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Abstract. A dominating set D of a graph G = (V,E) is a split dominating set if

the induced graph 〈V −D〉 is disconnected. The split domination number γs(G) is

the minimum cardinality of a split domination set. A graph G is called vertex split
domination critical if γs(G−v) < γs(G) for every vertex v ∈ G. A graph G is called

edge split domination critical if γs(G + e) < γs(G) for every edge e in G. In this
chapter, whether for some standard graphs are split domination vertex critical or

not are investigated and then characterized 2-γns-critical and 3-γns-critical graphs
with respect to the diameter of a graph G with vertex removal. Further, it is shown

that there is no existence of γs-critical graph for edge addition.

1. INTRODUCTION

The graphs considered in this paper are finite, connected, undirected and
without loops or multiple edges. Terminology not defined here will conform to that

in [4]. Let Pn, Cn,K1,n,Kn,Km,n,Wn, D
(m)
n denote the path, cycle, star, complete

graph, bipartite graph, wheel graph, and dutch wind mill graph. An end vertex of
a graph G is a vertex of degree 1 and an support vertex of a graph G is a vertex
adjacent to an end vertex.

The neighborhood of a vertex v in G is denoted by N(v) and is given by
N(v) = {u ∈ V (G)/u is adjacent to v in G}. The diameter of the graph G is a
measure of the length of the longest minimal path and is denoted by diam(G).

The graph with n+1 vertices labeled u1, u2, u3, u4, . . . , un+1 and edges u1u2,
u2u3, u3u4, . . . , unun+1 is called a path of length n, denoted by Pn+1. We call u1
and un+1 the end-vertices of the path. The cycle of length of n, Cn, is the graph
with n vertices u0, u1, u2, u3, . . . , un−1 and the edges u0u1, u1u2, u2u3, . . . , un−1u0.
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A simple graph of order n with all possible edges is called a complete graph of order
n, denoted by Kn.

A graph G = (V,E) is said to be r-partite (where r is an positive integer) if
its V (G) can be partitioned as V = V1 ∪ V2∪, . . . ,∪Vr such that if uv is an edge of
G then u is in some Vi and v is in some other Vj ; that is, everyone of the induced
subgraphs 〈Vi〉 is an empty graph. The graph obtained from G by subdividing each
edge of G exactly once is called the subdivision graph [1] of G and it denoted by
S(G).

A set of vertices S is said to dominate the graph G if for each v /∈ S, there is
a vertex u ∈ S with v adjacent to u. The minimum cardinality of any dominating
set is called the domination number of G and is denoted by γ(G). For complete
review on domination refer [5]. The concept of split domination has been studied
by V.R. Kulli and B. Janikiram [6]. A dominating set D of a graph G = (V,E)
is a split dominating set if the induced graph 〈V − D〉 is disconnected. The split
domination number γs(G) is the minimum cardinality of a split domination set.

A graph G is called vertex split critical if γs(G−v) < γs(G) for every vertex v
in G. Thus, G is k-γs-critical if γs(G) = k, for each vertex v ∈ V (G), γs(G−v) < k.
A graph G is called edge split critical if γs(G + e) < γs(G) for every edge e in G.
Thus, G is k-γs-critical if γs(G) = k and for each edge e ∈ G, γs(G+ e) < k.

Let us consider the two terrorist groups say A and B which are intercon-
nected with each other with group members as the vertices and the edges as the
communication between them. Among these two groups, their are minimum num-
ber of people who had the communication with all the members of the two groups
called domination members, among them few may have communication between
two groups. Since the two terrorist groups are connected their terrorist activity
may increase. Suppose the military people wants to make the terrorists activity
to be inactive, it is better to destroy the domination members and also the groups
members in such a way that the two groups gets separated so that there is no
communication between the groups and also between the members of the groups.
This is the motivation for studying split domination.

