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Abstract. In this paper, we have studied some properties of Abian’s semiring,

especially about the supremum of a subset of an Abian’s semiring. We have also

considered the zero divisor graphs of Abian’s semiring and found some properties

of those graphs.
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1. INTRODUCTION

Abian’s relation on a ring R is the relation ‘≤’ defined by a ≤ b if and
only if a2 = ab. This relation was first introduced by Abian [1] and Chacron
[5]. Abian’s relation on reduced commutative ring has been studied by Anderson
and LaGrange [2]. Recently, the present authors have introduced this relation in
a semiring [10]. As the relation is defined in terms of multiplicative operation,
some results are analogous to those in a ring. But while studying supremum of a
subset of an Abian’s semiring, the absence of additive inverse in it is a motivating
factor towards the embedding of the semiring into an Abian’s ring with a necessary
condition.

In this paper, our aim is to extend the following result that holds in an Abian’s
ring. Let X be a subset of an Abian’s ring R. Then the following two statements
are equivalent for any c ∈ R.

(i) c is supremum of X,
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(ii) c is an upper bound of X and annihilator of {c} in R contains the annihi-
lator of X in R.

We have shown that in case of a commutative, additively cancellative Abian’s
semiring, statement (ii) follows from statement (i); but to establish (i) from (ii),
some additional conditions are required to be imposed on the semiring.

In Section 4, we have considered the zero divisor graphs of an Abian’s semiring
and have found some properties of those graphs.

2. PRELIMINARIES

First we give some basic definitions and results on semirings and semigroups.

Definition 2.1. A non-empty set S is said to form a semiring with respect to two
associative binary compositions, addition (+) and multiplication (.) defined on it,
if the following conditions are satisfied:

(1) (S,+) is a commutative monoid with identity element ‘0’. i.e., ∀ a, b, c ∈ S
(i) (a+ b) + c = a+ (b+ c)

(ii) 0 + a = a+ 0 = a
(iii) a+ b = b+ a.

(2) Multiplication over addition is left distributive and right distributive.
(3) Multiplication by ‘0’ annihilates S, i.e., 0.a = a.0 = 0 ∀ a ∈ S.

Definition 2.2. [4] A semiring (S,+, .) is a partially ordered semiring if there is a
partial order relation ≤ on S satisfying the following conditions for all a, b, c ∈ S.

(i) a ≤ b⇒ a+ c ≤ b+ c, and
(ii) a ≤ b and 0 ≤ c ⇒ ac ≤ bc, and ca ≤ cb, where ‘0’ is the additive identity

of S.

Definition 2.3. Let (S, .) be a semigroup. Then, S is said to be left separative if
and only if x2 = xy and y2 = yx together imply x = y. Similarly, S is said to be
right separative if and only if x2 = yx and y2 = xy together imply x = y. S is said
to be separative, if it is both left separative and right separative.

Definition 2.4. An element ‘a’ in a semigroup S is said to be nilpotent element of
index k, if k is the least positive integer such that ak = 0 (additive identity of S).

Definition 2.5. A semigroup is said to be a reduced semigroup if it does not contain
any non-zero nilpotent element.
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Since a semiring (S,+, .) is obviously a semigroup with respect to ‘.’, the above
definitions are applicable to (S,+, .) also. Note that, every separative semiring is
a reduced semiring.

Definition 2.6. A semiring (S,+, .) is said to be additively cancellative if for all
a, b, c ∈ S, a+ b = a+ c implies that b = c.

Definition 2.7. A left semiring ideal (right semiring ideal) of a semiring S is a
non empty subset I of S such that a+ b ∈ I ∀ a, b ∈ I and s a ∈ I (a s ∈ I) ∀ s ∈ S
and a ∈ I. I is said to be a semiring ideal of S if it is both left semiring ideal and
right semiring ideal of S.

Definition 2.8. A semiring ideal I of a semiring S is called a semiring k-ideal of
the semiring S, if a ∈ I and x ∈ S together with x+ a ∈ I imply x ∈ I.

