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Abstract. Euclidean and non-Euclidean geometries can be considered as spaces

that are invariant under a given group of transformations [8]. The geometry estab-

lished by this approach is called Cayley-Klein geometry. Galilean 4-space is simply

defined as a Cayley-Klein geometry of the product space R × E3 whose symmetry

group is Galilean transformation group which has an important place in classical

and modern physics.
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Abstrak. Geometri Euclidean dan non-Euclidean dapat dipandang sebagai ru-

ang yang invarian terhadap suatu grup transformasi [8]. Geometri yang terbentuk

dari pendekatan ini disebut Geometri Cayley-Klein. Galilean 4-space didefinisikan

sebagai suatu geometri Cayley-Klein dari hasil kali dari ruang R × E3 yang grup

simetrinya adalah grup transformasi Galilean yang memiliki aplikasi penting di fisika

klasik dan modern.

Kata kunci: Ruang Galilean 4D, indicatrice speris, kurva ccr, kurva involute-evolute,
kurva Bertrand, Heliks, kurva speris.

1. INTRODUCTION

Euclidean and non-Euclidean geometries can be considered as spaces that are
invariant under a given group of transformations [8]. The geometry established by
this approach is called Cayley-Klein geometry. Galilean 4-space is simply defined
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as a Cayley-Klein geometry of the product space R × E3 whose symmetry group
is Galilean transformation group which has an important place in classical and
modern physics.

Discovering Galilean space-time is probably one of the major achievements
of non relativistic physics. One may consider Galilean space as the limit case
of a pseudo-Euclidean space in which the isotropic cone degenerates to a plane.
This limit transition corresponds to the limit transition from the special theory of
relativity to classical mechanics. Nowadays Galilean space is becoming increasingly
popular as evidenced from the connection of the fundamental concepts such as
velocity, momentum, kinetic energy, etc. and principles as indicated in [17].

A curve in 3D Galilean space is a graph of a plane motion. Note that such a
curve is called a world line in 3-dimensional Galilean space. It is well known that
the idea of world lines originates in physics and was pioneered by Einstein. The
term is now often used in relativity theories, that is, general relativity and special
relativity [18].

There is a vast of literature about researches on differential geometry of curves
in both 3D and 4D Galilean space as explained below: firstly, Some special curves
such as helices, involute-evolute curves were studied in [2, 5, 13, 14, 16]. Spherical
curves and spherical indicatrix curves were examined in different spaces such as
Galilean space, Heisenberg group, and de Sitter-space [1, 7, 9, 10, 11, 19].

Yılmaz constructed Frenet-Serret frame of a curve in 4D Galilean space and
gave some characterizations of spherical curves in the same space [20]. Bektaş et
al. characterized Mannheim curves in 4D Galilean space [4]. Yoon gave some char-
acterizations of inclined curves by using their curvatures in 4D Galilean space [21].
Aydın et al. established equiform differential geometry of curves in 4D Galilean
space [3]. Yoon et al. gave some characterizations of osculating curves by using

their curvatures in 4D Galilean space [22]. Öztekin introduced special Bertrand
curves and characterized them in 4D Galilean space [15].

In this paper, firstly we obtain the tangent, principal normal, binormal, and
trinormal spherical indicatrices of a regular curve in 4D Galilean space. Then we get
their Frenet elements of these four special curves in terms of the Frenet elements
of the original curve at the same space. Moreover, using these, we give some
theorems characterizing these special curves as ccr-curves, general helix, involute-
evolute curve pairs, and Bertrand mates.

2. Preliminaries

The 3-dimensional Galilean space G3 is the Cayley-Klein space equipped with
the projective metric of signature (0, 0,+,+). The absolute figure of the Galilean
space consists of an ordered triple {w, f, I}, where w is the ideal (absolute) plane,
f is the line (absolute line) in w and I is the fixed elliptic involution of points of f.
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The 4-dimensional Galilean geometry G4 can be described as the study of
properties of four-dimensional space with coordinates that are invariant under gen-
eral Galilean transformations

x′ = (cosβ cosα− cos γ sinβ sinα)x+ (sinβ cosα− cos γ sinβ sinα)y
+(sin γ sinα)z + (v cos δ1)t+ a,

y′ = −(cosβ sinα− cos γ sinβ cosα)x+ (− sinβ sinα− cos γ cosβ cosα)y
+(sin γ cosα)z + (v cos δ2)t+ b,

z′ = (sin γ sinβ)x− (sin γ cosβ)y + (cos γ)z + (v cos δ3)t+ c,
t′ = t+ d,

where cos2 δ1 + cos2 δ2 + cos2 δ3 = 1 [20]. Along the paper, the four dimensional
Galilean space will be denoted by G4.

