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Abstract. Let G be a simple graph with vertex set V (G) = {v1, v2, . . . , vn} and

edge set E(G). The signless Laplacian matrix of G is the matrix Q = D + A, such

that D is a diagonal matrix and A is the adjacency matrix of G. The eigenvalues of

Q is called the signless Laplacian eigenvalues of G and denoted by q1, q2, . . ., qn in

a graph with n vertices. In this paper all trees with four and five distinct signless

Laplacian eigenvalues are characterized.
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Abstrak. Diberikan graf sederhana G dengan himpunan titik V (G) =

{v1, v2, · · · , vn} dan himpunan sisi E(G). Matriks Laplace tak bertanda G adalah

matriks Q = D + A dengan D merupakan matriks diagonal yang terindeks him-

punan verteks graf G dengan Dii adalah derajat verteks vi dan A adalah matriks

ketetanggaan G, dengan Aij = 1 jika ada sisi dari i to j di G dan Aij = 0 untuk ka-

sus yang lain. Jika G adalah graf dengan n verteks, nilai eigen Q dikatakan Laplace

tak bertanda G dan dinotasikan sebagai q1, q2, · · · , qn. Dalam paper ini dibuktikan

karakterisasi semua pohon dengan nilai eigen Laplace tak bertanda sebanyak empat

dan lima.

Kata kunci: Pohon, matriks Laplace tak bertanda, walk semi-edge.

1. INTRODUCTION

Let G be a simple graph with vertex set V (G) = {v1, v2, . . . , vn} and edge
set E(G). The adjacency matrix of G is the {0, 1}-matrix A indexed by the
vertex set V (G), where Aij = 1 when there is an edge from i to j in G and
Aij = 0 otherwise. The adjacency spectrum of G, denoted by Spec(G), is the
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multiset of eigenvalues of A(G). The degree matrix of G is defined by D(G) =
diag(dG(v1), dG(v2), . . . , dG(vn)), where dG(v) or simply d(v) is the degree of a ver-
tex v in G. The signless Laplacian matrix of G is the matrix Q(G) = D(G)+A(G).
It is known that Q(G) is nonnegative, symmetric and positive semidefinite, so its
eigenvalues are real and can be arranged as q1 ≥ q2 ≥ . . . ≥ qn ≥ 0. We call
the eigenvalues of A(G) and Q(G) as the A−eigenvalues and Q−eigenvalues of G,
respectively. For additional results on graphs with few distinct A-eigenvalues, we
refer the reader to [3, 4, 6, 19, 20]. Recently many studies have been done on the
signless Laplacian eigenvalues, the papers [7, 8, 9] give a survey on this work. Also
some bounds for the signless Laplacian eigenvalue can be found in [10, 11]. The
authors [15, 16] computed the signless Laplacian spectral moments of some graphs.
Let us recall some definitions and notations to be used throughout the paper. The
distance between two vertices in a graph is the number of edges in a shortest path
connecting them. Denote by d(u, v) the distance between two vertices u and v.
The diameter d of a graph is the greatest distance between any pair of its vertices.

The line graph of a simple graph G, L(G), is a graph that represents the
adjacencies between edges of G. In other words the line graph L(G) is a graph
such that each vertex of L(G) represents an edge of G and two vertices of L(G) are
adjacent if and only if their corresponding edges share a common endpoint (“are
incident”) in G.

Let G1 and G2 be two graphs. The corona product G1 and G2, denote by
G1 ◦G2, is obtained by taking one copy of G1 and |V (G1)| copies of G2 by joining
any vertex of the j-th copy of G2 to the j-th vertex of G1, where 1 ≤ j ≤ |V (G1)|,
see [2, 18] for more details.

Throughout this paper we denote a star, a path and a complete graph of order
n by K1,n−1, Pn, Kn, respectively. Let Sa,b be the double star graph obtained from
the stars K1,a and K1,b by joining the vertex of degree a in K1,a and the vertex
of degree b in K1,b, see Figure 1. In this paper all trees with four and five distinct
signless Laplacian eigenvalues are characterized.

