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INTEGRATED RENEWAL PROCESS

Suyono and J.A.M. van der Weide

Abstract. The marginal distribution of integrated renewal process is derived in this

paper. Our approach is based on the theory of point processes, especially Poisson point

processes. The results are presented in the form of Laplace transforms.

1. INTRODUCTION

Consider arrival of passengers at a train station and model this situation as a re-
newal process. It means that the inter-arrival times between consecutive passengers
are assumed to be independent and identically distributed (iid) non-negative ran-
dom variables. Suppose that at a certain time (time 0) a train is just departed from
the station and there are no passengers left. Passengers who come after the time
0 have to wait until the departure of the next train at some time point t ≥ 0. We
are interested in the waiting time of these passengers. The total waiting time of
all passengers in the time interval [0,t] is an example of a stochastic process which
we call an integrated renewal process. The nomenclature becomes clear from the
mathematical definition of the process in Section 2.

An integrated renewal process can be considered as a generalization of a
stochastic process which we call an integrated Poisson process in this paper. The
expected value of the integrated Poisson process has been discussed in Ross [6]. The
integrated renewal process has also a close connection with shot noise processes
discussed by Gubner [4]. For asymptotic properties of this process, see Suyono
and Van der Weide (2007). In this paper we discuss the marginal distribution of
this process which is important for analyzing probabilistic characterizations of the
process at any time point.

This paper is organized as follows. In Section 2 we give a mathematical
definition of an integrated renewal process. In Section 3 we consider an integrated
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Poisson process including the variance and the marginal probability density function
of the process. In Section 4 we consider the marginal distribution of integrated
renewal process and in the last section we give an example.

2. DEFINITIONS

Let (Xn, n ≥ 1) be an iid sequence of non-negative random variables having a
common distribution function F . Let Sn =

∑n
i=1 Xi, n ≥ 1, and set S0 = 0. The

process (N(t), t ≥ 0) where

N(t) = sup{n ≥ 0 : Sn ≤ t}
is known as a renewal process. In the sequel we will interpret the variables Xn as
inter-arrival times of the renewal process.

Define for t ≥ 0

Y (t) =
∫ t

0

N(s)ds.

We call the stochastic process (Y (t), t ≥ 0) integrated renewal process. As a special
case, if (N(t), t ≥ 0) is a Poisson process then we call the process (Y (t), t ≥ 0)
integrated Poisson process. Note that we can express Y (t) as

Y (t) =
N(t)∑

i=1

(t− Si) = tN(t)− Z(t), (1)

where

Z(t) =
N(t)∑

i=1

Si. (2)

So if we interpret Sn, n = 1, 2, 3, ... as arrival times of passengers in a train station
then Y (t) represents the total waiting time of all passengers until the departure of
a train at time t. In the next sections we will discuss the marginal distributions of
Y (t) and Z(t).

3. INTEGRATED POISSON PROCESS

Firstly, suppose that the process (N(t), t ≥ 0) is an homogeneous Poisson process
with rate λ > 0. It is well known that given N(t) = n, the n arrival times S1, ..., Sn

have the same distribution as the order statistics corresponding to n independent
random variables uniformly distributed on the time interval [0, t], see e.g. Ross [6].
Conditioning on the number of arrivals in the time interval [0, t] we obtain

E(e−αY (t)) =
∞∑

n=0

E
[
e−α

Pn
i=1(t−Si)|N(t) = n

]
P(N(t) = n)
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=
∞∑

n=0

e−αntE
[
e−α

Pn
i=1 Ui

] (λt)n

n!
e−λt

where Ui, i = 1, 2, ..., n are independent and identically uniform random variables
on [0, t]. Since

E
[
e−αU1

]
=

1
αt

[
eαt − 1

]
,

it follows that

E(e−αY (t)) = exp
{

λ(1− αt− e−αt)
α

}
. (3)

From (3) we deduce that E[Y (t)] = 1
2λt2 and Var[Y (t)] = 1

3λt3. Using a similar
argument we can prove that Z(t) has the same Laplace transform as Y (t). So by
uniqueness theorem for Laplace transforms we conclude that for each t, Y (t) and
Z(t) have the same distribution.

