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Abstract. In this paper we study another form in the field of formal power series

over a finite field. If the continued fraction of a formal power series in Fq((X−1))

begins with sufficiently large geometric blocks, then f is transcendental.
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Abstrak. Dalam paper ini dikaji form jenis lain di lapangan deret pangkat formal

atas lapangan hingga. Jika continued fraction dari suatu deret pangkat formal

adalah geometric block, maka f transendental.

Kata kunci: Continued fractions; deret pangkat formal; bilangan transendental.

1. INTRODUCTION

The diophantine approximation issue introduced by Khintchine in [8] checks
whether an irrational algebraic number x of degree > 2 has a continued fraction
expansion with unbounded partial quotients. This work investigates a variety of
explicit examples of transcendental continued fractions.

The first result of this type was suggested by to Liouville [9], who constructed
real numbers whose partial quotients sequence grows very fast, too fast for the
numbers to be algebraic. Subsequently, many authors used deeper transcendency
criteria from Diophantine approximation to construct other transcendental contin-
ued fraction classes of interest. Maillet [10], was the first to explore transcendental
continued fractions with unbounded partial quotients. More investigation was made
by Baker [2, 3], Davison [5].
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Unfortunately, in the case of power series fields, we do not have up to now
similar theorems to these of Roth [6] and Schmidt [15]. Thus, it is clear that the
methods used in [1, 2] do not enable one to study a formal power series whose
continued fraction expansion satisfies a specific property.

In 1976, Baum and Sweet [4] proved that the unique solution in F2((X−1))
of the cubic equation

Xα3 + α+X = 0

has a continued fraction expansion with partial quotients of bounded degree. They
observed that no real algebraic number of degree ≥ 3 has yet been shown to have
bounded or unbounded partial quotients.

In 1986, Mills and Robbins [11] provided an example of algebraic formal series
over F2((X−1)) with an unbounded sequence of partial quotients.

In 2004, Mkaouar [13] gave a similar result to the Baker one [2] concerning
the transcendency of formal series over a finite field.

In 2006, Hbaib et al. [7] obtained a result which allows the construction of
a family of transcendental continued fractions over Fq((X−1)) from an algebraic
formal series of degree more than 2.

This work is intended to give a new transcendency form of formal power series
over a finite field which depend only on the specific form appearing in the sequence
of partial quotients. More precisely, if the continued fractions expansion begins
with sufficiently large geometric block, then f is transcendental.

The present paper is organized as follows: In section 2, we introduce the field
of formal power series and the continued fraction expansion over this field and we
review some basic properties. In section 3, we state the main continued fractions
beginning with arbitrarily large palindromes and we give some lemmas that to be
used to prove our results and we the main theorem is finally proved (see Theorem
3.4).

2. Field of formal power series Fq((X−1))

Let Fq be the finite field of q elements, Fq[X] the ring of polynomials
with coefficients in Fq and Fq(X) its field of rational functions. Let Fq((X−1)) be
the field of formal power series

Fq((X−1)) = {f =
∑
n≥n0

bnX
−n; bn ∈ Fq;n0 ∈ Z}.

Define the absolute value

|f | =
{
qdegf for f 6= 0;
0 for f = 0.
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Thus, | . | is not an archimedean absolute value over Fq((X−1)), that is :

|f + g| ≤ max (|f |, |g|) and

|f + g| = max (|f |, |g|) if |f | 6= |g|.

By analogy with the real case, we have a continued fraction algorithm in Fq((X−1)).

A formal power series f =
∑
n≥n0

bnX
−n has a unique decomposition as f = [f ]+{f}

with [f ] ∈ Fq[X] and |{f}| < 1. The polynomial [f ] is called the polynomial part
of f and {f} is called the fractional part of f . We can write for any f ∈ Fq((X−1))

f = a0 +
1

a1 +
1

. . . +
1

an +
1

. . .