Given two vectors a = (a1, a2, a3, a4)and b = (b1, b2, b3, b4), then the Galilean
scalar product between these vectors is, as in [20], defined by

〈a, b〉G4
=

{
a1b1, if a1 6= 0 ∨ b1 6= 0,
a2b2 + a3b3 + a4b4, if a1 = 0 ∧ b1 = 0.

For the vectors a = (a1, a2, a3, a4), b = (b1, b2, b3, b4), and c = (c1, c2, c3, c4),
the cross product in the G4 is, as in [20], given by

(a ∧ b ∧ c)G4
=



∣∣∣∣∣∣∣∣
0 e2 e3 e4
a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4

∣∣∣∣∣∣∣∣ , if a1 6= 0, b1 6= 0 ∨ c1 6= 0,

∣∣∣∣∣∣∣∣
e1 e2 e3 e4
a1 a2 a3 a4
b1 b2 b3 b4
c1 c2 c3 c4

∣∣∣∣∣∣∣∣ , if a1 = 0, b1 = 0 ∧ c1 = 0.

In [20], the Galilean sphere of radius r and center m of the space G4 is defined
by

S3
G(m, r) = {ϕ−m ∈ G4(ϕ−m,ϕ−m)G4

= ∓r2}.

A curve α : I → G4 of the class Cr (r ≥ 4) in the Galilean space G4 is defined
by the parametrization:

α(s) = (s, y(s), z(s), w(s)),

where s is arclength parameter [20]. The orthonormal frame in G4 is defined by

t(s) = α′(s) = (1, y′(s), z′(s), w′(s)),

n(s) =
α′′(s)

‖α′′(s)‖
=

(0, y′′(s), z′′(s), w′′(s)

κ
,

b(s) =
1

τ(s)
(0, (

1

κ(s)
y′′(s))′, (

1

κ(s)
z′′(s))′, (

1

κ(s)
w′′(s))′),

e(s) = µt ∧ n ∧ b,

(1)

where the coefficient µ is taken ±1 to make +1 the matrix [t, n, b, e] [20].
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The curvature κ(s), the torsion (the second curvature) τ(s), and the third
curvature σ(s) are defined by

κ(s) = ‖α′′(s)‖G =
√

(y′′(s))2 + (z′′(s))2 + (w′′(s))2,
τ(s) = ‖n′(s)‖G ,
σ(s) = 〈b′, e〉G .

(2)

It is well known that the set {t, n, b, e, κ, τ, σ} is called the Frenet-Serret
apparatus of the curve α. Here, we know that the vectors {t, n, b, e} are mutually
orthogonal vectors satisfying

〈t, t〉G = 〈n, n〉G = 〈b, b〉G = 〈e, e〉G = 1,
〈t, n〉G = 〈t, b〉G = 〈t, e〉G = 〈n, b〉G = 〈n, e〉G = 〈b, e〉G = 0.

The vectors t, n, b, and e in represent the tangent, the principal normal, the
binormal, and the trinormal vectors of α, respectively. The Frenet derivative for-
mulas can be given as in [20] in G4

t′ = κ(s)n(s),
n′ = τ(s)b(s),
b′ = −τ(s)n(s) + σ(s)e(s),
e′ = −σ(s)b(s).

Definition 2.1. [12] A curve α : I → G4 is said to have constant curvature ratios

(that is to say, it is a ccr−curve) if the quotients
τ

κ
and

σ

τ
are constant.

Definition 2.2. [21] Let α : I → G4 be a unit speed curve in G4. The curve α is
called helix if its tangent vector t makes a constant angle with a fixed direction U.