2. PRELIMINARIES

In this section, we present some useful facts on graphs by given number of
distinct Q-eigenvalues. The authors, [8] defined a semi-edge walk in a graph as in
the following:

A semi-edge walk W of length k in an (undirected) graph G is an alternating
sequence v1, e1, v2, e2, . . . , vk, ek, vk+1 of vertices v1, v2, . . . , vk+1 and edges e1,
e2, . . ., ek such that for any i = 1, 2, . . . , k the vertices vi and vi+1 are end-vertices
(not necessarily distinct) of the edge ei. If v1 = vk+1, then we say that W is a
closed semi-edge walk. If end-vertices of the edge ei are not distinct, then W is
called a walk in G. Additional results about walk and semi-edge walk can be found
in [13, 14, 17].
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Theorem 2.1. ([5]) Let Q be the signless Laplacian matrix of a graph G. Then
the (i, j)-entry of the matrix Qk is equal to the number of semi-edge walks of length
k starting at vertex vi and terminating at vertex vj.

Theorem 2.2. ([5]) Let G be a connected graph with diameter d. Then G has at
least d+ 1 distinct signless Laplacian eigenvalues.

Theorem 2.3. ([5]) The multiplicity of 0 as a signless Laplacian eigenvalue of an
undirected graph G equals the number of bipartite connected components of G.

Theorem 2.4. ([5] Proposition (1.3.10)) A graph G is bipartite if and only if the
Laplacian spectrum and the signless Laplacian spectrum of G are equal.

Theorem 2.5. ([2]) Let G1 be any graph, G2 be an r−regular graph, and G =
G1 ◦ G2. Let Spec(G1) = (µ1, µ2, . . . , µn) and Spec(G2) = (η1, η2, . . . , ηm = r).
Then

(a)
µi + r ±

√
(r − µi)2 + 4m

2
∈ Spec(G) with multiplicity 1 for i = 1, . . . , n.

(b) ηj ∈ Spec(G) with multiplicity n for j = 1, . . . ,m− 1.

In the following we have an explicit formula for the eigenvalues of L(G) in
terms of the signless Laplacian eigenvalues of G.

Theorem 2.6. ([5]) Suppose G has m edges, and let q1, q2, . . ., qr be the positive
signless Laplacian eigenvalues of G. Then the eigenvalues of L(G) are µi = qi − 2
for i = 1, . . . , r and µi = −2 if r < i ≤ m.

Corollary 2.7. Let Pn be a path with n vertices. Since the path Pn has line graph
Pn−1 and is bipartite, the signless Laplacian eigenvalues of Pn are 2 + 2 cos πin ,
i = 1, · · · , n.

Lemma 2.8. ([21] Lemma 4.3.) Let L(Sa,b) be the line graph of double star graph
Sa,b, where the degree of the central vertices is equal to a and b. Then for b ≥ a > 1,
L(Sa,b) has exactly four distinct eigenvalues.

In [6], the authors discussed on graphs with three distinct Q-eigenvalues and
they shown that the largest Q-eigenvalue of a connected graph G is non integer if
and only if G = Kn−e, for n ≥ 4. Also the authors in [12], characterized all graphs
with four Laplacian eigenvalues and they presented some families of graphs with
four distinct Laplacian eigenvalues.
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Figure 1. A double star graph.

3. MAIN RESULTS

In this section, all trees with four and five distinct signless Laplacian eigen-
values are characterized. To do this we need the following lemma.

Lemma 3.1. The double star graph Sa,b with b ≥ a > 1 has exactly five distinct
signless Laplacian eigenvalues.

Proof. By Lemma 2.8., the line graph of double star graph Sa,b has exactly four
distinct eigenvalues. Thus Theorem 2.6. states that the graph Sa,b has four positive
signless Laplacian eigenvalues. On the other hand by Theorem 2.3, the graph Sa,b
has 0 as signless Laplacian eigenvalues. So the double star graph Sa,b has exactly
five signless Laplacian eigenvalues.

