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Abstract. In this paper we introduce the concepts of SGC -projective, injective and

flat modules, where C is a semidualizing module and we discuss some connections

among SGC -projective, injective and flat modules.
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Abstrak. Pada paper ini diperkenalkan konsep tentang modul SGC -projektif, in-

jektif dan flat, dengan C adalah modul semidual, dan dibahas juga beberapa hubun-

gan antara modul SGC -projektif, injektif dan flat.

Kata kunci: modul semidual, modul SGC -projektif, injektif dan flat

1. INTRODUCTION

Throughout this paper, R is a commutative ring with identity and R-Mod
denotes the category of all R-modules . For an R-module M , we use M+ to denote
the character module HomZ(M,Q/Z) of M .

In relative homological algebra, the notions of Gorenstein-projective (resp.
injective and flat) modules play a fundamental role. Bennis et al. in [2] introduced
the notion of SG-projective (resp. injective and flat) modules. Over a commu-
tative Noetherian ring, Holm and Jørgensen in [9] introduced the C-Gorenstein
projective and C-Gorenstein injective modules using semidualizing modules and
their associated projective, injective classes. White in [14] further considered these
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modules when R is a commutative ring and she called C-Gorenstein projective
as GC-projective and C-Gorenstein injective as GC-injective. In particular, many
general results about the Gorenstein projectivity and Gorenstein injectivity in [5, 8]
were generalized in [14]. Thus it is natural to ask the following question, What are
the counterparts to SG-projective, SG-injective and SG-flat modules with respect
to the semidualizing modules?

In this paper, we shall introduce the notions of SGC-projective, SGC-injective
and SGC-flat modules with respect to the semidualizing module C, which answer
the question above. Also some properties of SGC-projective, SGC-injective and
SGC-flat modules are discussed.

This paper is divided into four sections. In Section 2, we recall some known
definitions that are needed in the sequel. In Section 3, we introduce and study the
SGC-projective and injective modules. Also, we prove that the class of all SGC
projective modules is projectively resolving and closed under direct sums. We then
give some equivalent characterizations of the SGC-projective and SGC-injective
modules.

In Section 4, we introduce SGC-flat modules and give their characterizations.
Further, we study the relation between SGC-projective, injective, and flat modules.
Moreover, if R is a noetherian ring, we prove every direct limit of finitely generated
SGC-flat R-modules is SGC-flat.

2. PRELIMINARIES

In this section, we first recall some known definitions and terminologies which
we need in the sequel.

Definition 2.1. [14] An R-module C is semidualizing if it satisfies the following
conditions:

(1) C admits a degreewise finite projective resolution,
(2) The natural homothety morphism R → HomR(C,C) is an isomorphism,

and
(3) ExtiR(C,C) = 0 for any i ≥ 1.

A free R-module of rank one is semidualizing. If R is Noetherian and admits
a dualizing module D, then D is a semidualizing.
From now on, C is a semidualizing R-module.

Definition 2.2. [10] An R-module is C-projective if it has the form C ⊗R P for
some projective module P . An R-module is called C-injective if it has the form
HomR(C, I) for some injective module I. Set

PC(R) = {C ⊗R P |P is R− projective},
and

IC(R) = {HomR(C, I) | I is R− injective}.
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Definition 2.3. [10] An R-module is called C-flat if it has the form C ⊗R F for
some flat module F . Set FC(R) = {C ⊗R F |F is R-flat}.

Definition 2.4. [9] (1). An R-module M is called GC-projective if there exists a
complete PC-resolution of M , which means that

PC : · · · → P1 → P0 → C ⊗R P 0 → C ⊗R P 1 → · · ·
is an exact complex such that M ∼= Coker(P1 → P0) and each Pi and P i is pro-
jective and such that the complex HomR(PC, C⊗RQ) is exact for every projective
R-module Q.
(2). M is called GC-injective if there exists a complete IC-resolution of M , which
means that

IC : · · · → HomR(C, I1)→ HomR(C, I0)→ I0 → I1 → · · ·
is an exact complex such that M ∼= Ker(I0 → I1) and each Ii and Ii is injective
and such that the complex HomR(HomR(C,E), IC) is exact for every injective R-
module E.
(3). M is called GC-flat if there exists a complete FC-resolution of M , which
means that

FC : · · · → F1 → F0 → C ⊗R F 0 → C ⊗R F 1 → · · ·
is an exact complex such that M ∼= Coker(F1 → F0) and each Fi and F i is flat and
such that the complex HomR(C,E) ⊗R FC is exact for every injective R-module
E.

