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Abstract. Sufficient conditions are obtained for the instability of the zero solution

of a certain sixth order nonlinear functional differential equation by the Lyapunov-

Krasovskii functional approach.
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Abstrak. Dalam paper ini diperoleh syarat cukup untuk ketakstabilan solusi nol

dari persamaan diferensial fungsional nonlinear orde keenam tertentu dengan pen-

dekatan fungsional Lyapunov-Krasovskii.

Kata kunci: Ketakstabilan, fungsional Lyapunov-Krasovskii, persamaan diferensial

tunda, orde keenam.

1. Introduction

First, in 1982, Ezeilo [2] discussed instability of the zero solution of the sixth
order nonlinear differential equation without delay,

x(6)(t) + a1x
(5)(t) + a2x

(4)(t) + e(x(t), x′(t), x′′(t), x′′′(t), x(4)(t), x(5)(t))x′′′(t)

+f(x′(t))x′′(t) + g(x(t), x′(t), x′′(t), x′′′(t), x(4)(t), x(5)(t))x′(t) + h(x(t)) = 0.

Later, in 1990, Tiryaki [4] proved an instability theorem for the sixth order
nonlinear differential equation without delay,

x(6)(t) + a1x
(5)(t) + f1(x(t), x′(t), x′′(t), x′′′(t), x(4)(t), x(5)(t))x(4)(t) + f2(x′′(t))x′′′(t)

+f3(x(t), x′(t), x′′(t), x′′′(t), x(4)(t), x(5)(t))x′′(t) + f4(x′(t)) + f5(x(t)) = 0.
(1)
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On the other hand, recently, Tunç [10] established some sufficient conditions
to ensure the instability of the zero solution of the sixth order nonlinear delay
differential equation,

x(6)(t) + a1x
(5)(t) + a2x

(4)(t)

+e(x(t− r), x′(t− r), x′′(t− r), x′′′(t− r), x(4)(t− r), x(5)(t− r))x′′′(t) + f(x′(t))x′′(t)

+g(x(t− r), x′(t− r), x′′(t− r), x′′′(t− r), x(4)(t− r), x(5)(t− r))x′(t) + h(x(t− r)) = 0.

In this paper, instead of Eq. (1), we consider the sixth order nonlinear delay
differential equation

x(6)(t) + a1x
(5)(t) + f2(x(t− r), x′(t− r), x′′(t− r), x′′′(t− r), x(4)(t− r), x(5)(t− r))x(4)(t)

+f3(x′′(t))x′′′(t) + f4(x(t− r), x′(t− r), x′′(t− r), x′′′(t− r), x(4)(t− r), x(5)(t− r))x′′(t)

+f5(x′(t− r)) + f6(x(t− r)) = 0.
(2)

We write Eq. (2) in system form as follows

x′1 = x2, x
′
2 = x3, x

′
3 = x4, x

′
4 = x5, x

′
5 = x6,

x′6 = −a1x6 − f2(x1(t− r), x2(t− r), x3(t− r), x4(t− r), x5(t− r), x6(t− r))x5

−f3(x3)x4 − f4(x1(t− r), x2(t− r), x3(t− r), x4(t− r), x5(t− r), x6(t− r))x3

−f5(x2) +
t∫

t−r
f ′5(x2(s))x3(s)ds− f6(x1) +

t∫
t−r

f ′6(x1(s))x2(s)ds,

(3)
which was obtained as usual by setting x = x1, x

′ = x2, x
′′ = x3, x

′′′ = x4,
x(4) = x5 and x(5) = x6 from (2), where r is a positive constant, a1 is a constant,
the primes in Eq. (2) denote differentiation with respect to t, t ∈ <+, <+ = [0,∞);
f2, f3, f4, f5 and f6 are continuous functions on <6, <, <6, < and <, respectively,
with f5(0) = f6(0) = 0, and satisfy a Lipschitz condition with all their arguments.
Hence, the existence and uniqueness of the solutions of Eq. (2) are guaranteed (see

Èl’sgol’ts [1, pp.14, 15]). We assume in what follows that the functions f5 and f6

are differentiable, and x1(t), x2(t), x3(t), x4(t), x5(t) and x6(t) are abbreviated as
x1, x2, x3, x4, x5 and x6, respectively.