The domination vertex and edge critical graphs studied extensively in [7, 2,
8, 3, 9]. Since the dominating members are more strong, instead of dominating
members, we can destroy the others members along with the dominating members
in such a way that, no communication between the two groups. The numbers
of people to be destroyed will be less than or equal to the domination members.
This motivated us to study split domination vertex and edge critical graphs. First
we discuss whether some particular classes of graphs are γs-vertex critical or not,
2−γs-vertex critical and 3−γs-vertex critical graphs are characterized with respect
to diameter of the graph G for vertex removal and then we had shown that there
is no γs-critical graph for edge addition.
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2. Split domination vertex critical graphs

In this entire section, the graph G 6= Kn, considered should be a simple
graph and G−{v}, v ∈ V (G) having n components, either contains a non-complete
component or at least two non-trivial components.

Theorem 2.1. (Kulli and Janakiram [6]) For any cycle Cn, γs(Cn) = dn3 e, n ≥ 4.

Theorem 2.2. (Chelvam and Chellathurai [10]) γs(Pn) = dn3 e, n > 2, where Pn is
a path of length n− 1.

Theorem 2.3. (Kulli and Janakiram [6]) For any connected graph G with an
end-vertex, γs(G) = γ(G). Furthermore, there exists a γs-set of G containing all
vertices adjacent to end-vertices.

Theorem 2.4. For any connected graph G,

γs(G)− 1 ≤ γs(G− v) ≤ γs(G) + deg(v)− 1, v ∈ V (G).

Proof. Let G be a connected graph and v ∈ V (G). Since the domination number
will increase by more than one and decreases by at most one when a vertex is
removed from G, thus γs(G) − 1 ≤ γs(G − v). For the upper bound, let H be a
γs-set of G.
Case 1. Let v /∈ H, then γs(G− v) ≤ γs(G).
Case 2. Let v ∈ H, and let B = {vi/vi ∈ N(v), vi /∈ N(H − v)}.
(i) If |B| = φ, then γs(G− v) = |H| − |v|. Hence γs(G− v) < γs(G).
(ii) If |B| 6= φ, then γs(G− v) ≤ |H|+ |B| − |{v}|=γs(G) + |B| − 1.
Since |B| ≤ deg(v), γs(G− v) ≤ γs(G) + deg(v)− 1.
Hence the proof.

Theorem 2.5. The graph G = Cn, n > 3 is γs-vertex critical for n = 3p+ 1, p ≥ 1
and is not γs-vertex critical for n 6= 3p+ 1.

Proof. By Theorem 2.1, γs(Cn) = dn3 e and in G− {v}, v ∈ V (G) will be a path
with n− 1 vertices and by Theorem 2.2, for n− 1 vertices, γs(G− v) = γs(Pn−1) =
dn−1

3 e.
Case 1. When n = 3p+ 1, p ≥ 1.
Then, γs(G− v) = γs(Pn−1) = d 3p+1−1

3 e = dpe. Since dpe < dp+ 1
3e for any p ≥ 1.

Thus γs(G− v) < γs(G). Hence G = Cn is γs-vertex critical for n = 3p+ 1, p ≥ 1.
Case 2. When n 6= 3p+ 1, p ≥ 1.
Since dn3 e = dn−1

3 e for n = 3p+ 2 or n = 3p+ 3, p ≥ 1. Thus γs(G− v) = γs(G).
Hence G = Cn is not γs-vertex critical for n 6= 3p+ 1, p ≥ 1.

Theorem 2.6. The path Pn, n ≥ 5 is not γs-vertex critical.

Proof. Case 1. If vi is not an end-vertex, then Pn−{vi} is disconnected into two
components G1 and G2 with |V (G1)| = n1 and |V (G2)| = n2 such that n1+n2+1 =
n. For a disconnected graph, γs(G) = γ(G), thus γs(Pn−vi)= γ(G1)+γ(G2). Since
G1 and G2 are paths.
Subcase 3.1. When (n1 6= 3r and n2 6= 3r) or (n1 6= 3r and n2 = 3r) or (n1 = 3r
and n2 6= 3r, r ≥ 1),
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γs(Pn − vi) = dn1

3 e+ dn2

3 e
≥ dn1+n2

3 e
≥ dn1+n−1−n1

3 e
≥ dn−1

3 e =dn3 e
Thus γs(Pn − vi) ≥ γs(Pn).
Subcase 3.2. When n1 = 3r and n2 = 3r, r ≥ 1,

