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Abstract. The existence of at least three weak solutions for a class of perturbed

fourth-order problems with a perturbed nonlinear term is investigated. Our ap-

proach is based on variational methods and critical point theory.
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Abstrak. Paper ini memeriksa keujudan sekurang-kurangnya tiga solusi lemah dari

kelas masalah orde ke-empat dipertubasi dengan sebuah suku non linier di pertubasi.

Pendekatan yang kami lakukan berdasarkan metode variasional dan teori titik kritis.

Kata kunci: Persamaan orde ke-empat, solusi lemah, teori titik kritis, metode vari-

asional.

1. INTRODUCTION

Consider the following fourth-order problem u(iυ)(x) = λf(x, u(x)) + h(u(x)), x ∈ [0, 1],
u(0) = u′(0) = 0,
u′′(1) = 0, u′′′(1) = µ g(u(1)),

(1)

where λ and µ are a positive parameters, f : [0, 1] × R → R is L1-Carathéodory
function, g : R→ R is a continuous function and h : R→ R is a Lipschitz continuous
function with the Lipschitz constant 0 < L < 1, i.e.,

|h(t1)− h(t2)| ≤ L|t1 − t2|
for every t1, t2 ∈ R, and h(0) = 0. According to definition of function h we see that

|h(t)| ≤ L|t|
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for each t ∈ R.
The problem (1) is related to the deflections of elastic beams based on nonlinear
elastic . In relation with the problem (1), there is an interesting physical description.
An elastic beam of length d = 1, which is clamped at its left side x = 0, and resting
on a kind of elastic bearing at its right side x = 1 which is given by µg . Along
its length, a load λf + h, is added to cause deformations. if u = u(x) denotes the
configuration of the deformed beam, then since u′′′(1) represents the shear force at
x = 1, the condition u′′′(1) = µg(u(1)) means that the vertical force is equal to
µg(u(1)), which denotes a relation, possibly nonlinear, between the vertical force
and the displacement u(1).
Classical bending theory of elastic beams are very important in engineering sciences
and so many studies have been done on a variety of problems like this.
For example in [12], authors considered iterative solutions for problem (1) in the
case of λ = µ = 1 with nonlinear boundary conditions. In [9, 11] Some authors by
using the critical point theory studied Existence and multiplicity results for this
kind of problem . In particular, by using a variational methods the existence of
non-zero solutions for problem (1) in the case of h(t) ≡ 0 has been established in
[4].
In the present paper, using one kind of three critical points theorem obtained in
[5] which we recall in the next section , we establish the existence of at least three
weak solutions for the problem (1). For example this theorem used to ensure the
existence of at least three solutions for perturbed boundary value problems in the
papers [2, 3, 7, 10].

2. Preliminaries

Our main tools is the following three critical points Theorem. In this
following Theorem the coercivity of the functional Φ− λΨ is required.

Theorem 2.1 ([5], Theorem 2.6). Let X be a reflexive real Banach space, Φ : X −→
R be a coercive continuously Gâteaux differentiable and sequentially weakly lower
semicontinuous functional whose Gâteaux derivative admits a continuous inverse
on X∗, Ψ : X −→ R be a continuously Gâteaux differentiable functional whose
Gâteaux derivative is compact such that Φ(0) = Ψ(0) = 0.
Assume that there exist r > 0 and w ∈ X, with r < Φ(w) such that

(a1)
supΦ(u)≤r Ψ(u)

r
<

Ψ(w)

Φ(w)
, (a2) for each λ ∈ Λr :=

]
Φ(w)

Ψ(w)
,

r

supΦ(u)≤r Ψ(u)

[
the functional Φ− λΨ is coercive.

Then, for each λ ∈ Λr the functional Φ − λΨ has at least three distinct critical
points in X.

Let us recall some basic concepts. Denote

X := {u ∈ H2([0, 1])|u(0) = u′(0) = 0},



Existence Results 57

where H2([0, 1]) is the sobolev space of all functions u : [0, 1] → R such that u
and its distributional derivative u′ are absolutely continuous and u′′ belongs to
L2([0, 1]).It is clearly that X is a Hilbert space with the usual norm

||u||X =

(∫ 1

0

(|u′′(x)|2 + |u′(x)|2 + |u(x)|2)dx

)1/2

which is equivalent to the norm

||u|| =
(∫ 1

0

(|u′′(x)|2dx
)1/2

.