Besides, for some works achieved on the instability of solutions of various
sixth order nonlinear differential equations without delay, the reader can refer to
the papers of Tunç [5-9] and E. Tunç and C. Tunç [11]. It should be noted that the
basic reason to investigate this topics here is that functional differential equations
play a key role in applied sciences. However, we only study the theoretical aspects of
the topic here. Our purpose is to get through the result established in[2] to nonlinear
delay differential equation (2) for the instability of its zero solution. Finally, we
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did not find any work on the instability of the solutions of sixth order linear and
nonlinear delay differential equations in the literature except that of Tunç [10].
This paper is the second attempt on the same topic in the literature.

Let r ≥ 0 be given, and let C = C([−r, 0], <n) with

‖φ‖ = max
−r≤s≤0

|φ(s)| , φ ∈ C.

For H > 0, define CH ⊂ C by

CH = {φ ∈ C : ‖φ‖ < H}.
If x : [−r, A] → <n is continuous, 0 < A ≤ ∞, then, for each t in [0, A), xt

in C is defined by
xt(s) = x(t+ s),−r ≤ s ≤ 0.

LetG be an open subset of C and consider the general autonomous differential
system with finite delay

ẋ = F (xt), xt = x(t+ θ),−r ≤ θ ≤ 0, t ≥ 0,

where F : G→ <n is a continuous function that maps closed and bounded sets into
bounded sets. It follows from the conditions on F that each initial value problem

ẋ = F (xt), x0 = φ ∈ G
has a unique solution defined on some interval [0, A), 0 < A ≤ ∞. This solution
will be denoted by x(φ)(.) so that x0(φ) = φ.

Definition 1.1. The zero solution, x = 0, of ẋ = F (xt) is stable if for each ε > 0
there exists δ = δ(ε) > 0 such that ‖φ‖ < δ implies that |x(φ)(t)| < ε for all t ≥ 0.
The zero solution is said to be unstable if it is not stable.

2. Main Results

We prove here the following theorem.

Theorem 2.1. In addition to the all the basic assumptions imposed on the func-
tions f2, f3, f4, f5 and f6 that appearing in Eq. (2), we assume that there exist
positive constants a5, ā5, a6, ā6 and δ such that the following conditions hold:

f6(0) = 0, f6(x1) 6= 0, (x1 6= 0),

f5(0) = 0, f5(x2) 6= 0, (x2 6= 0),

−a6 ≤ f ′6(x1) ≤ −ā6 < 0 for all x1,

−a5 ≤ f ′5(x2) ≤ −ā5 < 0 for all x2,

f4(x1(t− r), ..., x6(t− r))− 1

4
f2

2 (x1(t− r), ..., x6(t− r)) ≥ δ > 0

for all x1(t− r), ..., x6(t− r).
Then, the zero solution of Eq. (2) is unstable for all arbitrary a1 and f3 .
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Remark 2.2. Note that the proof of the above theorem is based on the instability
criteria of Krasovskii [3]. According to these criteria, it is necessary to show here
that there exists a Lyapunov functional V ≡ V (x1t, x2t, ..., x6t) which has Krasovskii
properties, say (P1), (P2) and (P3) :

(P1) In every neighborhood of (0, 0, 0, 0, 0, 0), there exists a point (ξ1, ξ2, ..., ξ6)
such that V (ξ1, ξ2, ..., ξ6) > 0,

(P2) the time derivative V̇ ≡ d
dtV (x1t, x2t, ..., x6t) along solution paths of (3)

is positive semi-definite,

(P3) the only solution (x1, x2, ..., x6) = (x1(t), x2(t), ..., x6(t)) of (3) which
satisfies d

dtV (x1t, x2t, ..., x6t) = 0, (t ≥ 0), is the trivial solution (0, 0, 0, 0, 0, 0).

Proof. We define a Lyapunov functional V = V (x1t, x2t, x3t, x4t, x5t, x6t) given
by

V = − x3x6 − a1x3x5 + x4x5 + 1
2a1x

2
4 −

x3∫
0

f3(s)sds−
x2∫
0

f5(u)du− f6(x1)x2

−λ1

0∫
−r

t∫
t+s

x2
2(θ)dθds− λ2

0∫
−r

t∫
t+s

x2
3(θ)dθds,

(4)

where s is a real variable such that the integral
0∫
−r

t∫
t+s

x2
2(θ)dθds and

0∫
−r

t∫
t+s

x2
3(θ)dθds

are non-negative, and λ1 and λ2 are some positive constants which will be deter-
mined later in the proof.