γs(Pn − vi) = dn1

3 e+ dn2

3 e
= n1+n2

3

=n1+n−1−n1

3

=n−1
3

Since n−1
3 < dn3 e. Thus γs(Pn − vi) < γs(Pn). Pn in not γs-critical because

γs(Pn − vi) < γs(Pn) only if vi is not an end-vertex and n1 = 3r, n2 = 3r not for
any vertex vi ∈ V (Pn)
Case 2. Suppose vi is an end-vertex of Pn and n = 3p+ 1, p ≥ 2. By Theorem 2.2,
γs(Pn) = d 3p+1

3 e = dp+ 1
3e. Thus γs(Pn − vi) = γs(Pn−1) = dn−1

3 e = d 3p+1−1
3 e =

dpe. Since dpe < dp+ 1
3e = dn3 e for p ≥ 2. Hence γs(Pn − vi) < γs(Pn). Pn in not

γs-critical because γs(Pn − vi) < γs(Pn) only if vi is end-vertex not for any vertex
vi ∈ V (Pn)
Case 3. Suppose vi is an end-vertex and n 6= 3p + 1, p ≥ 2. By Theorem 2.2,
γs(Pn) = dn3 e. Thus γs(Pn − vi) = γs(Pn−1) = dn−1

3 e. Since dn3 e = dn−1
3 e for

n = 3p+ 2 or n = 3p+ 3, p ≥ 1. Hence γs(Pn − vi) = γs(Pn).
From all the cases above, Pn, n ≥ 5 is not γs-vertex critical.

Theorem 2.7. If a graph G is 2-γs-vertex critical, then diam(G) = 2.

Proof. Let G be a connected 2-γs-vertex critical graph and suppose G has diame-
ter at least 3. Assume that P = v1, v2, . . . , vd be the longest diametrical path with
the distance equal to the diam(G). Let D1 be a γs-set of G− {v}, v ∈ diametrical
path. Since G is 2-γs-vertex critical graph, then γs(G − v) = 1 for any vertex
v ∈ V (G) and |D1| = 1. If vk ∈ D1 ∩ P , then there exists at least one vertex
say vj ∈ diametrical path in G − {v} which is not covered by vk. Thus vj is not
dominated by any vertex of D1, which is a contradiction. If diam(G) is one, then
G is not γs-vertex critical.

Theorem 2.8. If a connected graph G is 3-γs-vertex critical, then diam(G) ≤ 4.

Proof. Let G be a connected 3-γs-vertex critical graph and suppose G has diam-
eter at least 5. Assume that P = vi, i = 1, 2, 3, . . . , d be the longest diametrical
path with its distance equal to the diam(G). Let D1 be a γs-set of G − {v}, v ∈
diametrical path. Since G is 3-γs-vertex critical, then γs(G− v) ≤ 2 for any vertex
v ∈ V (G). The set D1 contains at most two vertices say v1 and v2.
Case 1: If both v1 and v2 are in D1, then there exists at least one vertex say vr ∈
diametrical path in G− {v} which is not adjacent to v1 or v2 and hence a contra-
diction.
Case 2: If either of v1 or v2 is in D1, then there exists at least one vertex say vk in
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G− {v} which is not covered by v1 or v2, which is a contradiction.
This completes the proof.

Theorem 2.9. No tree T, n ≥ 4 is γs-vertex critical with respect to split domina-
tion.

Proof. Let D be a γs-set of tree T , A = {vi/vi is a support vertex of T}, then by
Theorem 2.3, the set D will not contain an end-vertices, A ⊆ D. Now consider the
graph T − {v}, v ∈ A. The graph T − {v} is disconnected into k ≥ 2 components
and let C = {vm/vm ∈ N(v), vm /∈ N(D − v)}.
Case 1. If |C| = 1, then γs(T − v) = |D| − |{v}|+ |C| = |D| = γs(T ).
Case 2. if |C| 6= 1, then γs(T − v) = |D| − |{v}|+ |C| > |D| = γs(T ).
Hence the tree T is not γs-vertex critical.