Definition 2.5. [8] Let X be a class of R-modules. Then we call X is projectively
(resp. injectively) resolving if it contains all projective (resp. injective) R-modules
and for every short exact sequence 0 → X ′ → X → X ′′ → 0 with X ′′ ∈ X (resp.
X ′ ∈ X ) the conditions X ∈ X and X ′ ∈ X (resp. X ′′ ∈ X ) are equivalent.

3. SGC-PROJECTIVE MODULES

We start with the following definitions.

Definition 3.1. An R-module M is called a strongly Gorenstein projective module
with respect to C (for short SGC-projective) if there exists a complete resolution of
the form

SP : · · · → P → P → C ⊗R P → C ⊗R P → · · ·
with P a projective R-module such that M ∼= Coker(P → P ) and HomR(SP, C⊗R
Q) is exact for any projective R-module Q.

We call the complete resolution of this type as an SPC-resolution.

Definition 3.2. An R-module M is called a strongly Gorenstein injective module
with respect to C (for short SGC-injective) if there exists a complete resolution of
the form

SI : · · · → HomR(C, I)→ HomR(C, I)→ I → I → · · ·
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with I an injective R-module such that M ∼= Ker(I → I) and HomR(HomR(C,E),
SI) is exact for any injective R-module E.

We call the complete resolution of this type as an SIC-resolution.

We denote by SGPC(R) (resp. SGIC(R)), the class of all strongly Gorenstein
projective (resp. injective) R-modules with respect to C. The definition of SGC
projective (resp. injective ) module gives the following simple characterization.

Proposition 3.3. (1) M is SGC-projective if and only if Ext≥1
R (M,C⊗RQ) =

0 and there exists an SPC-coresolution of the form

X = 0→M → C ⊗R P → C ⊗R P → · · ·
with P a projective R module such that HomR(X,C⊗RQ) is exact for any
projective R-module Q.

(2) M is SGC-injective if and only if Ext≥1
R (HomR(C,E),M) = 0 and there

exists an SIC-coresolution of the form

Y = · · · → HomR(C, I)→ HomR(C, I)→M → 0

with I an injective R-module such that HomR(HomR(C,E), Y ) is exact
for any injective R-module E.

It is straightforward that the class of SGC-projective (resp. SGC-injective)
modules is a special class of GC-projective (resp. GC-injective) modules. The
following proposition shows that the class of projective and C-projective modules
are special classes of SGC-projective modules.

Proposition 3.4. Let P be a projective R-module. Then the class PC(R) of all
C-projective R-modules and the class of all projective R-modules are contained in
the class SGPC(R).

Proof. Let C ⊗R P be in PC(R). By definition of C, it admits an augmented
degreewise finite free resolution of the form

X = · · · → Rα → Rα → C → 0,

and this is a complete SPC-resolution of C with C ∼= Coker(Rα → Rα). Let

Q be any projective R-module. Since Ext≥1
R (C,C) = 0, we have the complex

HomR(X,C ⊗ Q) is exact by [14, Lemma 1.11(b)]. Then, it follows from [14,
Lemma 2.5] that the sequence

X ⊗R P = · · · → Rα ⊗R P → Rα ⊗R P → C ⊗R P → 0,

is a complete resolution of C ⊗R P with C ⊗R P ∼= Coker(Rα ⊗R P → Rα ⊗R P )
and the complex HomR(C ⊗R P,C ⊗R Q) is exact. Therefore C ⊗R P is an SGC-
projective R-module.

Using the similar arguments we can prove that the class of projective R-
modules is also contained in SGPC(R). �



112 M. Parimala and R. Udhayakumar

Proposition 3.5. (1) If (Mi)i∈I is a family of SGC-projective R-modules, then⊕
Mi is SGC-projective.