Definition 2.9. A ring (R,+, .) is called an Abian’s ring if (R,+, .) is a partially
ordered set (poset) with respect to Abian’s relation.

Definition 2.10. A semiring (S,+, .) is called Abian’s semiring if (S,+, .) is a
poset with respect to Abian’s relation. In other words, Abian’s semiring is a semiring
where Abian’s relation is a partial order relation.

It may be noted that, an Abian’s semiring is not necessarily a partially ordered
semiring.

Definition 2.11. Let (S,+, .) be a semiring with a partial order ≤. A non empty
subset I of S is said to be a poset ideal of S if

(i) for every x ∈ I, y ≤ x implies that y ∈ I,
(ii) for every x, y ∈ I, there is some element z ∈ I such that x ≤ z, y ≤ z.

Definition 2.12. Given a semiring (S,+, .) and X ⊆ S. The semiring left an-
nihilator of X, denoted by LAnnS(X), is defined by LAnnS(X) = {s ∈ S : s x =
0 ∀ x ∈ X}. Similarly, a semiring right annihilator of X, denoted by RAnnS(X),
is defined by RAnnS(X) = {s ∈ S : x s = 0 ∀ x ∈ X}. A semiring annihilator
of X is the subset of S which is both semiring left annihilator and semiring right
annihilator of X and is denoted by AnnS(X). If X is a singleton {c}, then we
denote the semiring annihilator by AnnS(c).

If (S,+, .) is a ring instead of a semiring in the above definition, we call
AnnS(X) a ring annihilator of X in S.
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Definition 2.13. Let (S,+, .) be a semiring with additive identity ‘0’ and ≤ be
a partial order in it. For any two elements x, y ∈ S, we define the lower cone
of {x, y} as L(x, y) = {z ∈ S : z ≤ x and z ≤ y}. Let X be a subset of S. A
poset annihilator of X, denoted by AnnP (X), is defined by AnnP (X) = {y ∈ S :
L(x, y) = {0} ∀ x ∈ X}.

Definition 2.14. An upper bound of a subset X of a partially ordered set (S,≤)
is an element z of S such that x ≤ z for all x ∈ X. An upper bound u of X is
called a supremum or least upper bound of X if for all upper bounds z of X, u ≤ z.
Supremum of X is denoted by sup(X).

Remark 2.15. In a reduced semiring (S,+, .), if a 6= 0, b 6= 0 and ab = 0 then,
ba = 0. Indeed, (ba)2 = baba = b(ab)a = b0a = 0. Therefore, ba = 0, as S is a
reduced semiring.

In the following we state some results on semigroups, which will be used in
our work.

Theorem 2.16. [8] Let G be a left separative semigroup and a, b, x ∈ G. Then,

(i) xa = xb implies ax = bx,
(ii) x2a = x2b implies ax = bx,

(iii) G is a reduced semigroup.

Corollary 2.17. If G be a left separative partially ordered semigroup with respect
to Abian’s relation ‘ ≤ ’ and a, b ∈ G. Then, a ≤ b implies ab = ba.

Theorem 2.18. [8] Let G be a separative semigroup and a, b, x ∈ G. Then, xa = xb
if and only if ax = bx.

3. PROPERTIES OF ABIAN’S SEMIRING

Throughout this section, we assume that S is a separative semiring. Note
that, every separative semiring is a reduced semiring and in a reduced semiring,
semiring left annihilator is same as semiring right annihilator and so LAnnS(X) =
RAnnS(X) = AnnS(X).

3.1. Relation between annihilators and ideals of Abian’s semiring.

Proposition 3.1. Let S be a reduced semiring and X ⊆ S. Then AnnS(X) is a
semiring k-ideal of S.
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Proof. We know that AnnS(X) 6= φ, as 0 ∈ AnnS(X) (0.x = x.0 = 0 ∀x ∈ X).