Proposition 2.10. For any Wheel graph Wn, γs(Wn) = 3.

Theorem 2.11. The graph G = Wn is γs-vertex critical for n = 5, 6, 7 and not
γs-vertex critical for n ≥ 8.

Proof. Let vj ∈ V (G) such that deg(vj) = n−1 and let D be a γs-set of G = Wn.
Case 1. n = 5, 6, 7.
Let v ∈ V (G), v 6= vj , then γs(G − v) = |{vj} ∪ {vk}| = 2, vk /∈ N(v) in G. By
Proposition 2.10, γs(G − v) < γs(G). If v = vj , then G − {vj} will be a cycle C4

or C5 or C6 and γs(C4 or C5 or C6) = 2. By Proposition 2.10, γs(G− v) < γs(G).
Hence G = Wn is γs-vertex critical for n = 5, 6, 7.
Case 2. n ≥ 8.
Let v ∈ V (G), v 6= vj , then γs(G − v) = |{vj} ∪ {vk}| = 2, vk /∈ N(v) in G. By
Proposition 2.10, γs(G − v) < γs(G). If v = vj , then G − {vj} will be a cycle
Cn, n ≥ 7 and γs(Cn) ≥ 3. By Proposition 2.10, γs(G − v) ≥ γs(G). Hence
G = Wn is not γs-vertex critical for n ≥ 8. This completes the proof.

Definition 2.12. The Dutch wind mill graph D
(m)
n is the graph obtained by taking

m copies of the cycle Cn with a vertex in common.

Proposition 2.13. For any Dutch wind mill graph D
(m)
n ,m ≥ 2, n ≥ 4, γs(D

(m)
n ) =

mdn−3
3 e+ 1.

Theorem 2.14. The Dutch wind mill graph G = D
(m)
n ,m ≥ 2, n ≥ 4, is γs-vertex

critical for n = 3p+ 1, p ≥ 1 and not γs-vertex critical for n 6= 3p+ 1, p ≥ 1.

Proof. Let vk ∈ V (D
(m)
n ) with deg(vk) = 2m.

Case 1. If v = vk, then G − {vk} is disconnected into m components, where each
component is of Pn−1. By Theorem 2.2, γs(G− vk) = mdn−1

3 e.
Subcase 1.1. If n = 3p + 1, p ≥ 1, then mdn−1

3 e = mdn−3
3 e,m ≥ 2, n ≥ 4. Hence

by Proposition 2.13, γs(G− vk) < γs(G).
Subcase 1.2. If n 6= 3p + 1, p ≥ 1, then mdn−1

3 e > mdn−3
3 e,m ≥ 2, n ≥ 4. Hence

by Proposition 2.13, γs(G− vk) > γs(G).

Case 2. If v 6= vk, then G− v = G1 ∪G2, where G1 = D
(m−1)
n and G2 = Pn−1 with
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V (G − {v}) = V (G1 − {v1}) ∪ V (G2 − {v2}) ∪ v3, v1 = v2 = v3, v1 ∈ V (G1), v2 ∈
V (G2) and E(G− {v}) = E(G1) ∪E(G2). Let A and B be a γs-set of G1 and G2.
Subcase 2.1. If n = 3p+ 1, p ≥ 1.

The set B has to contain a vertex vk or N(vk), vk ∈ V (D
(m)
n ), then

γs(G1) = |A| = (m − 1)γs(Pn−1) = mdn−1
3 e. Thus γs(G − v) = |A| + |B| =

mdn−1
3 e + dn−1

3 e = mdn−1
3 e. Thus γs(G − v) = mdn−1

3 e < mdn−1
3 e + 1 = γs(G).

Hence G = D
(m)
n is γs-vertex critical for n = 3p+ 1, p ≥ 1.

Subcase 2.2. If n 6= 3p+ 1, p ≥ 1.
The set B has to contain a vertex vk, then

γs(G1) = |A| = (m − 1)γs(D
(m−1)
n ) = (m − 1)dn−3

3 e + 1. Thus γs(G − v) =

|A| + |B| = (m − 1)dn−3
3 e + 1 + dn−3

3 e = mdn−3
3 e + 1. Thus by Proposition 2.13,

γs(G− v) = γs(G). Hence G = D
(m)
n is not γs-vertex critical for n 6= 3p+ 1, p ≥ 1.

