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Abstract. In this paper, we answer the question: for α ∈ (0, 1), what are the

greatest value p = p(α) and least value q = q(α), such that the double inequality

Lp(a, b) ≤ Aα(a, b)H1−α(a, b) ≤ Lq(a, b) holds for all a, b > 0? where Lp(a, b),

A(a, b), and H(a, b) are the p-th generalized logarithmic, arithmetic, and harmonic

means of a and b, respectively.
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Abstrak. Dalam paper ini, kami menjawab pertanyaan: untuk α ∈ (0, 1), berapa

nilai terbesar p = p(α) dan nilai terkecil q = q(α), sehingga ketidaksamaan ganda

Lp(a, b) ≤ Aα(a, b)H1−α(a, b) ≤ Lq(a, b) dipenuhi untuk semua a, b > 0? dengan

Lp(a, b), A(a, b), dan H(a, b) secara berturut-turut adalah rata-rata logaritmik yang

diperumum, aritmatik, dan harmonik ke-p dari a and b.

Kata kunci: Rata-rata logaritmik yang diperumum, rata-rata aritmatik, rata-rata
harmonik.
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1. Introduction

For p ∈ R the generalized logarithmic mean Lp(a, b) of two positive numbers
a and b is defined by

Lp(a, b) =


a, a = b,[
ap+1−bp+1

(p+1)(a−b)

]1/p
, p 6= 0, p 6= −1, a 6= b,

1
e ( b

b

aa )1/(b−a), p = 0, a 6= b,
b−a

ln b−ln a , p = −1, a 6= b.

It is well-known that Lp(a, b) is continuous and strictly increasing with respect
to p ∈ R for fixed a, b > 0 with a 6= b. In the recent past, the generalized logarithmic
mean has been the subject of intensive research. In particular, many remarkable
inequalities for Lp can be found in the literature [1, 8, 9, 13, 14, 19, 20, 22, 23].
It might be surprising that the generalized logarithmic mean has applications in
economics, physics and even in meteorology [10, 17, 18]. In [10] the authors study
a variant of Jensen’s functional equation involving Lp, which appear in a heat
conduction problem.

Let A(a, b) = (a + b)/2, I(a, b) = 1/e(bb/aa)1/(b−a), L(a, b) = (b − a)(ln b −
ln a), G(a, b) =

√
ab, and H(a, b) = 2ab/(a+b) be the arithmetic, identric, logarith-

mic, geometric, and harmonic means of two positive numbers a and b with a 6= b,
respectively. Then

min{a, b} < H(a, b) < G(a, b) = L−2(a, b) < L(a, b) = L−1(a, b)

< I(a, b) = L0(a, b) < A(a, b) = L1(a, b) < max{a, b}.

In [7, 11, 21] the authors present bounds for L(a, b) and I(a, b) in terms of
G(a, b) and A(a, b).

Theorem 1.1. For all positive real numbers a and b with a 6= b we have

A
1
3 (a, b)G

2
3 (a, b) < L(a, b) <

1

3
A(a, b) +

2

3
G(a, b)

and
1

3
G(a, b) +

2

3
A(a, b) < I(a, b).

The proof of the following Theorem 1.2 can be found in [5].

Theorem 1.2. For all positive real numbers a and b with a 6= b we have√
G(a, b)A(a, b) <

√
L(a, b)I(a, b) <

1

2
(L(a, b) + I(a, b)) <

1

2
(G(a, b) +A(a, b)).

For p ∈ R, the p-th power mean Mp(a, b) of two positive numbers a and b is
defined by

Mp(a, b) =

{ (
ap+bp

2

)1/p
, p 6= 0,√

ab, p = 0.
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The main properties of these means are given in [5]. Several authors discussed
the relationship of certain means to Mp(a, b). The following sharp bounds for L, I,

(IL)1/2 and (I + L)/2 in terms of power means are proved in [2, 3, 6, 12, 15, 16].

Theorem 1.3. For all positive real numbers a and b with a 6= b we have

M0(a, b) < L(a, b) < M1/3(a, b), M2/3(a, b) < I(a, b) < Mln 2(a, b),

M0(a, b) < I1/2(a, b)L1/2(a, b) < M1/2(a, b)

and

1

2
[I(a, b) + L(a, b)] < M1/2(a, b).