Let s1, s2 ∈ AnnS(X). Then, s1x = 0 and s2x = 0 ∀ x ∈ X. Therefore,
(s1+s2)x = s1x+s2x = 0, i.e., s1, s2 ∈ AnnS(X) implies that (s1+s2) ∈ AnnS(X).
Also, if t ∈ S then, ts1x = t.0 = 0. Therefore, ts1 ∈ AnnS(X) for t ∈ S. Again,
s1x = 0 implies that xs1 = 0 (as S is reduced semiring) ⇒ x(s1t) = (xs1)t = 0 ⇒
s1t ∈ AnnS(X). This shows that AnnS(X) is a semiring ideal of S.

Let s1 + s2 ∈ AnnS(X), where s1 ∈ AnnS(X) and s2 ∈ S. Then, s1x = 0
and (s1 + s2)x = 0 ∀ x ∈ X. Now, (s1 + s2)x = 0 ⇒ s1x + s2x = 0 ⇒ 0 + s2x =
0⇒ s2x = 0⇒ s2 ∈ AnnS(X).

Therefore, AnnS(X) is a semiring k-ideal of S. �

Proposition 3.2. Let S be a reduced semiring. For any a ∈ S, AnnS(a) ∩ Sa =
{0}.

Proof. Let t ∈ AnnS(a) ∩ Sa. Then, t ∈ AnnS(a) and t ∈ Sa. Therefore, ta = 0
and hence at = 0, as S is a reduced semiring. Again, t ∈ Sa implies that t = s1a,
for some s1 ∈ S. Now, t = s1a⇒ t2 = s1at⇒ t2 = s10⇒ t2 = 0⇒ t = 0 as S is a
reduced semiring.

This shows that AnnS(a) ∩ Sa = {0}. �

Proposition 3.3. Let (S,+, .) be a partially ordered semiring with respect to
Abian’s order ‘ ≤ ’ and X ⊆ S. Then, semiring annihilator AnnS(X) is a poset
ideal of S.

Proof. Let I = AnnS(X). Now, I 6= φ, as 0 ∈ I.

Let a ∈ I and b ≤ a. Now, a ∈ I gives ax = 0 ∀x ∈ X and b ≤ a gives
b2 = ba. Therefore, b2x = bax ⇒ b2x = b.0 ⇒ bbx = 0 ⇒ bxb = 0 (by Theorem
2.16).

Therefore, (bx)2 = bxbx = 0x = 0, i.e., bx = 0 ∀x ∈ X, since S is reduced.
Thus b ∈ I.

We know that in an Abian’s semiring S, 0 ≤ s ∀s ∈ S. Let a, b ∈ I. Then,
ax = 0 and bx = 0 ∀ x ∈ X, and so (a + b)x = ax + bx = 0 + 0 = 0 ∀ x ∈ X.
Therefore, a + b ∈ I. Now, S is a partially ordered semiring and 0 ≤ a, 0 ≤ b.
Therefore, 0 ≤ a⇒ b ≤ a+ b and 0 ≤ b⇒ a ≤ a+ b, i.e., a ≤ a+ b and b ≤ a+ b.
Therefore, I = AnnS(X) is a poset ideal of S. �

Proposition 3.4. Let (S,+, .) be a partially ordered semiring with respect to
Abian’s order ‘ ≤ ’ and X ⊆ S. If poset annihilator AnnP (X) is closed under
addition, then it is a poset ideal of S.

Proof. Let I = AnnP (X).

Now, I 6= φ, as 0 ∈ I, since for any x ∈ S, 0 ≤ x ∀ x ∈ S and so L(0, x) = {0}.
Let a ∈ I and b ≤ a. Then L(a, x) = {0} ∀x ∈ X. Let x be a particular

element of X. We can show that L(b, x) = {0}. If possible let 0 6= y ∈ L(b, x).
Then, y ≤ b and y ≤ x. Now y ≤ b and b ≤ a together imply y ≤ a. Again, y ≤ x
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and y ≤ a together imply that y ∈ L(a, x), which is a contradicts that L(a, x) = {0}.
Since x can be an arbitrary element of X, we have L(b, x) = {0} ∀ x ∈ X. Hence,
a ∈ I and b ≤ a together imply that b ∈ I.