The result follows from the cases above.

Theorem 2.15. If G is γs-vertex critical, then there is no support vertex in G
which is adjacent to one or more end-vertices.

Proof. Suppose v1 is a support vertex which is adjacent to at least one end-vertex,
say x1 of a graph G and let G1 = G−{v1}. Let D1 be a γs-set of G. Now consider
the graph G1, since v1 is a support vertex in G by Theorem 2.3, v1 ∈ D1 and the
graph G1 is disconnected. Let A1 = {vm/vm ∈ N(v1), vm /∈ N(D1 − v1)}.
Case 1. If |A1| = 1, then γs(G1) = |D1| − |{v1}| + | A1| = |D1|. Thus γs(G1) =
γs(G). Which contradicts our assumption.
Case 2. If |A1| > 1, then γs(G1) = |D1|−|{v1}|+|A1| > |D1|. Thus γs(G1) > γs(G).
Which contradicts our assumption.
Hence the proof.

Corollary 2.16. If G is γs-vertex critical, then no two support vertices are adja-
cent.

Proposition 2.17. For any subdivision graph of Kn, γs(S(Kn)) = n− 1, n ≥ 3.

Theorem 2.18. The graph G = S(Kn) is not γs-vertex critical for n ≥ 3.

Proof. Let us assume that G = S(Kn) is γs-vertex critical, then for each vertex
v ∈ V (G), γs(G − v) < γs(G). Let us consider the graph G − {v}, v ∈ V (Kn)
and B = {vi/vi is a support vertex in G− {v}} with |B| = n− 1 and by Theorem
2.3, B belongs to γs-set of G − {v} and 〈G − {v} − B〉 is disconnected. Thus
γs(G − v) = |B| = n − 1. By Proposition 2.17, γs(G − v) = γs(G). Which
contradicts our assumption. Hence the proof.

Theorem 2.19. The graph G = S(D
(m)
n ) is γs-vertex critical for n = 3p+ 2, p ≥ 1

and not γs-vertex critical for n 6= 3p+ 2, p ≥ 1,m ≥ 2, n ≥ 4.

Proof. Case 1. When n = 3p+ 2, p ≥ 1.

The graph S(D
(m)
n ), n = 3p+2, p ≥ 1 is the graph which is obtained by a subdivision

of D
(m)
n for n = 3k+ 2, k ≥ 1. By Theorem 2.14, G = S(D

(m)
n ) is γs-vertex critical

for n = 3p+ 2, p ≥ 1.,
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Case 2. When n 6= 3p+ 2, p ≥ 1.

The graph S(D
(m)
n ), n 6= 3p+2, p ≥ 1 is the graph which is obtained by a subdivision

of D
(m)
n for n 6= 3k + 2, k ≥ 1. By Theorem 2.14, G = S(D

(m)
n ) is not γs-vertex

critical for n 6= 3p+ 2, p ≥ 1.
The result follows from the cases above.

Proposition 2.20. For any subdivision graph of Km,n,

γs(S(Km,n)) = m+ n− 1,m ≥ n,m, n ≥ 2.

Theorem 2.21. The connected graph G = S(Km,n) is not γs-vertex critical for
m ≥ n,m, n ≥ 2.

Proof. Let us assume that the graph G = S(Km,n) is γs-vertex critical, then
for each vertex v ∈ V (G), γs(G − v) < γs(G). Let V (Km,n) = V1 ∪ V2 where
|V1| = m, |V2| = n,A = V (S(Km,n))−V (Km,n). Let us consider the graph G−{v},
v ∈ V2 and E = {vk/vk is a support vertex in G − {v}} with |E| = m and by
Theorem 2.3, E belongs to γs-set of G−{v} and 〈G−{v}−E〉 is disconnected. Thus
γs(G−v) = |E|+ |V2|− |{v}| = m+n−1. By Proposition 2.20, γs(G−v) = γs(G).
Which contradicts our assumption. Hence the proof.