Also according to [13] the embedding X ↪→ C1([0, 1]) is compact and we have

||u||C1([0,1]) = max{||u||∞, ||u′||∞} ≤ ||u|| (2)

for each u ∈ X. We suppose that the Lipschitz constant L of the function h satisfies
L < 1. A function u : [0, 1]→ R is a weak solution to the problem (1) if u ∈ X and∫ 1

0

u′′(x)v′′(x)dx− λ
∫ 1

0

f(x, u(x))v(x)dx− µg(u(1))v(1)−
∫ 1

0

h(u(x))v(x)dx = 0

for every v ∈ X. Standard methods (see [13, Lemma 2.1]) show that if f is contin-
uous, then each weak solution u of the problem (1) is a classical solution.
Put

F (x, t) =

∫ t

0

f(x, ξ)dξ for all (x, t) ∈ [0, 1]× R,

G(t) =

∫ t

0

g(ξ)dξ for all t ∈ R,

Gβ = max
|t|≤β

G(t) for all β > 0,

and

H(t) =

∫ t

0

h(ξ)dξ for all t ∈ R.

Now we express the following proposition that, in the proof of the main theorem
of this paper is required.

Proposition 2.2. Let T : X → X∗ be the operator defined by

T (u)(v) =

∫ 1

0

u′′(x)v′′(x)dx−
∫ 1

0

h(u(x))v(x)dx

for every u, v ∈ X. Then T admits a continuous inverse on X∗.

Proof. For every u, v ∈ X we have,

〈T (u)−T (v), u−v〉 ≥
∫ 1

0

|u′′(x)−v′′(x)|2dx−L
∫ 1

0

|u(x)−v(x)|2dx ≥ (1−L)||u−v||2.

So T is uniformly monotone. By [[14], Theorem 26.A(d)], we have that T−1 exists
and is continuous. �
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3. Main Results

In order to introduce our first result, fixing two positive constants θ and δ
such that

8π4(1 + L)(
2

3
)3δ2

∫ 1

0

sup
|t|≤θ

F (x, t)dx < (1− L)θ2

∫ 1

3
4

F (x, δ)dx, (3)

and taking

λ ∈ Λ :=

4(1 + L)( 2
3 )3π4δ2∫ 1

3
4

F (x, δ)dx

,
(1− L)θ2

2

∫ 1

0

sup
|t|≤θ

F (x, t)dx

 , (4)

and set ηλ,g given by

ηλ,g :=



(1−L)θ2−2λ

∫ 1

0

sup
|t|≤θ

F (x, t)dx

2Gθ
if G(δ) ≥ 0

min
{ (1−L)θ2−2λ

∫ 1

0

sup
|t|≤θ

F (x, t)dx

2Gθ
,

4(1+L)π4δ2−( 3
2 )3λ

∫ 1

3
4

F (x, δ)dx

( 3
2 )3G(δ)

}
if G(δ) < 0.

(5)

It is easy to show that ηλ,g > 0 (also see [4]) .Now we express the main results.

Theorem 3.1. Assume that there exist two positive constants θ and δ with θ <
8π2

3
√

3
δ, such that

(A1) F (x, t) ≥ 0, for each (x, t) ∈ [0, 3
4 [×[0, δ];

(A2) 8π4(1 + L)( 2
3 )3δ2

∫ 1

0

sup
|t|≤θ

F (x, t)dx < (1− L)θ2

∫ 1

3
4

F (x, δ)dx;

(A3) lim sup|t|→+∞
supx∈[0,1] F (x,t)

t2 ≤ 0.

Then, for each λ ∈ Λ and for every continuous function g : R → R there ex-
ists ηλ,g > 0 given by (5) such that, for each µ ∈]0, ηλ,g[, the problem (1) admits at
least three weak solutions in X.

Proof. Fix λ ∈ Λ and µ ∈]0, ηλ,g[. Let Φ, Ψ : X → R be defined by

Φ(u) =
1

2

∫ 1

0

|u′′(x)|2dx−
∫ 1

0

H(u(x))dx (6)
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and

Ψ(u) =

∫ 1

0

F (x, u(x))dx+
µ

λ
G(u(1)) (7)

for every u ∈ X. It is well known that Ψ is a differentiable functional whose
differential at the point u ∈ X is

Ψ′(u)(v) =

∫ 1

0

f(x, u(x))v(x)dx+
µ

λ
g(u(1))v(1),

as well as is sequentially weakly upper semicontinuous. Furthermore, Ψ′ : X → X∗

is a compact operator[see [13]-page 1602]. Moreover, Φ is continuously differentiable
whose differential at the point u ∈ X is