In the paper [12], the authors characterized all bipartite graphs with four
distinct Laplacian eigenvalues. By Theorem 2.4., all graphs introduced in that
paper have four signless Laplacian eigenvalues. In the following we prove that
among all trees the path P4 is only tree with four signless Laplacian eigenvalues
where this graph is the graph G(r, s) of the paper [12], with r = s = 1.

Theorem 3.2. Suppose that G is a tree.Then G has exactly four distinct signless
Laplacian eigenvalues if and only if G ∼= P4.

Proof. If G ∼= P4, then Corollary 2.7 states that G has exactly four distinct
signless Laplacian eigenvalues. Conversely let G be a tree with four distinct signless
Laplacian eigenvalues. Then by Theorem 2.2., 4 ≥ d+1 and so d ≤ 3. If d = 2, then
G ∼= Sn. By [1], the star graph Sn has three signless Laplacian eigenvalues. Now
suppose that d = 3. Let i and j be the vertices where d(i, j) = 3 and i− x− y − j
be a path between i and j. If G just has the same number of vertices, then G ∼= P4.
Now assume that |V (G)| = n > 4, then the other vertices of G must be connected
to x or y. Thus the resulting graph is double star graph Sa,b. By Lemma 3.1. the
double star graph Sa,b has five distinct signless Laplacian eigenvalues. Therefore
only tree with four distinct signless Laplacian eigenvalues is the path P4.

We now obtain all trees with exactly five signless Laplacian eigenvalues. For
this purpose we consider the following Lemma and then we conclude that only trees
with five signless Laplacian eigenvalues are the path P5 and the double star graph
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Figure 2. The graph H.

Sa,b. Let H be the graph where is shown in Figure 2. In following when we say
that there is a semi-edge on a vertex, it means that we have a semi-edge walk on
the edges connected to that vertex.

Lemma 3.3. For the graph H we have:

• [Q5(H)]x1,x3
= 2a2 − a+ 2b2 − 2b+ 2c2 − c+

∑b−2
i=1 ri + 2ab+ 2ac+ 2bc+

a3 + a2b+ a2c+ b2a+ c2a+ b3 + b2c+ c2b+ c3 + abc− 2,
• [Q4(H)]x1,x3

= a2 + b2 + c2 + a+ b+ c+ ab+ ac+ bc− 2,
• [Q3(H)]x1,x3 = a+ b+ c,
• [Q2(H)]x1,x3

= 1,
• [Q(H)]x1,x3

= 0.

Proof. Consider the graph H such that d(x1) = a, d(x2) = b and d(x3) = c.
Denote by w and s.w an edge and semi-edge, respectively. To calculate the (x1, x3)-
entry of Q5(H), we should compute the number of semi-edge walks of length five
from the vertex x1 to the vertex x3. To do this, we have two cases: either there
is one semi-edge over the some vertices or there are three semi-edge over the some
vertices. In the first case, if the semi-edge is on the vertex x1, then for any adjacent

vertex to x1 such as the vertex 1, we have two types of semi-edges walks as x1
s.w
−

x1
w
− 1

w
− x1

w
− x2

w
− x3 and x1

w
− 1

w
− x1

s.w
− x1

w
− x2

w
− x3. The number of each

such semi-edge walks is equal to a2. Also for any vertex that is adjacent to the
vertices x2 and x3 such as the vertex 1, we have two types of semi-edges walks as

x1
s.w
− x1

w
− x2

w
− 1

w
− x2

w
− x3 and x1

s.w
− x1

w
− x2

w
− x3

w
− 1

w
− x3. By a simple check

one can see that the number of each such semi-edge walks are equal to a(b−1) and
a(c − 1), respectively. In total if one semi-edge is on the vertex x1, then there is
2a2+a(b−1)+a(c−1) semi-edge walk of length five from x1 to x3. If the semi-edge
is over the adjacent vertices to x1, then for any adjacent vertex to x1 such as the

vertex 1, we have a semi-edge walk of length five as x1
w
− 1

s.w
− 1

w
− x1

w
− x2

w
− x3.

The number of such semi-edge walks is equal to a− 1.

