pn, = —p1. Since py > 1, the sum pg + - - - + iy, is negative
quantity. Therefore

1
M2+"'+Mn S |u2u3...un‘n—1_
i.e.

1
PR n—1
1 < |1 2 1Mn|

n—1

Hq
which implies

i < |det(4)

1
n-1,

So,
|71 < |det(A)|7oT

"5 > |det(A)| 7T if [pg| > 1. But |pg| > 1. Hence |p1| > |det(A)| .
O

if |u1] < 1and |pg
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Lemma 2.3. If G is a graph with n vertices and m edges then the largest distance
eigenvalue, u1 of G satisfies

|det(A)|=
| = (5)
Vn
Proof. Arithmetic and geometric mean of |u1|, |ua|, -+, |un| are respectively are

|pa| + [pa| + -+ + 1]
n

and
1

s pon |
Since arithmetic mean is greater than or equal to geometric mean it follows that

lpa |+ [pa] + -+ |

1
> |pap2 - pn|

n
pal + lpol 4+ lpnl ] + (w2l 4+ + 1] 1
pad ol + el bl el

Vi "
Therefore
‘u1|+|u2|+.”+lun|>|,U,1/L2---/J,|717
NG - "
implies

mlil s \er(ayt.

vn

2.2. Bounds for distance energy of graph.

Lemma 2.4. If G is a graph with n vertices and m edges and A is the adjacency
distance matriz which is non-singular then

2Mn
n|det(A)|* < Ep(GQ) < ———. 6
|det(A) (@) det(A)[E (6)
Proof. Using inequality of arithmetic and geometric mean of |u1|, |ual, -+, |tn| we
have
|l + [po] + - 4 [pn] 1
> |papz - pn| ™
n
So,

Ep(G) > n|det(A)|*.
From Maltlizlttlinl > ey A)|w gives || > |det(A)|#. So,

n
1
>l
1=1

|1 Z il = |det(A)
i=1
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Since || < |p1| Vi, therefore n|ui|? > |det(A)|* E(G). But |pu1|> < 2M from which

2Mn 1 2M
we have £p(G) < —————. Thus n|det(A)|» < Ep(G) < "
|det(A)| [det(A)|»"

We use Holder’s inequality inequality to get bounds for energy of graphs

Holder’s inequality: If z;;(¢ = 1,2,..,n and j = 1,2,3,...,n) is a non-
1

n n n
negative real numbers then H (Z :r”)

Y

> (11+)

j=1 Jj=1 =1

S
3=

~——
3=

i.e., (:Eu —|—x12—|—...+x1n) (le +x99+...+ 2o, (acnl —|—xn2+...—|—xnn) >
11 1 11 1 11 1
(ml"larg"l...xgl) + (x&xélg...x;h) + ...+ (xfnxz"na:;{n)

Theorem 2.5. Let G be a graph with n vertices and m edges with 2M > n. If A
is a adjacency distance matrix which is non-singular then

(4M)™

=t T < S S
WS lder(A)F < €0(C) <

(7)

Proof. Apply Holder’s inequality using

1 1 1
11 T2 o Tin . [l Iull\
. 1
T21 T22 Ton o [12] [12]
1 1
:I:’I’Ll mn? e wnn |Hn| ‘Hnl et 1

and simplify left hand side and right hand side of inequality separately.

—1\» —1\» -1 -1 -1 -1
LHS:(1+L) (1+n—) ...(1+"—) (1+ )(1+n—)...(1+n—>.
| | |22 |fan || |2 |ttn]

Since 2M > n > (n — 1) it follows that

LHS < (1+%) (1+%)...(1+%)

|1 | ||
. But or
lpil < VM < 2M = 15 10 Vi
22
So
2M  2MN /2M  2M 2M 2M
218 < Q1+ o) G * i)t * )
1 1 2 2 n n
AT

|
—~
NS
~—
—
=
»
~—

n|
M)" :( M)"
[Hapa..pin|  |det(A)]
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1 1 1
RHS = T Tt FRREE 1 1 1
e e T L VAt e L Y k2 o P
B |pa | |pa ™ n |ptn| 7
= —
Imuz ,un|“ Imm--unln |[H1 i fin | ™
= e S
Therefore
Z l (4m)™
|det )w = Jdet(4)]
and
n N (4M)n
il " < ————~.
; |det(A)|(1==)
But
n 1 n
n 1
(S hil)™ <37 bl
= =1
Hence
" * (4M)™
(Z““') < (=)
i=1 |det(A)\ n
and

(4a)™
[det(A)|0D°
To get lower bound we apply Holder’s inequality using the substitution

Ep(G) <

Ty T2 ot Tip ] g oo |l
T21 T22 - T2n |M2| |M2| |M2|
Tnl Tp2 - Tan |Nn| |/~Ln| T |/~Ln|
1 1 1 1
(nlpa))™ + (nlp2))™ + -+ (lpal)™ > n(lpal|p2] - |pal) >
1 L
¥+ al® el > 0 (det(A))

But (|| + 2| + -+ + i) > [ |® + ] ® + -+ + [zn| 7. Therefore

Ep(G) > n"" |det(A)| 7.

(4m)"™

Combining above bounds we have, n'w |det(A)|% <&p(G) < [det(A)| D
O
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2.3. Lower and upper bound for distance energy of graph.

