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Abstract. We provide some results about best proximity points of generalized

almost-F -contraction mappings in metric spaces which generalize and extend recent

fixed point theorems. Also, we give an example to illustrate our main result.
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Abstrak. Pada papaer ini kami menunjukkan beberapa hasil tentang titik-titik

kedekatan yang terbaik dari pemetaan konraksi-hampir-F pada ruang metrik yang

memperluas dan memperumum teorema titik tetap. Kami juga memberikan sebuah

contoh untuk mengilustrasikan hasil utama kami.

Kata kunci: Titik kedekatan terbaik, kontraksi-hampir-F yang diperumum, sifat P .

1. Introduction

Fixed point theory focusses on the strategies for solving non-linear equations
of the kind Tx = x in which T is a self mapping defined on a subset of a metric
space. But when T is a non-self mapping, it is probable that Tx = x has no
solution. So, for non self mapping, we try to find an approximate solution for the
equation. On the other hand, best proximity point theorems offer an approximation
solution that is optimal. It should be noted that best proximity point theorems
furnish an approximate solution to the mentioned equation when T has no fixed
point. Thus the best proximity point plays a crucial role in fixed point theory
and consequently this research subject has attracted attention of many authors, as
confirmed referring to [1, 2, 3, 4, 5]. In [1], the authors introduced the F−Suzuki
contraction mappings and proved an existence and uniqueness theorem of fixed
point. Following this direction of research and motivated by the works of [1, 3],
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we introduce the new class of generalized F−Suzuki contractions and prove a best
proximity point theorem concerning such contractions. Moreover, an example is
given to illustrate the usability of the new theory.

2. Main Results

To introduce our new results, it is fundamental to recall the definition of
a best proximity point of a non-self mapping T and the notion of P−property.
Let A and B be two nonempty subsets of a metric space (X, d). To facilitate the
arguments, let

A0 = {a ∈ A : d(a, b) = d(A,B), for some b ∈ B}

B0 = {b ∈ B : d(a, b) = d(A,B), for some a ∈ A}
and

d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.

Definition 2.1. Let A and B be two nonempty subsets of a metric space (X, d).
An element u ∈ A is said to be a best proximity point of the non-self mapping
T : A→ B if it satisfies the condition

d(u, Tu) = d(A,B).

Definition 2.2. [4] Let A and B be two nonempty subsets of a metric space (X, d)
with A0 is nonempty. Then pair (A,B) is said to have the (P )-property if for each
x1, x2 ∈ A and y1, y2 ∈ B, the following implication holds:

d(x1, y1) = d(x2, y2) = d(A,B) ⇒ d(x1, x2) = d(y1, y2).

Throughout the article N, R+ and R denote the set of natural numbers,
positive real numbers and real numbers, respectively.

Definition 2.3. [5] Let F : R+ → R be a mapping satisfying:

(F1): F is strictly increasing, that is, α < β ⇒ F (α) < F (β) for all
α, β ∈ R+,

(F2): for every sequence {αn} in R+ we have lim
n→∞

αn = 0 iff

lim
n→∞

F (αn) = −∞,
(F3): there exists a number k ∈ (0, 1) such that lim

α→0
αkF (α) = 0.

We denote with z the family of all functions F that satisfy the conditions (F1)−
(F3).
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Example 2.4. [1] The following function F : R+ → R belongs to z.

F (α) = ln(α), F (α) = ln(α) + α, F (α) =
−1

α
1
2

.

Definition 2.5. [5] Let (X, d) be a metric space. A mapping T : X → X is called
an F -contraction on X if there exist F ∈ z and τ > 0 such that for all x, y ∈ X
with d(Tx, Ty) > 0, we have

τ + F (d(Tx, Ty)) ≤ F (d(x, y)).

Definition 2.6. [2] Let (X, d) be a metric space and T : X → X be a mapping.
Then the mapping T is said to be an almost-F -contraction if there exist F ∈ z and
τ > 0, L ≥ 0 such that

d(Tx, Ty) > 0 ⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y) + Ld(y, Tx)),

d(Tx, Ty) > 0 ⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y) + Ld(x, Ty)).