Now assume that the semi-edge is on the vertex x2, then for any adjacent

vertex to x2 such as the vertex 1, we have two types of semi-edge walks as x1
w
−
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x2
s.w
− x2

w
− 1

w
− x2

w
− x3 and x1

w
− x2

w
− 1

w
− x2

s.w
− x2

w
− x3. It is easy to

see that the number of each such semi-edge walks is equal to b2. By a simple
calculation one can see that for any vertex that is adjacent to the vertices x1 and
x3, except x2, there are b(a− 1) and b(c− 1) semi-edge walks, respectively. Hence
the number of semi-edge walks where have one semi-edge on the vertex x2 is equal
to 2b2 + b(a− 1) + b(c− 1).

Next let the semi-edge be on the adjacent vertices to the vertex x2, then for
each of b− 2 vertices that are adjacent to x2, such as 1, there is a semi-edge walk

as x1
w
− x2

w
− 1

s.w
− 1

w
− x2

w
− x3. Here, the number of such semi-edge walks is equal

to
∑b−2
i=1 ri in which ri is the degree of the i−th vertex that is adjacent to x2.

Notice that if the semi-edge is on the vertex x3, then by a similar calculation
there is 2c2 semi-edge walk of length five. Also for any vertex that is adjacent to
the vertex x1 except x2 and for any vertex that is adjacent to the vertex x2 except
x3, there are c(a−1) and c(b−1) semi-edge walks, respectively. So in the case that
one semi-edge is on the vertex x3 there is 2c2 + c(a− 1) + c(b− 1) semi-edge walk
of length five. If the semi-edge is on the adjacent vertices to x3, then it is easy to
see that the number of such semi-edge walks is equal to c−1. Therefore in the first
case the number of semi-edge walks of length five from x1 to x3 is equlal to:

a−1+2a2+a(b−1)+a(c−1)+

b−2∑
i=1

ri+2b2+b(a−1)+b(c−1)+2c2+c(a−1)+c(b−1)+c−1.

In the case that there are three semi-edges on some vertices, Table 1 shows
the number of semi-edge walks of length five from x1 to x3.

Finally we have:

[Q5(H)]x1,x3
= 2a2 − a+ 2b2 − 2b+ 2c2 − c+

b−2∑
i=1

ri + 2ab+ 2ac+ 2bc+ a3

+ a2b+ a2c+ b2a+ c2a+ b3 + b2c+ c2b+ c3 + abc− 2.

In the following we calculate the [Q4(H)]x1,x3
. To do this, we should compute

the number of semi-edge walks of length four from the vertex x1 to the vertex x3.
We have two cases: either there is no semi-edge on every vertex or there are two
semi-edges on some vertices. Consider the case that there is no semi-edge on the
vertices. Then it is easy to check that there are a, b− 1 and c− 1 semi-edge walks
of length four, for the adjacent vertices to the vertices x1, x2 and x3, respectively.

In the second case, we have two semi-edges on some vertices. Assume that
every two semi-edges are on the vertex x1, then a simlpe calculation states that
there is a + a(a − 1) semi-edge walk of length four from x1 to x3. While if two
semi-edges are on each of the vertices x2 and x3, then there are b + b(b − 1) and
c+ c(c− 1) semi-edge walks of length four, respectively. Now if one semi-edge is on
the vertex x1 and another is on the vertices x2 or x3, then by a simple calculation
one can see that the number of such semi-edge walks are ab and ac, respectively.
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Table 1. Some of semi-edge walks of length five and their number.

Three semi-edges on vertices The number of semi-edge walks
two semi-edge on x1 and ab+ ab(a− 1)

one semi-edge on x2
two semi-edge on x1 and ac+ ac(a− 1)

one semi-edge on x3
one semi-edge on x1 and ab+ ab(b− 1)

two semi-edge on x2
one semi-edge on x1 and ac+ ac(c− 1)

two semi-edge on x3
two semi-edge on x2 and bc+ bc(b− 1)

one semi-edge on x3
one semi-edge on x2 and bc+ bc(c− 1)

two semi-edge on x3
three semi-edge on x1 a+ 3a(a− 1) + a(a− 1)(a− 2)
three semi-edge on x2 b+ 3b(b− 1) + b(b− 1)(b− 2)
three semi-edge on x3 c+ 3c(c− 1) + c(c− 1)(c− 2)
one semi-edge on x1,

one semi-edge on x2 and abc
one semi-edge on x3

Next if one semi-edge is on the vertex x2 and another is on the vertex x3, then
there is bc semi-edge walk of length four. Finally we have:

[Q4(H)]x1,x3
= a2 + b2 + c2 + a+ b+ c+ ab+ ac+ bc− 2.