The following Theorems 1.4-1.6 were established by Alzer and Qiu in [4].

Theorem 1.4. The inequalities

αA(a, b) + (1− α)G(a, b) < I(a, b) < βA(a, b) + (1− β)G(a, b)

hold for all positive real numbers a and b with a 6= b if and only if

α ≤ 2/3 and β ≥ 2/e = 0.73575 · · · .

Theorem 1.5. Let a and b be real numbers with a 6= b. If 0 < a, b ≤ e, then

[G(a, b)]A(a,b) < [L(a, b)]I(a,b) < [A(a, b)]G(a,b).

And, if a, b ≥ e, then

[A(a, b)]G(a,b) < [I(a, b)]L(a,b) < [G(a, b)]A(a,b).

Theorem 1.6. For all positive real numbers a and b with a 6= b we have

Mc(a, b) <
1

2
(L(a, b) + I(a, b))

with the best possible parameter c = ln 2/(1 + ln 2) = 0.40938 · · · .

It is the aim of this paper to answer the question: for α ∈ (0, 1), what are the
greatest value p = p(α) and least value q = q(α), such that the double inequality

Lp(a, b) ≤ Aα(a, b)H1−α(a, b) ≤ Lq(a, b)

holds for all a, b > 0 ?
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2. Main Results

Theorem 2.1. For α ∈ (0, 1) and all a, b > 0 we have

(1) L6α−5(a, b) = Aα(a, b)H1−α(a, b) = L−1/α(a, b) for α = 1/3 or α = 1/2;

(2) L−1/α(a, b) ≤ Aα(a, b)H1−α(a, b) ≤ L6α−5(a, b) for α ∈ (0, 1/3)
⋃

(1/2, 1)

and L−1/α(a, b) ≥ Aα(a, b)H1−α(a, b) ≥ L6α−5(a, b) for α ∈ (1/3, 1/2), with
equality if and only if a = b, and the parameters −1/α and 6α − 5 in either case
are best possible.

Proof. (1) If α = 1/3 or α = 1/2, and a = b, then we clearly see that L6α−5(a, b) =
Aα(a, b)H1−α(a, b) = L−1/α(a, b) = a.

If α = 1/3 and a 6= b, then we have

L6α−5(a, b) = L−1/α(a, b) = L−3(a, b)

=
21/3(ab)2/3

(a+ b)1/3
= A1/3(a, b)H2/3(a, b) = Aα(a, b)H1−α(a, b).

If α = 1/2 and a 6= b, then we get

L6α−5(a, b) = L−1/α(a, b) = L−2(a, b)

= (ab)1/2 = A1/2(a, b)H1/2(a, b) = Aα(a, b)H1−α(a, b).

(2) If α ∈ (0, 1) and a = b, then we clearly see that L−1/α(a, b) = Aα(a, b)H1−α(a, b) =
L6α−5(a, b). Without loss of generality, we assume that t = a/b > 1 in the following
discussion.

If α = 2/3, then one has

lnL6α−5(a, b)− ln[Aα(a, b)H1−α(a, b)]

= lnL−1(a, b)− ln[A2/3(a, b)H1/3(a, b)]

= ln(
t− 1

ln t
)− ln[2−1/3(1 + t)1/3t1/3]. (1)

Let f1(t) = ln( t−1ln t ) − ln[2−1/3(1 + t)1/3t1/3], then simple computations lead
to

lim
t→1+

f1(t) = 0, (2)

f ′1(t) =
g1(t)

3t(t− 1)(t+ 1) ln t
, (3)

where g1(t) = (t2 + 4t+ 1) ln t− 3(t2 − 1).

g1(1) = 0, (4)

g′1(t) =
h1(t)

t
, (5)
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where h1(t) = 2t(t+ 2) ln t− 5t2 + 4t+ 1.

g′1(1) = h1(1) = 0, (6)

h′1(t) = 4(t+ 1) ln t− 8(t− 1),

h′1(1) = 0, (7)

h′′1(t) =
4

t
v1(t), (8)

where v1(t) = t ln t− t+ 1.

h′′1(1) = v1(1) = 0 (9)

and

v′1(t) = ln t > 0 (10)

for t > 1.