(2) If (Ei)i∈I is a family of SGC-injective R-modules, then
∏
Ei is SGC-injective.

Proof. (1) Since each Mi is SGC-projective, we have Ext≥1
R (Mi, C ⊗R Q) = 0 and

Mi admits an SPC-coresolution

Yi = 0→Mi → C ⊗R Pi → C ⊗R Pi → · · · ,

with HomR(Yi, C ⊗Q) is exact for any projective Q. Now

Ext≥1
R (

⊕
i∈I

Mi, C ⊗R Q) ∼=
∏
i∈I

Ext≥1
R (Mi, C ⊗R Q) = 0.

Since the class of C-projectives is closed under direct sums, we have the SPC-
coresolution⊕

i∈I Yi = 0→
⊕

i∈IMi →
⊕

i∈I(C ⊗R Pi)→
⊕

i∈I(C ⊗R Pi)→ · · · ,

i.e.
⊕

i∈I Yi = 0→
⊕

i∈IMi → C ⊗R (
⊕

i∈I Pi)→ C ⊗R (
⊕

i∈I Pi)→ · · ·

with HomR(
⊕

i∈I Yi, C ⊗R Q) ∼=
∏
i∈I HomR(Yi, C ⊗R Q) exact. Therefore, the

class of SGC-projective modules is closed under direct sums by Proposition 3.3(1).

(2) The proof of this is similar to that of (1). �

The next result gives a simple characterization of the SGC-projective mod-
ules, which is analogous to [2, Proposition 2.9].

Proposition 3.6. For any R-module M , the following are equivalent:

(1) M is SGC-projective;
(2) There exists a short exact sequence 0 → M → P → M → 0, where P is a

projective module, and Ext1R(M,C ⊗R Q) = 0 for any projective R-module
Q;

(3) There exists a short exact sequence 0 → M → P → M → 0, where P is
a projective module, and Ext1R(M,Q′) = 0 for any module Q′ with finite
C-projective dimension;

(4) There exists a short exact sequence 0 → M → P → M → 0, where P is a
projective module; such that, for any projective module Q, the short exact
sequence 0→ HomR(M,C⊗RQ)→ HomR(P,C⊗RQ)→ HomR(M,C⊗R
Q)→ 0 is exact;

(5) There exists a short exact sequence 0 → M → P → M → 0, where P is a
projective module; such that, for any module Q′ with finite C-projective di-
mension, the short exact sequence 0 → HomR(M,Q′) → HomR(P,Q′) →
HomR(M,Q′)→ 0 is exact.

Proof. Using the standard arguments, this follows immediately from the definition
of SGC-projective module. �

Remark 3.7. We can also characterize the SGC-injective modules in a similar
way to the description of SGC-projective modules in Proposition 3.6.
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Proposition 3.8. The class of all SGC-projective modules is projectively resolving.

Proof. Consider an exact sequence 0 → M ′ → M → M ′′ → 0 of R-modules with
M ′ and M ′′ SGC-projective. Let X ′ and X ′′ be the complete SPC-resolutions
of M ′ and M ′′ respectively. Since the classes of projective and C-projective R-
modules are closed under extensions and using [8, Lemma 1.7] and [13, Lemma
6.20], we can obtain a complex

X = · · · → P → P → C ⊗R P → C ⊗R P → · · ·

with P projective and a degreewise split exact sequence of complexes

0→ X ′
f→ X

g→ X ′′ → 0

such that M ∼= Coker(P → P ). By using [8, Lemma 1.7], we have an exact
sequence of complexes

0→ HomR(X ′′, C ⊗R Q)→ HomR(X,C ⊗R Q)→ HomR(X ′, C ⊗R Q)→ 0.

Since the extreme complexes in the above are exact, the associated long exact
sequence in homology gives that the middle one also to be exact.