To compute the [Q3(H)]x1,x3
, we should calculate the number of semi-edge walks

of length three from x1 to x3. Such semi-edge walks occur in the case that we have
one semi-edge on some vertices. By a simple check one can see that if the semi-edge
is on the vertices x1, x2 and x3, then there are a, b and c semi-edge walks of length
three, respectively. Therefore [Q3(H)]x1,x3 = a+ b+ c. It is easy to see that there
is one walk of length two from x1 to x3 and there is no semi-edge walk of length
1 from x1 to x3. This implies that [Q2(H)]x1,x3

= 1 and [Q(H)]x1,x3
= 0. This

completes the proof.

Lemma 3.4. The number of closed semi-edge walks of length k, 1 ≤ k ≤ 5, on the
vertex i in H are as the following:

• [Q5(H)]i,i = a3 + 4a2 + 6a+ b+ 4,
• [Q4(H)]i,i = a2 + 3a+ 4,
• [Q3(H)]i,i = a+ 3,
• [Q2(H)]i,i = 2,
• [Q(H)]i,i = 1.

Proof. First we compute the number of closed semi-edge walks of length 5 on the
vertex i. There are three cases: either there is one semi-edge on some vertices, or
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Figure 3. A tree of order 17 and its line graph that is corona
product of K4 ◦K3.

there are three semi-edges on some vertices or there are five semi-edges on vertices.
In the first case, if the semi-edge is on the vertex i, then a simple calculation states
that there is 2a closed semi-edge walk of length five. While if the semi-edge is on
the vertex x1, there is 2a2 closed semi-edge walk of length five. Notice that if the
semi-edge is on the adjacent vertices to x1, then by a simple check one can see that
there is a+ b− 1 closed semi-edge walk.

In the second case, if three semi-edges are on the vertex i, then it is easy to
see that there are four closed semi-edge walks as following:

i
s.w
− i

s.w
− i

s.w
− i

w
− x1

w
− i,

i
s.w
− i

s.w
− i

w
− x1

w
− i

s.w
− i,

i
s.w
− i

w
− x1

w
− i

s.w
− i

s.w
− i,

i
w
− x1

w
− i

s.w
− i

s.w
− i

s.w
− i.

Now let two semi-edges be on the vertex i and the third semi-edge be on the vertex
x1. Then it is easy to see that there is 3a closed semi-edge walk on the vertex i. If
two semi-edges are on the vertex x1 and another is on the vertex i, then it is easy
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to check that the number of such closed semi-edge walks is equal to 2a+ 2a(a− 1).
If three semi-edges are on the vertex x1, then a simple calculation show that there
is a+ 3a(a− 1) + a(a− 1)(a− 2) closed semi-edge walk.

In the third case, there is one closed semi-edge walk of length five as i
s.w
−

i
s.w
− i

s.w
− i

s.w
− i

s.w
− i. Therefore the number of closed semi-edge walk of length five

on the vertex i is equal to a3 + 4a2 + 6a+ b+ 4.

Now we calculate the number of closed semi-edge walks of length four on the
vertex i. For any adjacent vertex to x1 such as the vertex 1, there is one semi-edge

walk of length four of this form, i
w
− x1

w
− 1

w
− x1

w
− i. The number of such walk

is equal to a. In the case that we have two semi-edges on the vertex x1, there is
a + a(a − 1) closed semi-edge walk of length four. Also if two semi-edges are on
the vertex i, then a simple calculation states that there are three closed semi-edge
walks of length four. While if one semi-edge is on the vertex i and another is on
the vertex x1, then there is 2a closed semi-edge walk of length four. Now assume
that there are four semi-edges on the vertex i. Then there is one closed semi-edge

walk of the form i
s.w
− i

s.w
− i

s.w
− i

s.w
− i. In total the number of closed semi-edge

walks of length four is equal to a2 + 3a+ 4.