From (1)-(10) we know that L6α−5(a, b) > Aα(a, b)H1−α(a, b) for α = 2/3
and a 6= b.

If α = 5/6, then

lnL6α−5(a, b)− ln[Aα(a, b)H1−α(a, b)]

= lnL0(a, b)− ln[A5/6(a, b)H1/6(a, b)]

= ln[
1

e
t
t
t−1 ]− ln[2−2/3t1/6(1 + t)2/3]. (11)

Let f2(t) = ln[ 1e t
t
t−1 ] − ln[2−2/3t1/6(1 + t)2/3], then elementary calculations

yield

lim
t→1+

f2(t) = 0, (12)

f ′2(t) =
g2(t)

6t(t− 1)2(t+ 1)
, (13)

g2(t) = (t3 + 9t2 − 9t− 1)− 6t(t+ 1) ln t,

g2(1) = 0, (14)

g′2(t) = 3t2 + 12t− 6(2t+ 1) ln t− 15,

g′2(1) = 0, (15)

g′′2 (t) =
6

t
h2(t), (16)

h2(t) = t2 − 2t ln t− 1,

g′′2 (1) = h2(1) = 0, (17)

h′2(t) = 2(t− ln t− 1),

h′2(1) = 0 (18)

and

h′′2(t) = 2(1− 1

t
) > 0 (19)
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for t > 1.

From (11)-(19) we know that L6α−5(a, b) > Aα(a, b)H1−α(a, b) for α = 5/6
and a 6= b.

If α ∈ (0, 1)\{2/3, 5/6}, then

lnL6α−5(a, b)− ln[Aα(a, b)H1−α(a, b)]

=
1

6α− 5
ln

t6α−4 − 1

(6α− 4)(t− 1)
− ln[21−2αt1−α(t+ 1)2α−1]. (20)

Let f3(t) = 1
6α−5 ln t6α−4−1

(6α−4)(t−1) − ln[21−2αt1−α(t+ 1)2α−1], then simple com-

putations lead to

lim
t→1+

f3(t) = 0, (21)

f ′3(t) =
g3(t)

t(t2 − 1)(t6α−4 − 1)
, (22)

where g3(t) = (1−α)t6α−2+ 4(1−α)(1−3α)
6α−5 t6α−3− (1−2α)(1−3α)

6α−5 t6α−4+ (1−2α)(1−3α)
6α−5 t2−

4(1−α)(1−3α)
6α−5 t− (1− α).

g3(1) = 0, (23)

g′3(t) = 2(1− α)(3α− 1)t6α−3 +
12(1− α)(1− 3α)(2α− 1)

6α− 5
t6α−4

−2(1− 2α)(1− 3α)(3α− 2)

6α− 5
t6α−5 +

2(1− 2α)(1− 3α)

6α− 5
t

−4(1− α)(1− 3α)

6α− 5
,

g′3(1) = 0, (24)

g′′3 (t) = 6(1− α)(1− 2α)(1− 3α)t6α−4

+
24(1− α)(1− 2α)(1− 3α)(2− 3α)

6α− 5
t6α−5

−2(1− 2α)(1− 3α)(3α− 2)t6α−6 +
2(1− 2α)(1− 3α)

6α− 5
,

g′′3 (1) = 0 (25)

and

g′′′3 (t) = −12(1− α)(1− 2α)(1− 3α)(2− 3α)t6α−7(t− 1)2. (26)

If α ∈ (0, 1/3)
⋃

(1/2, 2/3), then

t6α−4 − 1 < 0 (27)

and (26) implies that

g′′′3 (t) < 0 (28)

for t > 1.
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From (20)-(21) and (27)-(28) we know that L6α−5(a, b) > Aα(a, b)H1−α(a, b)
for α ∈ (0, 1/3)

⋃
(1/2, 2/3) and a 6= b.

If α ∈ (2/3, 5/6)
⋃

(5/6, 1), then

t6α−4 − 1 > 0 (29)

and (26) implies that

g′′′3 (t) > 0 (30)

for t > 1.

From (20)-(25) and (29)-(30) we conclude that L6α−5(a, b) > Aα(a, b)H1−α(a, b)
for α ∈ (2/3, 5/6)

⋃
(5/6, 1) and a 6= b.