Proposition 2.22. For any subdivision graph of Wn,

γs(S(Wn)) = d 2(n−1)
3 e+ 1, n ≥ 4.

Theorem 2.23. The graph G = S(Wn) is not γs-vertex critical for n ≥ 4.

Proof. Let us assume that G = S(Wn) is γs-vertex critical, then for each
vertex v ∈ V (G), γs(G − v) < γs(G). Let us consider the graph G − {v}, v ∈
V (Wn), deg(v) = n− 1 and let B = {vi/vi is an end-vertex ∈ G− {v}} with |B| =
n−1 and by Theorem 2.3, N(B) belongs to γs-set of G−{v} and 〈G−{v}−N(B)〉
is disconnected. Thus γs(G− v) = |B| = n− 1 and d 2(n−1)

3 e+ 1 ≥ n− 1 for n ≥ 4,
by Proposition 2.22, γs(G−v) ≥ γs(G). Which contradicts our assumption. Hence
the proof.

3. Split domination edge critical graphs

Definition 3.1. A graph G is called edge split critical, if γs(G + e) < γs(G) for
every edge e in G. Thus G is k-γs-critical if γs(G) = k for each edge e ∈ E(G),
γs(G+ e) < k.

In this entire section, the graph considered should be a connected non-
complete graph.

Lemma 3.2. For any connected graph G, the cardinality of the cut-set will remain
equal or increases, if an edge e1 is added to a graph G, where e1 ∈ E(G), (n ≥ 4).

Proof. Let V (G) = V (G) = {v11, v12, . . . , v1n} and C be a minimum cut-set of a
graph G. Then the graph G− C is disconnected into at least two components say
G1 and G2 with V (G1) = {v21, v22, . . . , v2n} and V (G2) = {v31, v32, . . . , v3n}. Let
us consider the graph G1 = G + e1, where e1 = (v2i, v2j) ∈ E(G) for i 6= j. Then
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the graph G1 is disconnected and hence the cut-set remains same. Otherwise if
e1 = (v2i, v3j) ∈ E(G), then the graph G1 is connected and thus we need a vertex
of G to make the graph G1 disconnected. Hence the cardinality of the cut-set will
remains same or increase, if an edge e1 is added to a graph G, where e1 ∈ E(G).
This completes the proof.

Lemma 3.3. Every minimum split domination set must contains the cut-set of a
graph G.

Theorem 3.4. There is no edge critical graph with respect to split domination.

Proof. Let D1 be a γs-set of G. Let us consider the graph G+e, where e ∈ E(G).
By Lemma 3.1 and Lemma 3.2, γs(G + e) ≥ |D1 + 1|. Hence with respect split
domination, G is not edge critical.

Theorem 3.5. For any connected graph G,

γs(G) ≤ γs(G+ e) ≤ γs(G) + 1, e ∈ E(G), (n ≥ 4).

Proof. Let D and D1 be a γs-set of G and G + e, e ∈ E(G). From Lemma 3.1
and 3.2, γs(G) ≤ γs(G+ e). Let A be a minimum cut-set of a graph G. By Lemma
3.2, A ⊆ D. The graph G − A will be disconnected into k number of components
G1, G2, G3, . . . , Gk.
Case 1. If e = v1v2 ∈ E(G), {v1, v2} ∈ V (G1), then γs(G) = γs(G+ e).
Case 2. If e = v1v2 ∈ E(G), v1 ∈ V (G1), v2 ∈ V (G2), then at least one of {v1} or
{v2} must belong to D1 to make the graph G+ e disconnected. Thus γs(G+ e) =
|D1| = |D|+ |{v1} or {v2}| = γs(G) + 1. Hence γs(G+ e) ≤ γs(G) + 1.
This completes the proof.

4. Conclusion

In this paper, it is verified that some standard graphs along with any con-
nected graphs are split domination vertex critical or not. In the military network
database, they will have an idea what type of network they can have in such a way
that the network or part of the network is critical. In the network if any of the
domination members is not available, they can reduce the domination members by
at least one.
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