Since I is closed under addition, a, b ∈ I ⇒ a + b ∈ I. Again since, S is a
partially ordered semiring, therefore as before, 0 ≤ a⇒ b ≤ a+ b and 0 ≤ b⇒ a ≤
a+ b, i.e., a ≤ a+ b and b ≤ a+ b. Hence, AnnP (X) is a poset ideal of the partially
ordered Abian’s semiring S. �

Example 3.5. The division semiring (N, lcm, gcd), where N is the set of positive
integers, is a partially ordered semiring with respect to Abian’s relation [10]. Here
additive identity is 1 and for any two elements a, b ∈ S, a ≤ b if and only if b is a
multiple of a. Let X be any subset of S. Then, poset annihilator AnnP (X) exists
and is closed under addition. Indeed, AnnP (X) contains those elements which are
not multiple of any x ∈ X. If a, b ∈ AnnP (X) then a is not a multiple of any
x ∈ X, b is not multiple of any x ∈ X and a+ b i.e., lcm(a, b) is also not multiple
of any x ∈ X. Therefore, a + b ∈ AnnP (X). Hence, AnnP (X) is a poset ideal of
S.

3.2. Supremum of a subset of Abian’s semiring. Here we recall the following
theorem which we wish to extend for Abian’s semiring.

Theorem 3.6. [8] Let S be an Abian’s ring and X be a subset of S. Then, the
following are equivalent for any c ∈ S.

(i) c = sup(X),
(ii) c is an upper bound for X and AnnS(X) ⊆ AnnS(c). In fact, AnnS(X) =

AnnS(c).

In the following, we show that if S is an additively cancellative Abian’s semir-
ing then (ii) of the above theorem follows from (i).

Lemma 3.7. Let S be an additively cancellative Abian’s semiring and X ⊆ S. If
c = sup(X), then c is an upper bound of X satisfying AnnS(X) ⊆ AnnS(c). In
fact, AnnS(X) = AnnS(c).

Proof. Suppose c = sup(X). Then, c is obviously an upper bound of X.

Let t ∈ AnnS(X). Then, tx = 0 ∀ x ∈ X. So, xt = 0, as S is reduced. Since
c is an upper bound of X, we have x ≤ c ∀ x ∈ X ⇒ x2 = xc ∀ x ∈ X ⇒ x2 =
x(c+ t) ∀ x ∈ X (as xt = 0)⇒ x ≤ c+ t ∀ x ∈ X ⇒ c+ t is an upper bound of X.
Again since, c = sup(X) then, c ≤ c+ t⇒ c2 = c(c+ t)⇒ c2 = c2 + ct⇒ ct = 0⇒
tc = 0⇒ t ∈ AnnS(c). Therefore, t ∈ AnnS(X) implies that t ∈ AnnS(c). So,

AnnS(X) ⊆ AnnS(c). (1)

Let us denote AnnS(X2) = {t : tx2 = 0∀x ∈ X}. Now let t ∈ AnnS(c).
Then, tc = 0 = ct. So, x2t = xct = x0 = 0 ∀ x ∈ X. Therefore, tx2 = 0 ∀ x ∈ X,
i.e., t ∈ AnnS(X2). Therefore,

AnnS(c) ⊆ AnnS(X2). (2)
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Let p ∈ AnnS(X2). Then, px2 = 0 ⇒ x2p = 0 ⇒ x(xp) = 0 ⇒ (xp)x = 0.
So, (xp)2 = (xp)(xp) = (xpx)p = 0x = 0. Therefore, xp = 0 ∀ x ∈ X. So,
px = 0 ∀ x ∈ X and hence p ∈ AnnS(X). Therefore,

AnnS(X2) ⊆ AnnS(X). (3)

From (1), (2), and (3), we getAnnS(X) ⊆ AnnS(c) ⊆ AnnS(X2) ⊆ AnnS(X).
Therefore, AnnS(X) = AnnS(c). �

To establish (i) from (ii) of Theorem 3.6 for an Abian’s semiring S, it is
embedded in a ring R as follows.

Proposition 3.8. [4] Let S be a commutative, additively cancellative semiring with
‘0’. Then, S can be embedded in a ring R.