If α ∈ (1/3, 1/2), then (27) and (30) again hold. From (20)-(25) and (27) to-
gether with (30) we know that L6α−5(a, b) < Aα(a, b)H1−α(a, b) for α ∈ (1/3, 1/2)
and a 6= b.

Next we compare the values of L−1/α(a, b) with Aα(a, b)H1−α(a, b) for α ∈
(0, 1) and a 6= b. It is not difficult to verify that

lnL−1/α(a, b)− ln[Aα(a, b)H1−α(a, b)]

= α ln
(1− 1/α)(t− 1)

t1−1/α − 1
− ln[21−2αt1−α(1 + t)2α−1]. (31)

Let f4(t) = α ln (1−1/α)(t−1)
t1−1/α−1 − ln[21−2αt1−α(1 + t)2α−1], then elementary cal-

culations yield

lim
t→1+

f4(t) = 0, (32)

f ′4(t) =
g4(t)

(t2 − 1)(t1/α−1 − 1)
, (33)

where g4(t) = (3α− 1)t1/α−1 + (1− α)t1/α−2 + (α− 1)t+ (1− 3α).

g4(1) = 0, (34)

g′4(t) =
(1− α)(3α− 1)

α
t1/α−2 +

(1− α)(1− 2α)

α
t1/α−3 + (α− 1),

g′4(1) = 0, (35)

g′′4 (t) =
(1− α)(1− 2α)(3α− 1)

α2
t1/α−4(t− 1). (36)

If α ∈ (0, 1/3)
⋃

(1/2, 1), then(36) implies

g′′4 (t) < 0 (37)

for t > 1.

From (31)-(35) and (37) we know that L−1/α(a, b) < Aα(a, b)H1−α(a, b) for
α ∈ (0, 1/3)

⋃
(1/2, 1) and a 6= b.

If α ∈ (1/3, 1/2), then (36) implies

g′′4 (t) > 0 (38)
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for t > 1. Therefore, L−1α(a, b) > Aα(a, b)H1−α(a, b) for α ∈ (1/3, 1/2) and a 6= b
follows from (31)-(35) and (38).

Finally, we prove that the parameters −1/α and 6α−5 in either case are best
possible.

Firstly, we show that the parameter 6α−5 in either case is best possible. We
divide the proof into seven cases.

Case 1. α = 2/3. For any ε > 0 and x > 0 one has

[Aα(1, 1 + x)H1−α(1, 1 + x)]1+ε − [L6α−5−ε(1, 1 + x)]1+ε

= [A2/3(1, 1 + x)H1/3(1, 1 + x)]1+ε − [L−1−ε(1, 1 + x)]1+ε

=
f1(x)

(1 + x)ε − 1
, (39)

where f1(x) = [(1 + x)ε − 1](1 + x)(1+ε)/3(1 + x/2)(1+ε)/3 − εx(1 + x)ε.

Letting x→ 0 and making use of Taylor expansion we get

f1(x) =
ε2(1 + ε)

24
x3 + o(x3). (40)

Equations (39) and (40) imply that for ε > 0 there exists δ1 = δ1(ε) > 0, such
that L6α−5−ε(1, 1 + x) < Aα(1, 1 + x)H(1−α)(1, 1 + x) for α = 2/3 and x ∈ (0, δ1).

Case 2. α = 5/6. For any ε ∈ (0, 1) and x > 0 we have

[Aα(1, 1 + x)H1−α(1, 1 + x)]ε − [L6α−5−ε(1, 1 + x)]ε

= [A5/6(1, 1 + x)H1/6(1, 1 + x)]ε − [L−ε(1, 1 + x)]ε

=
f2(x)

(1 + x)1−ε − 1
, (41)

where f2(x) = [(1 + x)1−ε − 1](1 + x)ε/6(1 + x/2)2ε/3 − (1− ε)x.

Letting x→ 0 and making using of Taylor expansion we get

f2(x) =
ε(1− ε)

24
x3 + o(x3). (42)

Equations (41) and (42) show that for ε ∈ (0, 1) there exists δ2 = δ2(ε) > 0,
such that L6α−5−ε(1, 1 + x) < Aα(1, 1 + x)H(1−α)(1, 1 + x) for α = 5/6 and x ∈
(0, δ2).