The distribution of Y (t) has a mass at zero with P(Y (t) = 0) = e−λt. The
probability density function fY (t) of the continuous part of Y (t) can be obtained
by inverting the Laplace transform in (3). Note that we can express (3) as

E(e−αY (t)) = e−λt
∞∑

n=0

λn(1− e−αt)n

n!αn

= e−λt
∞∑

n=0

λn

n!

n∑

k=0

(−1)k
(
n
k

)
e−ktα

αn
.

Inverting this transform we obtain, for x > 0,

fY (t)(x)

= e−λt
∞∑

n=1

λn

n!

[
xn−1

(n− 1)!
1(0,∞)(x) +

n∑

k=1

(−1)k

(
n

k

)
(x− kt)n−1

(n− 1)!
1(kt,∞)(x)

]

=

√
λ√
x

e−λtI1

(
2
√

λx
)
1(0,∞)(x)

+λe−λt
∞∑

k=1

(−1)k

k!
[λ(x− kt)]

1
2 (k−1)Ik−1

(
2
√

λ(x− kt)
)
1(kt,∞)(x)

where Ik(x) is the Modified Bessel function of the first kind, i.e.,

Ik(x) = (1/2x)k
∞∑

m=0

(1/4x2)m

m!Γ(k + m + 1)
,

see Gradshteyn and Ryzhik [2].
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For large t, the distribution of Y (t) can be approximated by the normal
distribution having mean 1

2λt2 and variance 1
3λt3. To prove this we will consider

the characteristic function of the normalized Y (t). Firstly, note that

E


e

−iα
Y (t)− 1

2 λt2√
1
3 λt3


 = e

1
2 iα

√
3λtE

(
e
− iα

√
3

t
√

λt
Y (t)

)
.

Using (3) with α is replaced by iα
√

3
t
√

λt
where i =

√−1 and an expansion we obtain

E
(

e
− iα

√
3

t
√

λt
Y (t)

)
= exp

{
−1

2
iα
√

3λt− 1
2
α2 +

λt
√

λt

iα
√

3
o(t−3/2)

}

as t →∞. It follows that

E


e

−iα
Y (t)− 1

2 λt2√
1
3 λt3


 −→ e−

1
2 α2

as t →∞

which is the characteristic function of the standard normal distribution.
Now consider the case where (N(t)) is a non-homogeneous Poisson process

with intensity measure ν. Given N(t) = n, the arrival times Si, i = 1, 2, ..., n have
the same distribution as the order statistics of n iid random variables having a
common cumulative distribution function

G(x) =

{
ν([0,x])
ν([0,t]) , x ≤ t

1, x > t.

By conditioning on the number of arrivals in the time interval [0, t] we get

E
(
e−αZ(t)

)
= exp

{∫ t

0

[
e−αx − 1

]
dν([0, x])

}
.

From this Laplace transform we deduce that

E[Z(t)] =
∫ t

0

xdν([0, x]) and Var[Z(t)] =
∫ t

0

x2dν([0, x]).

Similarly, we can prove that

E(e−αY (t)) = exp
{∫ t

0

[e−α(t−x) − 1]dν([0, x])
}

,

E[Y (t)] =
∫ t

0

(t− x)dν([0, x]), and Var[Y (t)] =
∫ t

0

(t− x)2dν([0, x]).

Note that in general the process Y (t) has different distribution from Z(t) when
(N(t)) is a non-homogeneous Poisson process.
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4. INTEGRATED RENEWAL PROCESS

In this section we will consider the marginal distributions of the processes (Y (t))
and (Z(t)) defined in (1) and (2) for the case that (N(t)) is a renewal process.
We will assume that the inter-arrival times Xn of the renewal process (N(t)) are
strictly positive. First we consider the process (Z(t)). Obviously we can express
Z(t) as

Z(t) =
N(t)∑

i=1

[N(t) + 1− i]Xi. (4)