= [a0, a1, a2, . . .],

where a0 = [f ] and ai = [fi] ∈ Fq[X] with deg(ai) ≥ 1 for any i ≥ 1 and fi =
1

{fi−1}
.

The sequence (ai)i≥0 is called the sequence of partial quotients of f and we denote
by fn = [an, an+1, . . .] the nth complete quotient of f .

Let f be an algebraic formal power series of minimal polynomial P (Y ) =
AmY

m + Am−1Y
m−1 + . . . + A0 where Ai ∈ Fq[X]. Set H(f) = max

0≤i≤m
|Ai| and

σ(f) = Am.

Now, we define two sequences of polynomials (Pn)n≥0 and (Qn)n≥0 as follows
:

P0 = a0, Q0 = 1, P1 = a0a1 + 1, Q1 = a1

and

Pn = anPn−1 + Pn−2, Qn = anQn−1 +Qn−2, for any n ≥ 2.

We easily check that

PnQn−1 − Pn−1Qn = (−1)n−1, for any n ≥ 1,

and
Pn
Qn

= [a0, a1, a2....., an], for any n ≥ 0

Pn
Qn

is called the nth convergent of f and it satisfies the following :

lim
n→∞

Pn
Qn

= f = [a0, a1, . . . , an, . . .].

With the non-archimedean absolute value, we find the following important equality∣∣∣∣f − Pn
Qn

∣∣∣∣ =

∣∣∣∣ Pn+1

Qn+1
− Pn
Qn

∣∣∣∣ = |QnQn+1|−1 = |an+1|−1|Qn|−2. (1)
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In 1949, Mahler proved in [10] a similar result with Liouville’s inequality
concerning rational approximations to algebraic real numbers:

Theorem 2.1. Let f ∈ Fq((X−1)) be an algebraic series over Fq(X) of degree
n > 1. Then, there exists a positive real number C, depending only on f , such that∣∣∣∣f − P

Q

∣∣∣∣ ≥ C

|Q|n
,

for all P,Q ∈ Fq(X), with Q 6= 0.

In 1976, Baum and Sweet gave [4] these results:

Theorem 2.2. Let f ∈ F2((X−1)). Then

a-: If |Qf − P | = 2−(deg(Q)+d), gcd(P,Q) = 1, d > 0, then for some n, Q = Qn
P = Pn
deg(an+1) = d.

b-: If |Qf−P | = 1

|Q|
, gcd(P,Q) = 1, then for some n,

{
P = Pn + Pn−1
Q = Qn +Qn−1.

Moreover, Baum and Sweet gave in [4] some examples of cubic formal series
in F2((X−1)) whose sequence of partial quotients is bounded.

3. MAIN RESULTS

Before giving the main result, we need to give the following definition .

Definition 3.1. We say that U is a geometric block of order s if there exists a
polynomial Pi[x] ∈ Fq[x] where K[X] = P1 . . . Pi, for all i ≥ 1, such that

U = K.Kq.Kq2 . . . . .Kqs

Lemma 3.2. [14] Let f = [a0, a1, . . .] and g = [b0, b1, . . .] be two formal series
having the same n+ 1 terms of partial quotients. Then

|f − g| ≤ 1

|Qn|2
.

Lemma 3.3. [7] Let f and g be two formal series of degree d and m respectively.
If g reduced and f 6= g, then

|f − g| ≥ 1

H(f)m|g|d−2|σ(g)|max(m−1,m(d−m+2)−1) .

Theorem 3.4. We suppose that for f = [a0, a1, . . . , an, . . .] ∈ Fq((X−1)), there
exists an increasing sequence ni such that (ai)i≥1 begins with a geometric block of
order ni for all i ≥ 1, then f is transcendental.
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Proof.

Assume that f is algebraic of degree d > 2 and the continued fraction of

f = [Hn, H
q
n, H

q2

n , · · · , Hqλn
n , · · · ] begins with a block λn geometric.

Let gn denote the continued fraction

[Hn, H
q
n, H

q2

n , . . . ,H
qλn
n , Hqλn+1

n , . . .].