Proof. Define ρ on S × S by (a, b)ρ(c, d) if and only if a+ d = b+ c. Clearly, ρ is
an equivalence relation.

Let R be the quotient ring induced by the equivalence relation ρ, i.e., R = S|ρ
where ‘ + ’ and ‘.’ are defined as (a, b) + (c, d) = (a+ c, b+ d) and (a, b).(c, d) =

(ac+ bd, ad+ bc).

Let us define f : S → R by f(a) = (a, 0). Then, f(ab) = f(a)f(b) and
f(a+ b) = f(a) + f(b).

Thus S can be embedded in the ring R = S|ρ. �

Proposition 3.9. Let S be a commutative, additively cancellative Abian’s semiring
with ‘0’ and R = S|ρ as described in the above proposition. Then, a ≤ b in S if and

only if (a, 0) ≤ (b, 0) in R.

Proof. We have,

a ≤ b in S ⇔ a2 = ab in S,

⇔ a2 + 0 = 0 + ab in S,

⇔ (a2, 0) = (ab, 0) in R,

⇔ (a, 0).(a, 0) = (a, 0).(b, 0) in R,

⇔ (a, 0) ≤ (b, 0) in R.

�
Using the above described embedding of the Abian’s semiring S in the ring

R = S|ρ, we have the following lemma.

Lemma 3.10. Let S be a commutative, additively cancellative Abian’s semiring,
X ⊆ S and c is an upper bound of X. If for any two elements p, q of S, px =
qx ∀ x ∈ X implies that pc = qc then, c = sup(X).

Proof. Let R = S|ρ as described in Proposition 3.8. Firstly, we show that

AnnS(X, 0) ⊆ AnnS(c, 0), and (c, 0) = sup (X, 0), where (X, 0) means the set

{(x, 0) ∀ x ∈ X}.
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Let (p, q) ∈ AnnS(X, 0). Then,

(p, q).(x, 0) = (0, 0) = (x, 0).(p, q) ∀ x ∈ X
⇒ (px, qx) = (0, 0) and (xp, xq) = (0, 0) ∀ x ∈ X
⇒ (px, qx)ρ(0, 0) and (xp, xq)ρ(0, 0) ∀ x ∈ X
⇒ px = qx and xp = xq ∀ x ∈ X
⇒ pc = qc and cp = cq (as px = qx ∀ x ∈ X implies pc = qc, and S is commutative)

⇒ (p, q) ∈ AnnS(c, 0)

⇒ AnnS(X, 0) ⊆ AnnS(c, 0).

Since c is an upper bound of X ⊆ S, by Proposition 3.9, x ≤ c ⇒ (x, 0) ≤
(c, 0). Again, by Theorem 3.6, (c, 0) is sup (X, 0), i.e., (c, 0) = sup (X, 0). Let d be

an upper bound of X. Therefore, x ≤ d ∀ x ∈ X. Therefore, (x, 0) ≤ (d, 0) ∀ x ∈ X.

But, (c, 0) = sup (X, 0). Therefore, (d, 0) ≤ (c, 0). Therefore, d ≤ c. Hence,
c = sup(X). �

Using Lemma 3.7 and Lemma 3.10, finally we have the following theorem.

Theorem 3.11. Let S be a commutative, additively cancellative Abian’s semiring
and X ⊆ S. Moreover, for any two elements p, q of S, px = qx ∀ x ∈ X implies
that pc = qc for a fixed c ∈ S. Then, the following are equivalent.

(i) c = sup(X),
(ii) c is an upper bound for X and AnnS(X) ⊆ AnnS(c). In fact, AnnS(X) =

AnnS(c).

4. ZERO DIVISOR GRAPHS OF ABIAN’S SEMIRING

Relating a graph with an algebraic structure has been studied by a large
number of researchers in the recent past. The present authors have studied the
comparability graph of an Abian’s semiring in [10]. In this section we obtain the
partial order based zero divisor graph, ideal based zero divisor graph with respect
to a poset ideal, and ideal based zero divisor graph with respect to a semiring ideal
of an Abian’s semiring and list some properties of those graphs.