Definition 2.7. Let (X, d) be a complete metric space and T : X → X be a map-
ping. Mapping T is said to be a generalized almost-F -contraction if there exist
F ∈ z, τ > 0 and L ≥ 0 such that the following implication holds:

Tx 6= Ty and
1

2
d(x, Tx) ≤ d(x, y) ⇒

τ + F (d(Tx, Ty)) ≤ F (M(x, y) + Ld(y, Tx))

where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

In the sequel, let d∗(x, y) = d(x, y)− d(A,B) for all x, y ∈ X.

Definition 2.8. Let (A,B) be a pair of nonempty subsets of a metric space (X, d)
and T : A → B be a mapping. Mapping T is said to be a non-self generalized
almost-F -contraction if there exist F ∈ z, τ > 0 and L ≥ 0 such that the following
implication holds:

Tx 6= Ty and 0 <
1

2
d∗(x, Tx) ≤ d(x, y) ⇒

τ + F (d(Tx, Ty)) ≤ F (M(x, y)− d(A,B) + Ld∗(y, Tx)) (1)

where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}.

Note that the domain of function F in Definition 2.8 is (0,+∞). Since
M(x, y)− d(A,B) > d∗(x, Tx) > 0 for all x, y ∈ A,
so Definition 2.8 is well defined.

Now we are ready to state and prove our main result.

Theorem 2.9. Let (A,B) be a pair of nonempty closed subsets of a complete
metric space X. Also assume that T : A→ B is a generalized almost-F -contraction
satisfying:
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(i): the pair (A,B) has property P,
(ii): T (A0) ⊆ B0,
(iii): F (α+)− F (α) < τ for any α > 0.

Then T has a best proximity point.

Proof. Let x0 ∈ A0. Since T (A0) ⊆ B0, Tx0 ∈ B0. So there exists x1 ∈ A0

such that d(x1, Tx0) = d(A,B). Since Tx1 ∈ B0, again for some x2 ∈ A0, we get
d(x2, Tx1) = d(A,B). By continuing this process, we can find the sequence {xn} in
A0 as {Txn} in B0 and d(xn+1, Txn) = d(A,B) for any n ∈ N ∪ {0}. Thus for any
n ∈ N, we have d(xn, Txn−1) = d(xn+1, Txn) = d(A,B). The property P implies

d(xn, xn+1) = d(Txn, Txn−1) for all n ∈ N. (2)

Note

d(xn−1, Txn−1) ≤ d(xn−1, xn) + d(xn, Txn−1) ≤ d(xn−1, xn) + d(A,B). (3)

Similarly, d(xn, Txn) ≤ d(xn, xn+1) + d(A,B). Also,

M(xn−1, xn) = max{d(xn−1, xn), d(xn−1, Txn−1), d(xn, Txn)}
≤ max{d(xn−1, xn), d(xn, xn+1)}+ d(A,B). (4)

If for some n0, d(xn0 , xn0+1) = 0, consequently d(Txn0−1, Txn0) = 0. So Txn0−1 =
Txn0 , hence d(A,B) = d(xn0 , Txn0). Thus the conclusion is immediate. So let for
any n ≥ 0, d(xn, xn+1) > 0.
From 3,

d∗(xn−1, Txn−1) ≤ d(xn−1, xn) for all n ∈ N. (5)

Suppose that d∗(xn−1, Txn−1) > 0 for all n ≥ 1. Otherwise there is nothing to
prove.
By 4 and 5, We get

τ + F (d(Txn−1, Txn)) ≤ F (M(xn−1, xn)− d(A,B) + Ld∗(xn, Txn−1))

= F (M(xn−1, xn))− d(A,B))

≤ F (max{d(xn−1, xn), d(xn, xn+1)}). (6)

By 2 and 6, We derive

τ + F (d(xn, xn+1)) = τ + F (d(Txn−1, Txn))

≤ F (max{d(xn−1, xn), d(xn, xn+1)}.
If d(xn, xn+1) ≥ d(xn−1, xn), then

τ + F (d(xn, xn+1)) ≤ F (d(xn, xn+1))

which is a contradiction and hence for any n ∈ N,
d(xn, xn+1) < d(xn−1, xn). (7)

Consequently the sequence {d(xn, xn+1)} is decreasing and bounded below. We are
going to show that lim

n→∞
d(xn, xn+1) = 0.