Case 3. α ∈ (0, 1/3). For any ε > 0 and x > 0 one has

[Aα(1, 1 + x)H1−α(1, 1 + x)]5+ε−6α − [L6α−5−ε(1, 1 + x)]5+ε−6α

=
f3(x)

[(1 + x)4+ε−6α − 1](1 + x
2 )(1−2α)(5+ε−6α)

, (43)

where f3(x) = [(1+x)4+ε−6α−1](1+x)(1−α)(5+ε−6α)−(4+ε−6α)x(1+x)4+ε−6α(1+
x/2)(1−2α)(5+ε−6α).



Generalized Logarithmic Mean Bounds 93

Letting x→ 0 and making use of Taylor expansion we get

f3(x) =
ε(4 + ε− 6α)(5 + ε− 6α)

24
x3 + o(x3). (44)

Equations (43) and (44) imply that for any α ∈ (0, 1/3) and ε > 0 there exists
δ3 = δ3(ε, α) > 0, such that L6α−5−ε(1, 1 + x) < Aα(1, 1 + x)H(1−α)(1, 1 + x) for
x ∈ (0, δ3).

Case 4. α ∈ (1/3, 1/2). For any ε ∈ (0, 4− 6α) and x > 0 we get

[L6α−5+ε(1, 1 + x)]5−6α−ε − [Aα(1, 1 + x)H1−α(1, 1 + x)]5−6α−ε

=
f4(x)

[(1 + x)4−6α−ε − 1](1 + x
2 )(1−2α)(5−6α−ε)

, (45)

where f4(x) = (4−6α− ε)x(1+x)4−6α−ε(1+x/2)(1−2α)(5−6α−ε)− [(1+x)4−6α−ε−
1](1 + x)(1−α)(5−6α−ε)

Letting x→ 0 and making using Taylor expansion one has

f4(x) =
ε(4 + ε− 6α)(5 + ε− 6α)

24
x3 + o(x3). (46)

Equations (45) and (46) imply that for any α ∈ (1/3, 1/2) and ε ∈ (0, 4 −
6α) there exists δ4 = δ4(ε, α) > 0, such that L6α−5+ε(1, 1 + x) > Aα(1, 1 +
x)H(1−α)(1, 1 + x) for x ∈ (0, δ4).

Case 5. α ∈ (1/2, 2/3). For any ε > 0 and x > 0 we have

[Aα(1, 1 + x)H1−α(1, 1 + x)]5−6α+ε − [L6α−5−ε(1, 1 + x)]5−6α+ε

=
f5(x)

(1 + x)4−6α+ε − 1
, (47)

where f5(x) = [(1 +x)4−6α+ε−1](1+x/2)(2α−1)(5−6α+ε)(1+x)(1−α)(5−6α+ε)− (4−
6α+ ε)x(1 + x)4−6α+ε.

Letting x→ 0 and making use of Taylor expansion we get

f5(x) =
ε(4 + ε− 6α)2(5 + ε− 6α)

24
x3 + o(x3). (48)

Equations (47) and (48) imply that for any α ∈ (1/2, 2/3) and ε > 0 there
exists δ5 = δ5(ε, α) > 0, such that L6α−5−ε(1, 1 +x) < Aα(1, 1 +x)H(1−α)(1, 1 +x)
for x ∈ (0, δ5).

Case 6. α ∈ (2/3, 5/6). For any ε ∈ (0, 6α− 4) and x > 0 one has

[Aα(1, 1 + x)H1−α(1, 1 + x)]5−6α+ε − [L6α−5−ε(1, 1 + x)]5−6α+ε

=
f6(x)

(1 + x)6α−4−ε − 1
, (49)

where f6(x) = [(1+x)6α−4−ε−1](1+x/2)(2α−1)(5−6α+ε)(1+x)(1−α)(5−6α+ε)−(6α−
4− ε)x.
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Letting x→ 0 and making using Taylor expansion we obtain

f6(x) =
ε(5 + ε− 6α)(6α− 4− ε)

24
x3 + o(x3). (50)

Equations (49) and (50) imply that for any α ∈ (2/3, 5/6) and ε ∈ (0, 6α− 4)
there exists δ6 = δ6(ε, α) > 0, such that L6α−5−ε(1, 1+x) < Aα(1, 1+x)H(1−α)(1, 1+
x) for x ∈ (0, δ6).