Now assume that M and M ′′ are SGC-projective with the complete SPC-
resolutions X and X ′′ respectively. Using the Comparison Lemmas for resolutions
in [8, Lemma 1.7] and by [13, Lemma 6.9], we get a morphism of chain complexes
φ : X → X ′′ inducing g on the degree 0 cokernels. By adding complexes of the
form 0→ P ′i → P ′′i → 0 and

0→ C ⊗R (Pi)
′′ → C ⊗R (Pi)

′′ → 0,

one can assume φ is surjective. Since both the class of projective and C-projective
modules are closed under kernels of epimorphisms, the complex X ′ = Kerφ has
the form

X = · · · → P ′ → P ′ → C ⊗R P → C ⊗R P ′ → · · ·

with P ′ projective. By [14, Lemma 1.13], the exact sequence 0 → X ′ → X →
X ′′ → 0 is split and so the similar argument as in the previous paragraph gives
that X ′ is a complete SPC-resolution of M ′ and hence M ′ is SGC-projective.

�

Proposition 3.9. Let Q be a projective R-module. If M is an SGC-projective
R-module, then M ⊗R Q is an SGC-projective R-module.

Proof. Suppose M is SGC-projective. Then there exists an SPC-coresolution

Y = 0→M → C ⊗R P → C ⊗R P → · · ·

such that HomR(Y,C⊗RQ′) is exact and ExtR(M,C⊗RQ′) = 0 for any projective
R-module Q′. Then we have an exact sequence
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Y ⊗R Q = 0→M ⊗R Q→ C ⊗R (P ⊗R Q)→ C ⊗R (P ⊗R Q)→ · · ·

such that HomR(Y ⊗R Q,C ⊗R Q′) ∼= HomR(Q,HomR(Y,C ⊗R Q′)) exact and

Ext≥1
R (M ⊗R Q,C ⊗R Q′) ∼= HomR(Q,Ext≥1

R (M,C ⊗R Q′)) = 0.

Therefore, M ⊗RQ is an SGC-projective R-module by the Proposition 3.3 (1). �

4. SGC-FLAT MODULES

In this section, we introduce and study the SGC-flat modules, and also link
them with the SGC-projective and injective modules.

Definition 4.1. An R-module M is called a strongly Gorenstein flat R-module
with respect to C (for short SGC-flat) if there exists a complete resolution of the
form

SF : · · · → F → F → C ⊗R F → C ⊗R F → · · ·
such that M ∼= Coker(F → F ) with F flat and HomR(C,E) ⊗ SF is exact for
any injective R-module E. We call the complete resolution of the above as an
SFC-resolution.

We denote by SGFC(R), the class of all strongly Gorenstein flat R-modules
with respect to C. The SGC-flat R-modules are particular cases of GC-flat R-
modules. The following Proposition shows that the flat modules are special types
of SGC-flat R-modules.

Proposition 4.2. Every flat module is an SGC-flat.

Proof. This is similar to that of Proposition 3.4. �

Proposition 4.3. M is SGC-flat if and only if TorRn≥1(HomR(C,E),M) = 0 and
there exists an SFC-coresolution of the form

Z = 0→M → C ⊗R F → C ⊗R F → · · ·
with F a flat R-module such that HomR(C,E) ⊗R Z is exact for any injective
R-module E.

Proposition 4.4. Every direct sum of SGC-flat modules is also SGC-flat.

Proof. Since the direct sum of C-flat modules is C-flat and Tor commutes with the
direct sums, the proposition follows easily from the Proposition 4.3. �

Next, we have the characterization of SGC-flat modules similar to that of
Proposition 3.6.

Proposition 4.5. For any module M , the following are equivalent:

(1) M is SGC-flat;
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(2) There exists a short exact sequence 0 → M → F → M → 0, where F is a
flat module, and TorR1 (HomR(C,E),M) = 0 for any injective module E;

(3) There exists a short exact sequence 0 → M → F → M → 0, where F is a
flat module, and TorR1 (E′,M) = 0 for any module E′ with finite C-injective
dimension;

(4) There exists a short exact sequence 0 → M → F → M → 0, where
F is a flat module; such that the sequence 0 → HomR(C,E) ⊗ M →
HomR(C,E) ⊗ F → HomR(C,E) ⊗ M → 0 is exact for any injective
module E;

(5) There exists a short exact sequence 0 → M → F → M → 0, where F is a
flat module; such that the sequence 0→ E′ ⊗M → E′ ⊗ F → E′ ⊗M → 0
is exact for any module E′ with finite C-injective dimension.