Φ′(u)(v) =

∫ 1

0

u′′(x)v′′(x)dx−
∫ 1

0

h(u(x))v(x)dx

for every v ∈ X, while Proposition 2.2 gives that Φ′ admits a continuous inverse
on X∗. Furthermore, Φ is sequentially weakly lower semicontinuous. Put

r :=
(1− L)

2
θ2 (8)

and

w(x) :=

 0 if x ∈ [0, 3
8 ]

δ cos2( 4π x
3 ) if x ∈] 3

8 ,
3
4 [

δ if x ∈ [ 3
4 , 1].

(9)

We clearly observe that w ∈ X and,

||w||2 = 8π4δ2(
2

3
)3.

Now according to (2) and definition of functional Φ we have,

(1− L)

2
||u||2 ≤ Φ(u) ≤ (1 + L)

2
||u||2

and in particular,

4(1− L)π4δ2(
2

3
)3 ≤ Φ(w) ≤ 4(1 + L)π4δ2(

2

3
)3. (10)

Now using θ <
8π2

3
√

3
δ, and (10) we observe that

0 < r < Φ(w).

Since (1−L)
2 ||u||2 ≤ Φ(u), for each u ∈ X , we see that

Φ−1(]−∞, r]) = {u ∈ X; Φ(u) ≤ r}

=

{
u ∈ X;

(1− L)

2
||u||2 ≤ r

}
⊆ {u ∈ X; |u(x)| ≤ θ for each x ∈ [0, 1]} ,
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and it follows that

sup
u∈Φ−1(]−∞,r])

Ψ(u) = sup
u∈Φ−1(]−∞,r])

(∫ 1

0

F (x, u(x))dx+
µ

λ
G(u(1))

)
≤

∫ 1

0

sup
|t|≤θ

F (x, t)dx+
µ

λ
Gθ.

On the other hand, in view of (A1), since w(x) ∈ [0, δ] for each x ∈ [0, 1], we have

Ψ(w) =

∫ 1

0

F (x,w(x))dx+
µ

λ
G(w(1))

≥
∫ 1

3
4

F (x, δ)dx+
µ

λ
G(δ).

Hence, we have

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r
≤

∫ 1

0

sup
|t|≤θ

F (x, t)dx+
µ

λ
Gθ

(1−L)
2 θ2

, (11)

and

Ψ(w)

Φ(w)
≥

∫ 1
3
4
F (x, δ)dx+ µ

λG(δ)

4(1 + L)π4δ2( 2
3 )3

. (12)

Now if G(δ) ≥ 0 then from (11), since µ < ηλ,g and λ ∈ Λ one has∫ 1

0

sup
|t|≤θ

F (x, t)dx+
µ

λ
Gθ

(1−L)
2 θ2

<

∫ 1

0

sup
|t|≤θ

F (x, t)dx+
ηλ,g
λ
Gθ

(1−L)
2 θ2

=
1

λ
<

∫ 1
3
4
F (x, δ)dx

4(1 + L)π4δ2( 2
3 )3
≤

∫ 1
3
4
F (x, δ)dx+ µ

λG(δ)

4(1 + L)π4δ2( 2
3 )3

.

In the other hand if G(δ) < 0 and Gθ > 0 then∫ 1

0

sup
|t|≤θ

F (x, t)dx+
µ

λ
Gθ

(1−L)
2 θ2

<

∫ 1

0

sup
|t|≤θ

F (x, t)dx+
ηλ,g
λ
Gθ

(1−L)
2 θ2

≤ 1

λ

and also if G(δ) < 0 and Gθ = 0 then we have ,∫ 1

0

sup
|t|≤θ

F (x, t)dx+
µ

λ
Gθ

(1−L)
2 θ2

<

∫ 1

0

sup
|t|≤θ

F (x, t)dx+
ηλ,g
λ
Gθ

(1−L)
2 θ2

<
1

λ
.

However, the following inequality can be used again.

1

λ
<

∫ 1
3
4
F (x, δ)dx

4(1 + L)π4δ2( 2
3 )3
≤

∫ 1
3
4
F (x, δ)dx+ µ

λG(δ)

4(1 + L)π4δ2( 2
3 )3

.
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So we have shown that the following inequality is established.∫ 1

0

sup
|t|≤θ

F (x, t)dx+
µ

λ
Gθ

(1−L)
2 θ2

<
1

λ
<

∫ 1
3
4
F (x, δ)dx+ µ

λG(δ)

4(1 + L)π4δ2( 2
3 )3

. (13)

Hence from (11) ,(12) and (13) we observe that

supΦ(u)≤r Ψ(u)

r
<

1

λ
<

Ψ(w)

Φ(w)
.