From 7, we deduce that

F (d(xn, xn+1)) < F (d(xn, xn−1))− τ, for all n ∈ N
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By repeating this process for any n, we get

F (d(xn, xn+1)) < F (d(x0, x1))− nτ (8)

by tending n to infinity, it follows that lim
n→∞

F (d(xn, xn+1)) = −∞ and so

lim
n→∞

d(xn, xn+1) = 0. (9)

We claim that {xn} is cauchy. By assumption F3 in Definition 2.3 and 9, for some
k ∈ (0, 1),

lim
n→∞

d(xn, xn+1)kF (d(xn, xn+1)) = 0.

Note that by 8,

d(xn, xn+1)kF (d(xn, xn+1)) ≤ d(xn, xn+1)kF (d(x0, x1)− nτ).

If n → ∞, we get nd(xn, xn+1)k = 0. Therefore, there exists n0 ∈ N such that
d(xn+1, xn) < 1

n
1
k

for any n > n0. If m > n > n0, then

d(xn, xm) ≤
m−1∑
i=n

d(xi, xi+1) ≤
∑
n≥n0

1

n
1
k

.

So lim
n→∞

d(xn, xm) = 0. From the completeness of X and closedness of A,

there exists x∗ ∈ A such that xn → x∗. Consider

d(x∗, Tx∗) ≤ d(x∗, Txn) + d(Txn, Tx
∗)

≤ d(x∗, xn+1) + d(xn+1, Txn) + d(Txn, Tx
∗)

≤ d(x∗, xn+1) + d(A,B) + d(Txn, Tx
∗).

By taking n→∞,
d∗(x∗, Tx∗) ≤ lim sup

n→∞
d(Txn, Tx

∗). (10)

On the other hand, d(xn, Txn) ≤ d(xn, xn+1) + d(A,B), then

lim
n→∞

d(xn, Txn) = d(A,B).

Since M(xn, x
∗) = max{d(x∗, Tx∗), d(xn, Txn), d(xn, x

∗)}, we deduce easily

lim
n→∞

M(xn, x
∗) = d(x∗, Tx∗). (11)

By using the triangular inequality

d∗(xn, Txn) = d(xn, Txn)− d(A,B)

≤ d(xn, xn+1) + d(xn+1, Txn)− d(A,B)

= d(xn, xn+1),

d∗(xn+1, Txn+1) = d(xn+1, Txn+1)− d(A,B)

≤ d(xn+1, Txn) + d(Txn+1, Txn)− d(A,B)

= d(Txn, Txn+1) = d(xn+1, xn+2)

< d(xn, xn+1).
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Above inequalities imply that

1

2
(d∗(xn, Txn) + d∗(xn+1, Txn+1)) ≤ d(xn, xn+1).

Suppose that the following inequalities hold for some n ∈ N :

1

2
d∗(xn, Txn) > d(xn, x

∗),
1

2
d∗(xn+1, Txn+1) > d(xn+1, x

∗).

Then d(xn, xn+1) ≤ d(xn, x
∗)+d(xn+1, x

∗) < d(xn, xn+1) which is a contradiction.
Then for any n ∈ N ∪ {0}, either

1

2
d∗(xn, Txn) ≤ d(xn, x

∗) or (12)

1

2
d∗(xn+1, Txn+1) ≤ d(xn+1, x

∗). (13)

If 12 holds, then

τ + F (d(Txn, Tx
∗)) ≤ F (M(xn, x

∗)− d(A,B) + Ld∗(Txn+1, x
∗)). (14)

In addition

d∗(Txn+1, x
∗) = d(Txn+1, x

∗)− d(A,B)

≤ d(Txn+1, xn+2) + d(xn+2, x
∗)− d(A,B).