The following proposition is a consequence of Proposition 4.5.

Proposition 4.6. An SGC-flat module is flat if and only if it has finite flat di-
mension.

Proposition 4.7. A module is finitely generated SGC-projective module if and
only if it is finitely presented SGC-flat.

Proof. (⇒). Let M be a finitely generated SGC-projective module. Then, by
Proposition 3.6, there exists a short exact sequence 0 → M → P → M → 0 with
P a finitely generated projective R-module and Ext1R(M,C ⊗R Q) = 0 for any
projective R-module Q. Let E be any injective R-module. Since M is infinitely
presented, we have from [7, Theorem 1.1.8], the following isomorphism:

TorR1 (HomR(C,E),M) ∼= HomR(Ext1R(M,C), E)
∼= HomR(Ext1R(M,C ⊗R R), E).

Thus, TorR1 (HomR(C,E),M) = 0 since Ext1R(M,C ⊗R R) = 0. Therefore, M is
an SGC-flat R-module by Proposition 4.5.
(⇐). Now, we assume M to be a finitely presented SGC-flat module. From Proposi-
tion 4.5, we deduce that there exists a short exact sequence 0→M → P →M → 0
with P a finitely generated projective R- module, and TorR1 (HomR(C,E),M) = 0
for every injective R-module E. Let Q be any projective R-module. Then by [7,
Theorem 1.1.8], we have the following isomorphism:

HomR(Ext1R(M,C ⊗R Q), E) ∼= TorR1 (HomR(C ⊗R Q,E),M)

∼= TorR1 (HomR(C,HomR(Q,E)),M) = 0

since HomR(Q,E) is injective. If we assume E to be faithfully injective, then we
have Ext1R(M,C ⊗R Q) = 0. Therefore M is an SGC-projective R-module by
Proposition 3.6. �

Theorem 4.8. Let M be an R-module and P be a flat left R-module. Then M is
SGC-flat if and only if M ⊕ P is SGC-flat.
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Proof. (⇒). If M is SGC-flat, then M ⊕ P is SGC-flat by Proposition 4.4.
(⇐). Assume M ⊕ P is SGC-flat. Then there exists an exact sequence 0 →
M ⊕ P → F → M ⊕ P → 0 with F flat. Then (M ⊕ P )+ is GC-injective [15,
Theorem 3.1], and hence M+ is GC-injective by [15, Theorem 2.2]. Consider the
pushout of M ⊕ P → F and M ⊕ P →M :

0

��

0

��
0 // P // M ⊕ P

��

// M

��

// 0

0 // P // F

��

// F ′ //

��

0

M ⊕ P

��

M ⊕ P

��
0 0

and consider the commutative diagram:

0

��

0

��
(M ⊕ P )+

��

(M ⊕ P )+

��
0 // F ′+ //

��

F+

��

// P+ // 0

0 // M+ //

��

(M ⊕ P )+

��

// P+ // 0

0 0.

Then, F ′+ is GC-injective by [15, Theorem 2.2], and thus Ext1R(P+, F ′+) = 0, the
sequence 0 → F ′+ → F+ → P+ → 0 splits. It follows that F ′+ is injective, and
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hence F ′ is flat. Consider the pullback of F ′ →M ⊕ P and M →M ⊕ P :

0

��

0

��
M

��

M

��
0 // F ′′ //

��

F ′

��

// P // 0

0 // M //

��

M ⊕ P

��

// P // 0

0 0.

Then 0 → M → F ′′ → M → 0 is exact and F ′′ is flat. Let E be any injective
right R-module. Then, 0 = TorRi+1(HomR(C,E), P )→ TorRi (HomR(C,E),M)→
TorRi (HomR(C,E),M⊕P ) = 0 is exact for all i ≥ 1. Hence TorRi (HomR(C,E),M)
= 0 for all i ≥ 1, and therefore M is SGC-flat by Proposition 4.5. �

Theorem 4.9. Let R be a coherent ring. Then M is an SGC-flat left R-module if
and only if M+ is an SGC-injective right R-module.