To calculate the [Q3(H)]i,i, it is easy to see that there is one closed semi-edge

walk of length three such as i
s.w
− i

s.w
− i

s.w
− i. Also if one semi-edge is on the vertex i,

then there are two types semi-edges of the form i
w
− x1

w
− i

s.w
− i and i

s.w
− i

w
− x1

w
− i.

Let the semi-edge be on the vertex x1. Then by a simple check one can see that
there is a closed semi-edge walk of length 3. Therefore [Q3(H)]i,i = a + 3. It is
easy to see that there are two closed semi-edge walks of length two and one closed
semi-edge walk of length one on the vertex i. This completes the proof.

Lemma 3.5. The following relations are satisfied:

• [Q5(H)]j,j = c3+4c2+6c+b+4, [Q4(H)]j,j = c2+3c+4, [Q3(H)]j,j = c+3,
[Q2(H)]j,j = 2 and [Q(H)]j,j = 1.

• [Q5(H)]i,j = a + b + c + 2 and [Q4(H)]i,j = [Q3(H)]i,j = [Q2(H)]i,j =
[Q(H)]i,j = 0.

• [Q5(H)]i,x3
= a2 + b2 + c2 + 2a+ 2b+ 2c+ ab+ ac+ bc− 1, [Q4(H)]i,x3

=
a+ b+ c+ 1, [Q3(H)]i,x3

= 1 and [Q2(H)]i,x3
= [Q(H)]i,x3

= 0.

• [Q5(H)]x2,j = 6b2 + 6c2 + 3bc+
∑b−2
i=1 ri +a− b+ b3 + b2c+ c2b+ c3− 3b2 +

2b−3c2+2c−1, [Q4(H)]x2,j = b2+c2+bc+2b+2c, [Q3(H)]x2,j = b+c+1,
[Q2(H)]x2,j = 1 and [Q(H)]x2,j = 0.

Proof. The proof of the first part is similar to Lemma 3.4 and the proof of other
parts are similar to Lemma 3.3.

What follows, we consider the set all trees and obtain trees with exactly five
distinct signless Laplacian eigenvalues.
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Theorem 3.6. A tree G has exactly five distinct signless Laplacian eigenvalues if
and only if G ∼= P5 or G ∼= Sa,b.

Proof. If G ∼= P5 or G ∼= Sa,b, then Corollary 2.7 and Lemma 3.1 state that G
has exactly five distinct signless Laplacian eigenvalues. Conversely suppose that G
has q1, q2, q3, q4 and q5 as the signless Laplacian eigenvalues. Then the minimal
polynomial of the matrix Q is f(x) = (x− q1)(x− q2) . . . (x− q5). So we have the
following relation:

Q5 − (

5∑
i=1

qi)Q
4 + (

∑
1≤i<j≤5

qiqj)Q
3 − (

∑
1≤i<j<r≤5

qiqjqr)Q
2

+ (
∑

1≤i<j<r<t≤5

qiqjqrqt)Q− (q1q2q3q4q5)I = 0. (1)

Since G is bipartite, one of these eigenvalues is equal to 0. Thus the last sentence
of the equation (1) is 0. On the other hand, by Theorem 2.2 we have d ≤ 4. If
d = 2, then G ∼= Sn which is a contradiction. If d = 3, then G ∼= Sa,b and Lemma
3.1. states that G has five signless Laplacian eigenvalues.