Hence the condition (a1) of Theorem 2.1 is satisfied .
Finally, we will show that for every λ ∈ Λ, functional Φ− λΨ, is coercive. For this

purpose, fix 0 < ε <
1− L

2λ
. From (A3) there is a function Kε ∈ L1([0, 1]) such that

F (x, t) ≤ εt2 +Kε(x), (14)

for every x ∈ [0, 1] and t ∈ R. Now, for each u ∈ X, we have

Φ(u)− λΨ(u) ≥ 1

2
(1− L)‖u‖2 − λ

∫ 1

0

F (x, u(x))dx− µG(u(1)) ≥

(
1− L

2
− λε)‖u‖2 − λ

∫ 1

0

Kε(x)dx− µ
∫ u(1)

0

g(ξ)dξ.

Now if we suppose that M := maxξ∈[0, |u(1)| ] |g(ξ)|, then by using (2) we have ,

Φ(u)− λΨ(u) ≥ (
1− L

2
− λε)‖u‖2 − λ||Kε||L1[0,1] − µM ||u||

and thus

lim
‖u‖→+∞

(Φ(u)− λΨ(u)) = +∞,

which means the functional Φ− λΨ is coercive, and the condition (a2) of Theorem
2.1 is verified. Finally, since the weak solutions of the problem (1) are exactly the
solutions of the equation Φ′(u)− λΨ′(u) = 0, Theorem 2.1 ensures the conclusion.

�

Remark 3.1. In Theorem 3.1 we read

(1−L)θ2−2λ

∫ 1

0

sup
|t|≤θ

F (x, t)dx

2Gθ
= +∞ when

Gθ = 0.

In the following, we will express another form of Theorem 3.1, which will be
achieved by reversing the role of λ and µ.

Theorem 3.2. Assume that there exist two positive constants θ ,δ with θ <
8π2

3
√

3
δ,

such that
(B1) 8π4(1 + L)( 2

3 )3δ2Gθ < (1− L)θ2G(δ);
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Then, for each

µ ∈ Λ′ :=

]
4(1 + L)( 2

3 )3π4δ2

G(δ)
,

(1− L)θ2

2Gθ

[
and for every L1-Carathéodory function f : [0, 1] × R → R satisfied in conditions
of (A1) and (A3) of Theorem 3.1 there exists η′λ,g > 0 where

η′λ,g =
(1− L)θ2 − 2µ Gθ

2

∫ 1

0

sup
|t|≤θ

F (x, t)dx

such that, for each λ ∈]0, η′λ,g[, the problem (1) admits at least three weak solutions
in X.

Proof. Fix µ ∈ Λ′ and λ ∈]0, η′λ,g[ . Let Ψ̂ : X → R be defined by

Ψ̂(u) =
λ

µ

∫ 1

0

F (x, u(x))dx+G(u(1)) (15)

for every u ∈ X. It is clearly that

Φ(u)− λΨ(u) = Φ(u)− µΨ̂(u)

for every u ∈ X. Choose r and w as given in (8) and (9).Now, as proof of the
Theorem 3.1 ,we have

Ψ̂(w)

Φ(w)
≥

λ
µ

∫ 1
3
4
F (x, δ)dx+G(δ)

4(1 + L)π4δ2( 2
3 )3

≥ G(δ)

4(1 + L)π4δ2( 2
3 )3

>
1

µ
(16)

and

sup
u∈Φ−1(]−∞,r])

Ψ̂(u)

r
≤

λ
µ

∫ 1

0

sup
|t|≤θ

F (x, t)dx+Gθ

(1−L)
2 θ2

≤ (17)

η′λ,g
µ

∫ 1

0

sup
|t|≤θ

F (x, t)dx+Gθ

(1−L)
2 θ2

<
1

µ
.

Therefore from (16) ,(17) we observe that

sup
u∈Φ−1(]−∞,r])

Ψ̂(u)

r
<

1

µ
<

Ψ̂(w)

Φ(w)
.