Proof. (⇒). Assume M an SGC-flat left R-module. By Proposition 4.5, there
exists an exact sequence 0→M → F →M → 0 in with F flat. Then 0→M+ →
F+ →M+ → 0 is exact and F+ is injective. Let I be an injective right R-module.
Then, ExtiR(I,M+) ∼= TorRi (I,M)+ = 0 for all i ≥ 1, and hence M+ is an SGC-
injective right R-module.
(⇐). If M+ is an SGC-injective right R-module, then there exists an exact sequence
0 → M+ → E → M+ → 0 with E injective. Then there is an injective right R-
module E′ such that E ⊕ E′ = E++. Let H = (E′ ⊕ E)N ∼= (E+(N))+. Consider
the exact sequence 0 → M+ ⊕ H → E ⊕ H ⊕ H → M+ ⊕ H → 0. Then, 0 →
M ⊕E+(N) → E+(N)⊕E+(N) →M ⊕E+(N) → 0 is exact and E+(N)⊕E+(N) is flat.
Let I be any injective right R-module. Then, TorRi (HomR(C, I),M ⊕ E+(N)) =
TorRi (HomR(C, I),M) ⊕ TorRi (HomR(C, I), E+(N)) = 0 for all i ≥ 1 since M is
GC-flat by [15, Theorem 3.1], and thus M⊕E+(N) is SGC-flat by Theorem 4.8. �

Let R be a ring and let M , N be left R-modules. Set T (M) = {x ∈
M | lR(x) 6= 0}. If T (M) = 0, then M is called torsionfree. We denote by τN the
natural map from M∗ ⊗R N to HomR(M,N) via φ⊗ x 7→ τN (φ⊗ x)(m) = φ(m)x
for any φ ∈M∗, x ∈ N and m ∈M , where M∗ = HomR(M,R).

Theorem 4.10. Let M be a finitely presented torsionfree left R-module. Then the
following are equivalent:

(1) M is SGC-projective ;
(2) M is SGC-flat;
(3) The natural map from M∗ ⊗RM → Hom(M,M) is an isomorphism;
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(4) The image of the natural map from M∗ ⊗R M → Hom(M,M) contains
IdM ;

(5) M is projective ;
(6) M is flat.

Proof. (1)⇔ (2). By Proposition 4.7.

(2) ⇒ (3). There exists an exact sequence 0 → M
f→ F

g→ M → 0 with F
flat. Consider the commutative diagram:

M∗ ⊗RM
τFM

∗⊗Rf //

��

M∗ ⊗R F
M∗⊗Rg //

��

M∗ ⊗RM
τM
��

// 0

0 // HomR(M,M)
HomR(M,f)// HomR(M,F )

HomR(M,g)// HomR(M,M).

Let φ ⊗ m ∈ Ker(M∗ ⊗R f). Then for any m′ ∈ M, τF (φ ⊗ f(m))(m′) =
f(φ(m′)m) = 0. So φ(m′)m = 0 and hence m = 0 or φ = 0 since M is torsionfree.
It follows that φ⊗m = 0,M∗⊗R f is monic, and hence τM is an isomorphism since
τF is an isomorphism by [5, Theorem 3.2.14].
(3)⇒ (4) is obvious and (5)⇒ (1) follows from the Proposition 3.4.
(4)⇔ (5)⇔ (6) follows from [12, Theorem 4.19]. �

Proposition 4.11. Let R be a noetherian ring. Then every direct limit of finitely
generated SGC-flat left R-modules is SGC-flat.

Proof. Let ((Gi), (φji)) be a direct system over I of finitely generated SGC-flat
left R-modules. Let i, j ∈ I with i ≤ j. Then there are exact sequences 0 →
Gi → Fi → Gi → 0 and 0 → Gj → Fj → Gj → 0 with Fi, Fj flat. Since
ExtnR(Gi, Fj)

+ ∼= TorRn (F+
j , Gj) = 0 by [5, Theorem 3.2.13] for all n ≥ 1, then

Ext1R(Gi, Fj) = 0. Consider the diagram:

0 // Gi //

φji

��

Fi

ψji

��

// Gi

��

// 0

0 // Gj // Fj // Gj // 0.