Theorem 2.6. Let G be a graph with n(> 2) vertices and m edges with 2M > n
then

(@) > M, (Let(fm)ﬁ. ®)

n 2M
n

Proof. Apply arithmetic mean and geometric mean inequality to real numbers
|2l |psl, -+ |pn| for (n —1) terms,

lpa| + |ps] + -+ |

1
> |popig -+ pin |71
n—1

ol + |psl + -+ |pnl 1
(Inal + lmsl + -+ + ] ) = " > |zt - in| 77
So,
1
|M1u2 . .un|ﬁ
E(G) = |m| > ———7—.
lals=
And
det(A)|7T
£0(G) 2 | + VT
| |n—1
|det(A)|7T o
Let |p1] = = and ¥(x) =2+ —————. We shall minimize the func-
xrn—1
tion by finding ¥'(z) and ¥”(z). At maxima or minima ¥’'(x) = 0 which gives
det(A)|=1 _ .
1-— %x_ n-1 = (. Thus the function ¥(x) attains maxima or minima
n—
det(A)|x _op
at ¥ = L)_l At this point, ¥ (z) = Lﬂdet(/mﬁx% > 0. This
(n—1)"% (n—1)

means the function attains the minimum value at this point. The minimum value
is

|det(A)| n|det(A)|»
\II((n — 1)%) B

(n—1) o
1
But the function is increasing in the interval % < |detA|% < % < || <
n—1)"n
V2M.
2M
Ep(G) > q/(f)
n

%N'de&m)ﬁ'

Ep(G) >

n
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Theorem 2.7. Let G be a graph with n(> 3) vertices and m edges with 2M > n

then
n—1
M (n—2)%|det(A)|7=
Ep(G) > — . . 9
p(G) 2 n + (M)m ©)
Proof. Apply arithmetic mean and geometric mean inquality to real numbers |ua|, |3, -« -, [tn—1)]

for (n — 2) terms,

2| + [ps] + -+ 1]

1
> 1|2,
n—29 7\H2M3 Hn 1|

o ol + s + -+ [

_1
<|u2|+|“3|+"’+|“n—1‘) > |pops - 1|72,

n—2
So,
1
[apa - pin| "2
E(G) = [l = [pn| = >
[ pin| =
det(A)|7=
Ep(G) > | + | + 1NATE
[ pin| =
1
det(A)|—=
Let |u1| = z, |pn| =y and g(x,y) =z +y + |f())|1. Using partial differen-
a’;/y n—2

tiation we minimize the function by finding g,(x,v), gy(2,9), 9zz(x, ), gyy(z,y),
Gy (£C7 y) and A = GrxGyy — g?gy'

9z =1~ |del;(A;);Q(aﬂy)iZy,
y=1- %wy)x
oo =L &)'_d 622(5”'"12 (2y) 7,
Gy = _m2(1 —(7;)|_d€2t)(214)|n12 @) 37;2;7
_ldet(A)|==

gxy -

1—n n — 1 3—2n
n—2 n—2
(@)™ +y @ ),

A:

(zy)2(1 — n)2|det(A)|7= (o) 52 |det(A)|7= (( 1m n—1 )2
Ty) 2 ——————— n .
(n—2)! ! (n—2)?
At maxima or minima g, =0, g, = 0 which gives
1—n n — 2

(my)™=2y = \det(A)

_1_
n—2
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and

Thus the function g(z,y) attains maxima or minima at

_ |det(A)|»

1
n

(n—2)%"
At this point, g,, and g,, are greater than equal to zero. Further A < 0. This
means that the function attains the minimum value at this point. The minimum
value is given by,

n—2"

n—2)"% (n—2)"%"

Since 2M > n, g(x,y) increases in the interval

( |det(A)|=  |det(A)| )
(

2M
| det(A)|7 < S <e<VaM

and
1 2M
0 <y <|det(A)]* < = < V2M.
n
At
_|det(A) o
(n72)n;2?
n — 2)% |det(A)| 72
g(w,y)=w+( )7 1( )
_’L‘n—Q
Therefore,
det(A)|x OM  |det(A)|x
0o 2 o PEUALE ) (20, WA
(n72)n n (an) n
Hence,
2M _ )k |det(A)| 7
en(G) > 2L (n = 2 et DITD
" (&)

O

Theorem 2.8. Let G be a graph with n > 2 vertices, m edges and G is a non-
singular graph then

(n—1)(2M)

€p(G) < V2M + \det(A)|*

(10)
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Proof. We know that |u1] > |det(A)|, which implies

] > il > [det(A)[7 Y Jpual.
1=2

=2

Since |u;| < |p1] Vi, therefore

(n = 1)l |? = |det(A)|+ (£(G) = |im]).
Thus
(n— Dlm|?
Ep(G) < fm|+ ——=5—
|det(A)|
(n —1)a? . . /
Let |p1| = @ and f(z) =2+ ~———+. At maxima or minima f'(z) = 0
|det(A)| =
which gives
(n—1)2z 0
|det(A)|= ’
Hence the function attains maximum or minimum value at
Jdet(A)[*
- 2n—1)"°
: 1 2(” — 1)
Since f"(x) = m > 0 the function attains minimum value at this point.
e

The minimum value
(- Moty pe | e et
2(n—1) 2(n—1) 4(n—1) Adn—1) "

But f(x) is an increasing function in the region — Ide(t (A)l) <z <WV2 Hence

f(z) < f(v/2M). Therefore
£n(G) < varT + = LEAD

|det(A)|

3. CONCLUDING REMARKS

In this paper, an effort has been made to obtain new bounds for distance
energy of graph in a simplest way. Are these lower and upper bounds better than
Koolen-Moulton and McClelland bounds (1.1 and 1.2)? It is yet to proved and is
a scope for further research.
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