On the other hand as proof of the Theorem 3.1 it is easy to show that for ev-
ery µ ∈ Λ′, functional Φ − µΨ̂, is coercive. Hence, since for each µ ∈ Λ′ ⊆Φ(w)

Ψ̂(w)
,

r

sup
u∈Φ−1(]−∞,r])

Ψ̂(u)

 the assumptions of Theorem 2.1 are fulfilled, the con-

clusion follows from Theorem 2.1. �
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Remark 3.2. In Theorem 3.1 and Theorem 3.2 we can replace the condition(A3)
with the following subquadratic condition:
There exists α ∈ (0, 2) and M > 0 such that 0 < tf(x, t) ≤ αF (x, t) for all |t| ≥M
and x ∈ [0, 1] which is stronger than (A3) and known as Ambrosetti-Rabinowitz
condition. Under this condition by standard computions there is a positive constant
C such that F (x, t) ≤ C|t|α for all |t| ≥M and x ∈ [0, 1].

Now, we point out the following consequence of Theorem 3.1.

Corollary 3.3. Let f : R → R be a continuous function. Put F (t) :=

∫ t

0

f(ξ)dξ

for each t ∈ R. Fix δ > 0 and assume that F (δ) > 0 and F (ξ) ≥ 0 for each ξ ∈ [0, δ]
and also suppose that

lim inf
ξ→0

F (ξ)

ξ2
= lim sup

ξ→+∞

F (ξ)

ξ2
= 0.

Then, there is λ∗ > 0 such that for each λ > λ∗ and for every nonnegative contin-
uous function g : R → R there exists δ

′

λ,g > 0 such that, for each µ ∈ [0, δ
′

λ,g[, the
problem  u(iυ)(x) = λf(u(x)) + h(u(x)), x ∈ [0, 1],

u(0) = u′(0) = 0,
u′′(1) = 0, u′′′(1) = µ g(u(1)),

(18)

admits at least three weak solutions.

Proof. Fix λ > λ∗ :=
16(1+L)( 2

3 )3π4δ2

F (δ) . From the condition

lim inf
ξ→0

F (ξ)

ξ2
= 0,

there is a sequence {θn} ⊂]0,+∞[ such that lim
n→∞

θn = 0 and

lim
n→∞

sup
|ξ|≤θn

F (ξ)

θ2
n

= 0.

Therefore, there exists θ > 0 such that

sup
|ξ|≤θ

F (ξ)

θ
2 < min

{
F (δ)(1− L)

32(1 + L)( 2
3 )3π4δ2

,
1− L

2λ

}
(19)

and θ <
8π2

3
√

3
δ . Since G(δ) is positive hence according to the Theorem 3.1 for

each

µ ∈

]
0, δ

′

λ,g =

(1− L)θ
2 − 2λ sup

|t|≤θ
F (t)

2Gθ

[
,

problem (18) admits at least three weak solutions. �
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Remark 3.3. In the Corollary 3.3, in calculating the upper bound for the µ , if λ
value increases, then according to (19) , the value of sup

|t|≤θ
F (t), will be reduced. In

fact, the choice of θ, is dependent on the value of λ. Actually for each fix λ > λ∗

we can consider θ such that θ <
8π2

3
√

3
δ and (1− L)θ

2 − 2λ sup
|t|≤θ

F (t) > 0 .

Now, we present the following example to illustrate corollary 3.3.

Example 3.4. Consider the problem (1) where

f(t) =

{
0 if t ≤ 0

e−t
2

(10t9 − 2t11) if t > 0

and g(t) = et and h(t) = 0.001tanht for all t ∈ R. We can consider L = 0.001. Let

δ =
√

3 . According to definition of f and g we have,

F (t) =

{
0 if t ≤ 0

t10e−t
2

if t > 0

and G(t) = et − 1 .It is clear that

lim inf
ξ→0

F (ξ)

ξ2
= lim sup

ξ→+∞

F (ξ)

ξ2
= 0.

So by applying Corollary 3.3, for every fix

λ > λ∗ =
128.128π4

2187 e−3
' 114.6247

according to θ <
8π2

3
√

3
δ and (1 − L)θ

2 − 2λ sup
|t|≤θ

F (t) > 0 we can consider θ such

that θ <
8π2

3
√

3
δ ' 26.32 and 0.999(θ)2 − 2λ sup

|t|≤θ
(t10e−t

2

) > 0 and hence for every

µ ∈

]
0,

0.999(θ)2 − 2λ sup
|t|≤θ

(t10e−t
2

)

2(eθ − 1)

[
,

the problem (1) has at least three weak solutions.
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