We will use point processes to derive the marginal distribution of Z(t).
Let (Ω,F ,P) be the probability space on which the iid sequence (Xn) is

defined and also an iid sequence (Vn, n ≥ 1) of exponentially distributed random
variables with parameter 1 such that the sequences (Xn) and (Vn) are independent.
Let (Tn, n ≥ 1) be the sequence of partial sums of the variables Vn. Then the map

Φ : ω 7→ ∑∞
n=1 δ(Tn(ω),Xn(ω)), (5)

where δ(x,y) is the Dirac measure in (x, y), defines a Poisson point process on
E = [0,∞)× [0,∞) with intensity measure ν(dtdx) = dtdF (x), see Resnick [5]. Let
Mp(E) be the set of all point measures on E. We will denote the distribution of Φ
by Pν , i.e., Pν = P ◦ Φ−1.

Define for t ≥ 0 the functional A(t) on Mp(E) by

A(t)(µ) =
∫

E

1[0,t)(s)xµ(dsdx). (6)

In the sequel we write A(t, µ) = A(t)(µ). Suppose that the point measure µ has
the support supp(µ) = ((tn, xn))∞n=1 with t1 < t2 < . . .. It follows that

µ =
∞∑

n=1

δ(tn,xn)

and A(t, µ) can be expressed as

A(t, µ) =
∞∑

n=1

1[0,t)(tn)xn.

Note that for every t ≥ 0, A(t, µ) is almost surely finite.
Define also for t ≥ 0 the functional Z(t) on Mp(E) by

Z(t)(µ) =
∫

E

∫

E

1[0,x)(t− A(s, µ))µ([r, s)× [0,∞))u1[0,s)(r)µ(drdu)µ(dsdx).

The next lemma motivates the definition of Z(t).
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Lemma 4.1. With probability 1,

Z(t) = Z(t)(Φ).

Proof. Let ω ∈ Ω. Then

Z(t)(Φ(ω))

=
∞∑

n=1

1[0,Xn(ω))(t− A(Tn(ω), Φ(ω)))

∞∑

i=1

Φ(ω)([Ti(ω), Tn(ω))× [0,∞))Xi(ω)1[0,Tn(ω))(Ti(ω))

=
∞∑

i=1

Φ(ω)([Ti(ω), TN(t,ω)+1(ω))× [0,∞))Xi(ω)1[0,TN(t,ω)+1(ω))(Ti(ω))

=
N(t,ω)∑

i=1

[N(t, ω) + 1− i]Xi(ω). ¤

Theorem 4.1. Let (Xn, n ≥ 1) be an iid sequence of strictly positive random
variables with common distribution function F . Let (Sn, n ≥ 0) be the sequence
of partial sums of the variables Xn and (N(t), t ≥ 0) be the corresponding renewal
process: N(t) = sup{n ≥ 0 : Sn ≤ t}. Let

Z(t) =
N(t)∑

i=1

[N(t) + 1− i]Xi.

Then for α, β > 0
∫ ∞

0

E(e−αZ(t))e−βtdt =
1
β

[1− F ∗(β)]
∞∑

n=0

n∏

i=1

F ∗(α[n + 1− i] + β) (7)

(with the usual convention that the empty product equals 1), where F ∗ denotes the
Laplace-Stieltjes transforms of F .
Proof. By Lemma 4.1.

E(e−αZ(t))

=
∫

Mp(E)

e−αZ(t)(µ)Pν(dµ)

=
∫

Mp(E)

exp
{
− α

∫

E

∫

E

1[0,x)(t− A(s, µ))

µ([r, s)× [0,∞))u1[0,s)(r)µ(drdu)µ(dsdx)
}
Pν(dµ)
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=
∫

Mp(E)

∫

E

1[0,x)(t− A(s, µ))

exp
{
−α

∫

E

µ([r, s)× [0,∞))u1[0,s)(r)µ(drdu)
}

µ(dsdx)Pν(dµ)

Applying the Palm formula for Poisson point processes, see Grandell [3], we obtain

E(e−αZ(t))

=
∫ ∞

0

∫ ∞

0

∫

Mp(E)

1[0,x)(t− A(s, µ + δ(s,x)))

exp
{
−

∫

E

α(µ + δ(s,x))([r, s)× [0,∞))u1[0,s)(r)(µ + δ(s,x))(drdu)
}

Pν(dµ)dF (x)ds

=
∫ ∞

0

∫ ∞

0

∫

Mp(E)

1[0,x)(t− A(s, µ))

exp
{
−

∫

E

αµ([r, s)× [0,∞))u1[0,s)(r)µ(drdu)
}
Pν(dµ)dF (x)ds.