Hence, it is clear from the definition of V that

V (0, 0, 0, 0, 0, 0) = 0

and

V (0, 0, 0, ε2, ε, 0) = ε3 +
1

2
a1ε

4 > 0

for all sufficiently arbitrary small ε so that every neighborhood of the origin in the
(x1, x2, x3, x4, x5, x6)− space contains points (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) such that
V (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) > 0.

Let

(x1, x2, x3, x4, x5, x6) = (x1(t), x2(t), x3(t), x4(t), x5(t), x6(t))

be an arbitrary solution of (3).

By an elementary differentiation, time derivative of the Lyapunov functional
V in (4) along the solutions of (3)yields
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V̇ ≡ d
dtV (x1t, x2t, x3t, x4t, x5t, x6t)

= x2
5 + f2(x1(t− r), ..., x6(t− r))x3x5 + f4(x1(t− r), ..., x6(t− r))x2

3 − f ′6(x1)x2
2

−x3

t∫
t−r

f ′5(x2(s))x3(s)ds− x3

t∫
t−r

f ′6(x1(s))x2(s)ds

−λ1rx
2
2 + λ1

t∫
t−r

x2
2(s)ds− λ2rx

2
3 + λ2

t∫
t−r

x2
3(s)ds

=
(
x5 + 1

2f2(x1(t− r), ..., x6(t− r))x3

)2
+{f4(x1(t− r), ..., x6(t− r))− 1

4f
2
2 (x1(t− r), ..., x6(t− r))}x2

3

−f ′6(x1)x2
2 − x3

t∫
t−r

f ′5(x2(s))x3(s)ds− x3

t∫
t−r

f ′6(x1(s))x2(s)ds

−λ1rx
2
2 + λ1

t∫
t−r

x2
2(s)ds− λ2rx

2
3 + λ2

t∫
t−r

x2
3(s)ds.

Making use of the assumptions −a5 ≤ f ′5(x2) ≤ −ā5 < 0, −a6 ≤ f ′6(x1) ≤ −ā6 < 0
and the estimate 2 |mn| ≤ m2 + n2, we get

−x3

t∫
t−r

f ′6(x1(s))x2(s)ds ≥ |x3|
t∫

t−r
f ′6(x1(s)) |x2(s)| ds

≥ − 1
2a6rx

2
3 − 1

2a6

t∫
t−r

x2
2(s)ds

and

−x3

t∫
t−r

f ′5(x2(s))x3(s)ds ≥ |x3|
t∫

t−r
f ′5(x2(s)) |x3(s)| ds

≥ − 1
2a5rx

2
3 − 1

2a5

t∫
t−r

x2
3(s)ds.

Hence

V̇ ≥ (ā6 − λ1r)x
2
2 + {δ − (λ2 + 1

2a5 + 1
2a6)r}x2

3

+
(
λ1 − 1

2a6

) t∫
t−r

x2
2(s)ds+

(
λ2 − 1

2a5

) t∫
t−r

x2
3(s)ds.

Let λ1 = 1
2a6, λ2 = 1

2a5 and r < 2 min{ ā6a6 ,
δ

2a5+a6
}. Then, it follows that

V̇ ≥ (ā6 −
1

2
a6r)x

2
2 + {δ − (a5 +

1

2
a6)r}x2

3 > 0
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On the other hand, it follows that d
dtV (x1t, x2t, x3t, x4t, x5t, x6t) = 0 if and only if

x2 = 0, which implies that

x1 = ξ1 (constant), x2 = x3 = x4 = x5 = x6 = 0. (5)

The substitution of the estimate (5) in system (3) leads f6(ξ1) = 0. In
view of the assumption of the theorem, f6(0) = 0, f6(x1) 6= 0, (x1 6= 0), it
is seen that f6(ξ1) = 0 if and only if ξ1 = 0. Hence, we can easily conclude
that the only solution (x1, ..., x6) = (x1(t), ..., x6(t)) of system (3) which satisfies
d
dtV (x1t, x2t, ..., x6t) = 0, (t ≥ 0), is the trivial solution (0, 0, 0, 0, 0, 0). Thus, the

estimate d
dtV (x1t, x2t, x3t, x4t, x5t, x6t) = 0 implies x1 = x2 = x3 = x4 = x5 = x6 =

0. Hence, we see that the functional V satisfies the property (P3).

In view of the whole discussion made above, it follows that the functional V
has all Krasovskii properties, (P1), (P2) and (P3). Thus, one can conclude that the
zero solution of Eq. (2) is unstable. The proof of the theorem is completed.
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