We conclude that lim
n→∞

d∗(Txn+1, x
∗) = 0. Then by 10, 11 and relation 14 and that

F is increasing, we deduce that

τ + F (d∗(x∗, Tx∗)) ≤ τ + lim sup
n→∞

F (d(Txn, Tx
∗))

≤ lim sup
n→∞

F (M(xn, x
∗)− d(A,B) + Ld∗(Txn+1, x

∗)). (15)

Put d∗(x∗, Tx∗) = α. Note that the sequence M(xn, x
∗)−d(A,B)+Ld∗(Txn+1, x

∗)
tends to α from right. If α > 0, then by taking n→∞ in 14, we obtain τ +F (α) ≤
F (α+), that is, F (α+) − F (α) ≥ τ which is a contradiction with the assumption.
So α = 0, that is d(x∗, Tx∗) = d(A,B). If 13 holds, the proof is similar.

Theorem 2.10. In addition to the hypothesis of Theorem 2.9, assume that T also
satisfies the following condition: there exist G ∈ z and some l ≥ 0, τ > 0 such that
for all x, y ∈ A with Tx 6= Ty,

τ +G(d(Tx, Ty)) ≤ G(d(x, y) + ld∗(x, Tx)),

then best proximity point of T is unique.

Proof. Let x0, y0 be disjoint best proximity points of T. Then by property P, we
obtain d(x0, y0) = d(Tx0, T y0). So Tx0 6= Ty0,

τ +G(d(x0, y0)) = τ +G(d(Tx0, T y0)) ≤ G(d(x0, y0)),

which is a contradiction. Hence best proximity point of T is unique.
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Example 2.11. Let X = [0, 4], A = [0, 1] ∪ [3, 4] and B = [ 32 , 2]. Define

Tx =

{
3
2 , x ∈ [0, 1]
2, x ∈ [3, 4]

One can consider d(A,B) = 1
2 , A0 = {1} and B0 = { 32}. We show that T satisfies

in Theorem 2.9. First let x ∈ [0, 1] and y ∈ [3, 4]. we can observe that

1

2
d∗(x, Tx) ≤ d(x, y)

for any x ∈ [0, 1] and y ∈ [3, 4] and also for any x ∈ [3, 4] and y ∈ [0, 1]. Now, we
are going to prove that T satisfies in contraction condition 1 For this, take x ∈ [0, 1]
and y ∈ [3, 4]. Let F ∈ z is continuous. Replacing the values of x, y in relation 1,
we have

τ + F (
1

2
) ≤ F (

3

2
) ≤ (F (max{3

2
− x, y − 2, y − x} − 1

2

+ L(y − 3

2
))

(16)

Note that when x ∈ [3, 4] and y ∈ [0, 1], then we obtain

τ + F (
1

2
) ≤ F (max{x− 2,

3

2
− y, x− y} − 1

2
+ L(2− y)).

Put L = 0 and τ = F (1) − F ( 1
2 ). Then all condition of Theorem 2.9 are satisfied.

It is easy to see that T satisfies in Theorem 2.10 with F = G. Note that x = 1 is
the unique best proximity point of T.

Theorem 2.12. Let (A,B) be a pair of nonempty closed subsets of a complete
metric space X. Also assume that T : A→ B is a generalized almost-F -contraction
satisfying:

(i): the pair (A,B) has property P,
(ii): T (A0) ⊆ B0,
(iii): F is continuous.

Then T has a best proximity point.

Proof. Since F is continuous, then F satisfies in assumption (iii) of Theorem 2.9.
So by Theorem 2.9, T has a best proximity point.

Theorem 2.13. Let (X, d) be a complete metric space and T : X → X be a gen-
eralized almost-F -contraction such that F (α+)− F (α) < τ for any α > 0. Then T
has a fixed point.

Proof. Put A = B = X in Theorem 2.9. Then by Theorem 2.9, T has a fixed
point.
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Corollary 2.14. Let (X, d) be a complete metric space and T : X → X be a gener-
alized almost-F -contraction. Also assume that F is continuous, Then T has a fixed
point.

Corollary 2.15. Let (X, d) be a complete metric space and let T : X → X be a
F -contraction such that F (α+)−F (α) < τ for any α > 0. Then T has a fixed point.
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