Using Fubini’s theorem and a substitution we obtain
∫ ∞

0

E(e−αZ(t))e−βtdt

=
∫ ∞

0

∫ ∞

0

∫

Mp(E)

∫ ∞

0

1[0,x)(t− A(s, µ))

exp
{
−

∫

E

αµ([r, s)× [0,∞))u1[0,s)(r)µ(drdu)
}

e−βtdtPν(dµ)dF (x)ds

=
1
β

[1− F ∗(β)]
∫ ∞

0

∫

Mp(E)

exp
{
−

∫

E

[
αµ([r, s)× [0,∞)) + β

]
u1[0,s)(r)µ(drdu)

}
Pν(dµ)ds.

The integral with respect to Pν can be written as a sum of integrals over the sets
Bn := {µ ∈ Mp(E) : µ([0, s) × [0,∞)) = n}, n = 0, 1, 2, .... Fix a value of n and
let µ ∈ Mp(E) be such that µ([0, s) × [0,∞)) = n and supp(µ) = ((ti, xi))∞i=1. So
tn < s ≤ tn+1. For such a measure µ the integrand with respect to Pν can be
written as

∫

E

[
αµ([r, s)× [0,∞)) + β

]
u1[0,s)(r)µ(drdu)

=
∞∑

i=1

[
αµ([ti, s)× [0,∞)) + β

]
xi1[0,s)(ti)

=
n∑

i=1

(α[n + 1− i] + β)xi.
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Now the measure Pν is the image measure of P under the map Φ, see (5). Express-
ing the integral with respect to Pν over Bn as an integral with respect to P over
the subset An := {ω ∈ Ω : Tn(ω) < s ≤ Tn+1(ω)} of Ω, and using independence of
(Tn) and (Xn), we obtain

∫

Bn

e−
R

E

[
αµ([r,s)×[0,∞))+β

]
u1[0,s)(r)µ(drdu)Pν(dµ)

=
∫

An

exp
{
−

n∑

i=1

(α[n + 1− i] + β)Xi(ω)
}
P(dω)

= E
[

exp
{
−

n∑

i=1

(α[n + 1− i] + β)Xi

}]
P(An)

=
n∏

i=1

E
[

exp
{
− (α[n + 1− i] + β)Xi

}]
sn

n!
e−s

=
n∏

i=1

F ∗(α[n + 1− i] + β)
sn

n!
e−s.

Hence
∫

Mp(E)

e−
R

E
[αµ([r,s)×[0,∞))+β]u1[0,s)(r)µ(drdu)Pν(dµ)

=
∞∑

n=0

n∏

i=1

F ∗(α[n + 1− i] + β)
sn

n!
e−s.

Since for each n,
∫∞
0

sn

n! e
−sds = 1, the theorem follows. ¤

We can take derivatives with respect to α in (7) to find Laplace transforms of
the moments of Z(t). For example the Laplace transforms of the first and second
moments of Z(t) are given in the following proposition.

Proposition 4.1. Under the same assumptions as in Theorem 4.1.,

(a) If E
[
X1e

−βX1
]

< ∞ for some β > 0, then

∫ ∞

0

E[Z(t)]e−βtdt =
E

[
X1e

−βX1
]

β[1− F ∗(β)]2
.