With Hn = K
(n)
1 · · ·K(n)

sn , then

gn = p
(n)
1 +

1

p
(n)
2 +

1

· · ·+ 1

p
(n)
sn +

1

gqn

.

where (
p
(n)
1

q
(n)
1

), · · · , (p
(n)
sn

q
(n)
sn

) is the sequence of convergents Kn
1 · · ·K

sn
1 . An easy calcu-

lation ensures that gn satisfies the following equation

qsng
q+1
n − psngqn + qsn−1gn − psn−1 = 0. (2)

where (pnqn )n≥1 is the sequence of convergents of gn. Hence gn is algebraic of degree

q + 1 such that

H(gn) = |psn | =
sn∏
i=1

|K(n)
i |. (3)

And

σ(gn) = |qsn | =
sn∏
i=2

|K(n)
i |. (4)

Therefore, according to Lemma 3.3, we can check, for sufficiently large n that:

|f − gn| ≥
1

H(f)q+1|gn|d−2|σ(gn)|d(q+1)−q2 . (5)

So, according to the equality (3) and (4), we obtain

|f − gn| ≥
1

H(f)q+1|a0|d−2|
sn∏
i=2

K
(n)
i |d(q+1)−q2

. (6)

Furthermore, f and gn have the same first λn partial quotients; hence Lemma
3.2 implies that

|f − gn| ≤
1

|qsn |2(1+q+q
2+···+qλn ) .

|f − gn| ≤
1

|
sn∏
i=2

H
(n)
i |

2( q
λn+1−1
q−1 )

. (7)
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Combining (6) and (7), we get

H(f)q+1|a0|d−2|
sn∏
i=2

K
(n)
i |

d(q+1)−q2 ≥ |
sn∏
i=2

H
(n)
i |

2( q
λn+1−1
q−1 ).

Hence, we conclude that

lim sup
n→+∞

qλn+1 − 1

q − 1
<∞, the desired contradiction.

Then f is transcendental.

We close this paper with the following example.

Example 3.5. Let f ∈ F2((X−1)) such that f = [Hn, H
2
n, H

4
n, · · · , H2λn

n ], where

Hi = [k
(n)
1 , k

(n)
2 , · · · , k(n)sn ] such that λn = n, Then f is transcendental.

4. CONCLUDING REMARKS

Recall that a polynomial P ∈ Fq[X][Y ] is said to be reduced if deg(Am−1) >
deg(Ai) for any i 6= m − 1, and an algebraic formal power series is reduced if its
minimal polynomial reduced and [f ] 6= 0.

• If (deg(ai))i≥0 is bounded, then f is said to have a bounded continued
fraction expansion.

• The expansion is finite if and only if f ∈ Fq(X).
• The sequence of partial quotients of f is ultimately periodic if and only if
f is quadratic over Fq(X).

• Let f be a quadratic power series over Fq(X). Then f admits a purely
periodic continued fraction expansion if and only if f is reduced.

REFERENCES

[1] B. Adamczewski and Y. Bugea., On the Maillet-Baker continued fractions, J. Reine Angew.

Math., 606 (2007), 105-121.
[2] A. Baker. , Continued fractions of trascendental numbers, Mathematika., 9 (1962), 1-8.

[3] A. Baker., On Mahler’s classification of transcendental numbers, Acta Math., 111 (1964),

97120.
[4] L.E. Baum and H.M. Sweet., Continued fractions of algebraic power series in characteristic

2,Ann. Math., 103 (1976), 593-610.
[5] J. L. Davison., A class of transcendental numbers with bounded partial quotients, In In R.

A. Mollin, ed., Number Theory and Applications, pp. 365371, Kluwer Academic Publishers,

1989.
[6] H. Davenport., K.F. Roth., Rational approximations to algebraic numbers, Mathematika., 2

(1955) 160167.

[7] M. Hbaib, M. Mkaouar and K. Tounsi., Un critère de transcendance dans le corps des séries
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