Then ((Fi), (ψji)) is a direct system over I. Therefore, 0 → lim−→Gi → lim−→Fi →
lim−→Gi → 0 is exact by [5, Theorem 1.5.6] and lim−→Fi is a flat left R-module. Then,

for any injective right R-module E we have,

TorRn (HomR(C,E), lim−→Gi)
∼= lim−→Tor

R
n (HomR(C,E), Gi) = 0,

for all n ≥ 1. Hence lim−→Gi is SGC-flat by Proposition 4.5. �

Theorem 4.12. Let R be an artinian ring and suppose that the injective envelope
of every simple left R-module is finitely generated. Then M is an SGC-injective
left R-module if and only if M+ is an SGC-flat right R-module.
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Proof. (⇒). There exists an exact sequence 0 → M → E → M → 0 with E
injective. Then, 0 → M+ → E+ → M+ → 0 is exact and E+ is a flat right
R-module. Let J be any injective left R-module. Then J =

⊕
Λ Jα, where Jα is

an injective envelope of some simple left R-module for any α ∈ Λ by [11, Theorem
6.6.4] for all i ≥ 1, and hence

TorRi (M+, HomR(C, J)) ∼= TorRi (M+, HomR(C,⊕ΛJα))

∼=
∏
Λ

TorRi (M+, HomR(C, Jα))

∼=
∏
Λ

ExtiR(HomR(C, Jα),M)+

= 0,

by [5, Theorem 3.2.13] for all i ≥ 1. Therefore, M+ is an SGC-flat right R-module.

(⇐). Assume M+ is an SGC-flat right R-module. Then there exists an
exact sequence 0 → M+ → F → M+ → 0 with F flat. Then, 0 → M++N →
F+N → M++N → 0 is exact and F+N is an injective left R-module, and so there
is an injective left R-module E such that F+N ⊕ E = (F+N)++. Set L = (F+N ⊕
E)N. Then 0 → M++N ⊕ L → L → M++N ⊕ L → 0 is exact, and thus 0 →
M ⊕ F+N → F+N → M ⊕ F+N → 0 is exact. Let J be any injective left R-
module. Then J =

⊕
Λ Jα, where Jα is an injective envelope of some simple left

R-module for any α ∈ Λ by [11, Theorem 6.6.4]. Thus, ExtiR(HomR(C, Jα),M)+ ∼=
TorRi (M+, HomR(C, Jα)) = 0 by [5, Theorem 3.2.13] for all i ≥ 1 and any α ∈ Λ,
and hence ExtiR(HomR(C, J),M) ∼=

∏
ΛExt

i
R(HomR(C, Jα),M) = 0 for all i ≥ 1.

It follows that M ⊕ F+N is an SGC-injective left R-module, and so M is an SGC-
injective left R-module. �

Lemma 4.13. Let R be an artinian ring and suppose that the injective envelope of
every simple left R-module is finitely generated. Then the class SGFC(R) is closed
under arbitrary direct products.

Proof. Let M =
∏
i∈IMi, and Mi ∈ SGFC(R) for all i ≥ 1. There exists an exact

sequence 0→Mi → Fi →Mi → 0 for all i ≥ 1. Then, 0→
∏
i∈IMi →

∏
i∈I Fi →∏

i∈IMi → 0 is exact and
∏
i∈I Fi is a flat right R-module. Let E be any injective

left R-module. Then E =
⊕

ΛEα, where Eα is an injective envelope of some simple
left R-module for any α ∈ Λ by [11, Theorem 6.6.4]. Thus,

TorRn (
∏
i∈I

Mi, HomR(C,E)) ∼= TorRn (
∏
i∈I

Mi, HomR(C,
⊕

Eα)

∼=
∏
Λ

∏
i∈I

TorRn (Mi, HomR(C,Eα))

= 0

by [5, Theorem 3.2.26] for all n ≥ 1. Therefore, M is an SGC-flat right R-module.
�
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