Let G be a simple connected graph. The shortest path between two vertices
u, v of G is called a geodesic. The length of the largest geodesic in G is called the
diameter of G and is denoted by diam(G). The length of the smallest cycle in G is
called its girth and is denoted by gr(G). A clique in G is a complete subgraph of
G. The number of vertices of the largest clique in G is called the clique number of
G and is denoted by ω(G).

Let S be a poset with respect to the partial order ≤. Comparability graph of
S is the graph with vertex set S and two vertices x and y are adjacent if and only
if x ≤ y or y ≤ x, i.e., x, y are comparable. Comparability graph of S is denoted
by (S,⊥). Now we define different types of zero divisor graphs in the following.
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Definition 4.1. Let P be a poset. The zero divisor graph of P , denoted by G(P ),
is the graph with vertex set V = {x ∈ P \ {0} : L(x, y) = {0} for some y ∈ P \ {0}}
and two vertices x and y are adjacent if and only if L(x, y) = {0}.

Definition 4.2. Let I be a poset ideal of a poset P . The ideal based zero divisor
graph of P with respect to the poset ideal I is the graph GI(P ) whose vertex set is
V (GI(P )) = {x ∈ P \ I : L(x, y) ⊆ I for some y ∈ P \ I} and two vertices x, y are
adjacent if and only if L(x, y) ⊆ I.

Definition 4.3. Let (S,+, .) be a semiring and I be a semiring ideal of S. We
define an undirected graph ΓI(S) with vertices V (ΓI(S)) = {x ∈ S \ I : xy ∈ I
for some y ∈ S \ I}, and two distinct vertices x and y are adjacent if and only if
xy ∈ I. ΓI(S) is called the ideal based zero divisor graph of S with respect to the
semiring ideal I.

Theorem 4.4. [9] If I be a poset ideal of a poset P , then GI(P ) is connected with
diam(GI(P )) ≤ 3. Furthermore, if GI(P ) contains a cycle then gr(GI(P )) ≤ 7.

Using the above propositions, we have the following.

Proposition 4.5. Let (S,+, .) be an Abian’s semiring and X ⊆ S. Let I1 =
AnnS(X) and I2 = AnnP (X) be semiring annihilator and poset annihilator of X
in S respectively. Then, GI1(S), GI2(S),ΓI1(S) are connected graphs with diameter
less than or equal to 3. Furthermore, if they contain cycles then girth of each graph
will be less than or equal to 7.

Proposition 4.6. If S be a finite Abian’s semiring with |S| = n, (S,⊥) be its
comparability graph and m be the second maximum degree of (S,⊥) then, ω(G(S)) >
n−m.

Proof. Since S is an Abian’s semiring, 0 ≤ s ∀s ∈ S. So, in (S,⊥), 0 is the
maximum degree vertex with degree n − 1. Let p be the second maximum degree
vertex of (S,⊥). Then there are m − 1 non zero vertices adjacent to p. So, there
are n−m numbers of non zero vertices which are not adjacent to p but adjacent to
0. For each of these vertices x, L(x, p) = {0}. Therefore, in G(S), p is a vertex of
degree n−(m−1) and so, each vertex of G(S) will be adjacent to at least n−(m−1)
number of vertices. This shows that G(S) has a clique of order n−m+ 1. �

Proposition 4.7. Let (S,+, .) be an Abian’s semiring, 0 ∈ X ⊆ S and I =
AnnP (X). Then GI(S) will be complete if the comparability graph (S,⊥) is a star.

Proof. Since the comparability graph (S,⊥) is a star, for every pair of non zero
vertices x and y, L(x, y) = {0}. Hence every two non zero vertices of GI(S) are
adjacent. Now, 0 ∈ X ⇒ I = AnnP (X) = {0} and so 0 is not a vertex of GI(S).
Therefore, GI(S) is complete. �
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5. CONCLUSION

In this paper, we have investigated the relationships between ideals and an-
nihilators of an Abian’s semiring. A result related to supremum of a subset of an
Abian’s ring has been extended for an Abian’s semiring. We have also given some
properties of different zero divisor graphs of an Abian’s semiring.
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