Now assume that d = 4, i and j are two vertices such that d(i, j) = 4 and
i−x1−x2−x3− j is a path of length four between i and j. If G has only these five
vertices, then G ∼= P5. Otherwise let |V (G)| = n ≥ 6, then the other vertices must
be connected to the vertices x1, x2 or x3, and so G = H. We first claim that in this
graph d(x1) = d(x2) = d(x3). By considering equation (1), we have the following
system:



a + b + c + 2 =
∑5

i=1 qi,

a3 + 4a2 + 6a + b + 4 = (a2 + 3a + 4)
∑5

i=1 qi + (−a− 3)
∑

1≤i<j≤5 qiqj
+2

∑
1≤i<j<r≤5 qiqjqr −

∑
1≤i<j<r<t≤5 qiqjqrqt,

c3 + 4c2 + 6c + b + 4 = (c2 + 3c + 4)
∑5

i=1 qi + (−c− 3)
∑5

i=1

∑
1≤i<j≤5 qiqj

+2
∑5

i=1

∑
1≤i<j<r≤5 qiqjqr −

∑
1≤i<j<r<t≤5 qiqjqrqt,

a2 + b2 + c2 + 2a + 2b + +2c + ab + ac + bc− 1 = (a + b + c + 1)
∑5

i=1 qi −
∑

1≤i<j≤5 qiqj .

In above system, we subtract the third equation from the second one, next
the fourth relation multiplying in c − a and finally we sum both of the resulting
relations with above relation. At the rest by substituting the value of

∑5
i=1 qi of

the first equation, we obtain

a = c. (2)
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Now by considerin the (i, j), (x1, x3), (i, x3) and (x2, j)-entries of equation (1), we
have the following new system:

a + b + c + 2 =
∑5

i=1 qi,

2a2 + 2b2 − a− 2b + 2c2 − c +
∑b−2

i=1 ri + 2ab + 2ac + 2bc + a3 + a2b + a2c + b2a

+c2a + b3 + b2c + c2b + c3 + abc− 2 = (a2 + b2 + c2 + ab + ac + bc + a + b + c− 2)
∑5

i=1 qi
−(a + b + c)

∑
1≤i<j≤5 qiqj +

∑
1≤i<j<r≤5 qiqjqr,

a2 + b2 + c2 + 2a + 2b + 2c + ab + ac + bc− 1 = (a + b + c + 1)
∑5

i=1 qi −
∑

1≤i<j≤5 qiqj ,

6a2 + 6c2 + 3bc +
∑b−2

i=1 ri + a− b + b3 + b2c + c2b + c3 − 3b2 + 2b− 3c2 + 2c− 1

= (2b + 2c + b2 + c2 + bc)
∑5

i=1 qi − (b + c + 1)
∑

1≤i<j≤5 qiqj +
∑

1≤i<j<r≤5 qiqjqr.

In recent system, first we subtract the fourth equation from the second equa-
tion, next the third relation multiplying in 1 − a and then we sum both of this
relation by the above relation. At the rest we replace the value of

∑5
i=1 qi from the

first equation in the resulting equation and so we have

a = b. (3)

By (2) and (3) we have a = b = c. By a simple check one can see that the degree
of (b − 2) vertices attached to x2, can not be equal to one. Thus the degree of
these vertices is at least two and so the degree oh these vertices is equal to a. If
a = b = c = 2, then G ∼= P5 and so G has five signless Laplacian eigenvalues. Let
a = b = c ≥ 3, then G = H with d(x1) = d(x2) = d(x3) = a ≥ 3. We claim that
this graph has at least six signless Laplacian eigenvalues. To proves, it is sufficient
to show that the line graph L(H) has at least five eigenvalues. Put F = L(H). One
can see that the graph F is the corona product of Ka and Ka−1, Figure 3. Notice

that Theorem 2.5. states that −1, a−3±
√
a2+2a−3
2 and 2a−3±

√
4a−3

2 are members of
the spectrum of Ka ◦Ka−1. This implies that the graph L(H) = Ka ◦Ka−1 has at
least five eigenvalues. On the other hand, Theorem 2.6. states that the graph H
has at least six signless Laplacian eigenvalues. Overall for any a, b and c, the graph
H has at least six signless Laplacian eigenvalues. Finally we conclude that the trees
with exactly five signless Laplacian eigenvalues are the graphs P5 and Sa,b. This
completes the proof.
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