Case 7. α ∈ (5/6, 1). For any ε ∈ (0, 6α− 5) and x > 0 we have

[Aα(1, 1 + x)H1−α(1, 1 + x)]6α−5−ε − [L6α−5−ε(1, 1 + x)]6α−5−ε

=
f7(x)

(6α− 4− ε)x
, (51)

where f7(x) = (6α − 4 − ε)x(1 + x/2)(2α−1)(6α−5−ε)(1 + x)(1−α)(6α−5−ε) − [(1 +
x)6α−4−ε − 1].

Letting x→ 0 and making use of Taylor expansion we get

f7(x) =
ε(6α− 5− ε)(6α− 4− ε)

24
x3 + o(x3). (52)

Equations (51) and (52) imply that for any α ∈ (5/6, 1) and ε ∈ (0, 6α − 5)
there exists δ7 = δ7(ε, α) > 0, such that L6α−5−ε(1, 1+x) < Aα(1, 1+x)H(1−α)(1, 1+
x) for x ∈ (0, δ7).

Secondly, we prove that the parameter−1/α in either case is the best possible.
The proof is divided into two cases.

Case A. α ∈ (0, 1/3)
⋃

(1/2, 1). For any ε ∈ (0, 1/α− 1) and t > 0, we have

L1/α+ε(1, t)−Aα(1, t)H1−α(1, t)

= t
α

1−εα {[
( 1
α − 1− ε)(1− 1

t )

1− t−( 1
α−1−ε)

]
α

1−εα − 21−2αt−
εα2

1−εα (1 +
1

t
)2α−1} (53)

and

lim
t→+∞

{[
( 1
α − 1− ε)(1− 1

t )

1− t−( 1
α−1−ε)

]
α

1−εα − 21−2αt−
εα2

1−εα (1 +
1

t
)2α−1}

= (
1

α
− 1− ε)

α
1−εα > 0. (54)

Equation (53) and inequality (54) imply that for any α ∈ (0, 1/3)
⋃

(1/2, 1)
and ε ∈ (0, 1/α − 1) there exists T1 = T1(ε, α) > 1, such that L−1/α+ε(1, t) >

Aα(1, t)H1−α(1, t) for t ∈ (T1,∞).

Case B. α ∈ (1/3, 1/2). For any ε > 0 and t > 0, we have

Aα(1, t)H1−α(1, t)− L−1/α−ε(1, t)

= tα{21−2α(1 +
1

t
)2α−1 − t−

εα2

1+εα [
( 1
α − 1 + ε)(1− 1

t )

1− t−( 1
α−1+ε)

]
α

1+εα } (55)

and
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lim
t→+∞

{21−2α(1 +
1

t
)2α−1 − t−

εα2

1+εα [
( 1
α − 1 + ε)(1− 1

t )

1− t−( 1
α−1+ε)

]
α

1+εα }

= 21−α > 0. (56)

From (55) and (56) we clearly see that for any α ∈ (1/3, 1/2) and ε > 0
there exists T2 = T2(ε, α) > 1, such that L−1/α−ε(1, t) < Aα(1, t)H1−α(1, t) for
t ∈ (T2,∞).

Acknowledgement The authors wish to thank the anonymous referees for their
careful reading of the manuscript and their fruitful comments and suggestions. This
research was supported by the Natural Science Foundation of China under Grants
11071069 and 11171307, and the Innovation Team Foundation of the Department
of Education of Zhejiang Province under Grant T200924.

References

[1] Abuhany, A. A. K., Salem, S. R. and Salman, I. M., “On Steffensen’s integral inequality with

applications”, J. Rajasthan Acad. Phys. Sci. 5 (2006), 1-12.
[2] Alzer, H., “Ungleichungen für (e/a)a(b/e)b”, Elem. Math. 40 (1985), 120-123.

[3] Alzer, H., “Ungleichungen für Mittelwerte”, Arch. Math. 47(1986), 422-426.

[4] Alzer, H. and Qiu, S.-L., “Inequalities for means in two variables”, Arch. Math. 80 (2003),
201-215.
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