(b) If E
[
X2

1e−βX1
]

< ∞ for some β > 0, then
∫ ∞

0

E[Z(t)2]e−βtdt

=
[1 + F ∗(β)]E

[
X2

1e−βX1
]

β[1− F ∗(β)]3
+

2[2 + F ∗(β)]
[
E

(
X1e

−βX1
)]2

β[1− F ∗(β)]4
.
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Now we will consider the distribution of Y (t) when (N(t)) is a renewal process.
It is easy to see that

Y (t) =
N(t)∑

i=1

(i− 1)Xi + N(t)[t− SN(t)].

Define for t ≥ 0 the functional Y(t) on Mp(E) by

Y(t)(µ) =
∫

E

∫

E

1[0,x)(t− A(s, µ))
{
µ([0, r)× [0,∞))u1[0,s)(r)

+µ([0, s)× [0,∞))(t− A(s, µ))}µ(drdu)µ(dsdx),

where A(t, µ) is defined as in (6). Then as in Lemma 4.1., with probability 1,
Y (t) = Y(t)(Φ). The following theorem can be proved using arguments as for Z(t),
and therefore we omit the proof.

Theorem 4.2. Let (Xn, n ≥ 1) be an iid sequence of strictly positive random
variables with common distribution function F . Let (Sn, n ≥ 0) be the sequence
of partial sums of the variables Xn and (N(t), t ≥ 0) be the corresponding renewal
process: N(t) = sup{n ≥ 0 : Sn ≤ t}. Let

Y (t) =
N(t)∑

i=1

(i− 1)Xi + N(t)[t− SN(t)].

Then

(a)
∫∞
0

E(e−αY (t))e−βtdt =
∑∞

n=0
1−F∗(αn+β)

αn+β

∏n
i=1 F ∗(α[i− 1] + β)

(b)
∫∞
0

E[Y (t)]e−βtdt = F∗(β)
β2[1−F∗(β)]

(c) If E
[
X1e

−βX1
]

< ∞ for some β > 0, then

∫ ∞

0

E[Y (t)2]e−βtdt =
2F ∗(β)

[
1− F ∗(β)2 + βE

(
X1e

−βX1
)]

β3[1− F ∗(β)]3

5. AN EXAMPLE

Suppose that the inter-arrival times Xn of the renewal process have a common
Gamma(m,2) distribution having the probability density function

f(x;m, 2) = m2xe−mx, m > 0, x ≥ 0.
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Note that if m = 2λ then X1 has the same mean as the exponential random variable
with parameter λ (exp(λ)). For m = 1, using Theorem 4.2. we obtain

∫ ∞

0

E[Y (t)]e−βtdt =
1

β3(β + 2)
,

and ∫ ∞

0

E[Y (t)2]e−βtdt =
2(β3 + 4β2 + 8β + 6)

β5(β + 2)3
.

Inverting these transforms we obtain

E[Y (t)] =
1
4
t2 − 1

4
t +

1
8
− 1

8
e−2t

and

E[Y (t)2] =
1
16

t4 − 1
24

t3 +
1
8
t2 − 1

8
t +

1
32

+ (
1
16

t2 − 1
16

t− 1
32

)e−2t.

Hence the variance of Y (t) is given by

Var[Y (t)] =
1
12

t3 − 1
6
t− 1

64
+

1
8
te−2t − 1

64
e−4t.

The double Laplace transform of Y (t) is given by
∫ ∞

0

E(e−αY (t))e−βtdt = m2
∞∑

n=0

(αn + β + m)2 −m2

(αn + β + m)2(αn + β)

n∏

i=1

1
[α(i− 1) + β + m]2

.

The pdf of Y (t) can be approximated by first truncating the infinite sum in this
transform and then by inverting the truncated transform. The graph of the pdf of
Y (3) for m = 1 can be seen in Figure 1 (dashed line).

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

x

f Y
(3

)(x
)

exp(0.5)
Gamma(1,2)

Figure 1: Graphs of the pdf of Y (3) when the (Xn) are iid exp(0.5) and
Gamma(1,2).

In this Figure we also display the graph for the pdf of Y (3) when (Xn) are iid
exponential random variables with parameter 0.5 (solid line). Both Gamma(1,2)
and exp(0.5) distributions have the same mean equal to 2.
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