Definition 2.3. [2] Let α and α∗ be two curves in G4. The curve α∗ is called
involute of the curve α if the tangent vector of the curve α at the point α(s) passes
through the tangent vector of the curve α∗ at the point α∗(s) and 〈t, t∗〉 = 0, where
{t, n, b, e} and {t∗, n∗, b∗, e∗} are Frenet frames of α and α∗, respectively. Also, the
curve α is called the evolute of the curve α∗.

Definition 2.4. [15] A C∞−special Frenet-Serret curve α in G4 is called a Bertrand
curve if there exist a C∞−special Frenet-Serret curve α̃, distinct from α, and a reg-

ular C∞−map ϕ : I → Ĩ (s̃ = ϕ(s),
dϕ(s)

ds
6= 0 for all s ∈ I) such that curves α

and α̃ have the same principal normal line at each pair of corresponding points α(s)
and α̃(s̃) = α̃(ϕ(s)) under ϕ. Here s and s̃ are arclength parameters of α and α̃,
respectively. In this case, α̃ is called a Bertrand mate of α and the mate of curves
(α, α̃) is said to be a Bertrand mate in G4.

3. Spherical indicatrices of curves in G4

In this section, the tangent, principal normal, binormal, and trinormal spher-
ical indicatrices of the curve α in G4 are expressed in terms of the Frenet apparatus
of the curve α.
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3.1. Tangent spherical indicatrix of a curve in G4.

Definition 3.1. Let α(s) = (s, y(s), z(s), w(s)) be a curve parametrized by arc-
length s in G4. If we translate the tangent vector field of Frenet frame to the center
O of the unit sphere S3

G, we obtain a spherical indicatrix which is called tangent
spherical indicatrix αt the curve α = α(s).

Let ϕ = ϕ(sϕ) be αt Galilean spherical indicatrix of a regular curve α = α(s)
in G4. First, we differentiate it, we have

ϕ′ =
dϕ

dsϕ
.
dsϕ
ds

= (0, y′′(s), z′′(s), w′′(s)), (3)

where we denote differentiation according to s by a dash, and differentiation ac-

cording to sϕ by a dot. Taking the norm of both sides of (3), we have
dsϕ
ds

= κ(s)

and

tϕ = n(s) =
1

κ
(0, y′′(s), z′′(s), w′′(s)). (4)

Differentiating (4), then we get

dtϕ
dsϕ

.
dsϕ
ds

= (0, ( 1
κ(s)y

′′(s))′, ( 1
κ(s)z

′′(s))′, ( 1
κ(s)w

′′(s))′),

and ṫϕ =
τ(s)b(s)

κ(s)
.

Thus we have the first curvature and the principal normal vector of ϕ as

κϕ(s) =
∥∥ṫϕ∥∥ =

τ(s)

κ(s)
, (5)

and nϕ = b(s). Differentiating (5) with respect to s, we have

n′ϕ =
dnϕ
dsϕ

.
dsϕ
ds

= −τn+ σe,

n′ϕ = τϕbϕ = −τn+
σe

κ
.

Hence, we find the second curvature of binormal vector of ϕ as follow:

τϕ =

√
(
τ

κ
)2 + (

σ

κ
)2, (6)

and

bϕ =
1

τϕ
(− τ
κ

)n+ (
σ

κ
)e.

The cross (exterior) product of µtϕ∧nϕ∧bϕ gives the trinormal vector field of
the tangent spherical indicatrix αt of α = α(s) in G4. Since eϕ = µtϕ ∧ nϕ ∧ bϕ ,
we have

eϕ = µ
κ√

τ2 + σ2
t.
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Since σϕ = −e′ϕb, we find

σϕ =
κ2τ

τ2 + σ2
. (7)

3.2. The principal normal spherical indicatrix of a curve in G4.

Definition 3.2. Let α = (s, y(s), z(s), w(s)) be a curve parametrized by arc-length
s in G4. If we translate the principal normal vector field of Frenet frame to the
center O of the unit sphere S3

G, we obtain a spherical indicatrix β = β(sβ) which
is called the principal normal spherical indicatrix αn of a regular curve α = α(s).

Let β = β(sβ) be the principal normal spherical indicatrix αn of a regular
curve α = α(s). We can write that

β′ =
dβ

dsβ
.
dsβ
ds

= τ(s)b(s),

similar to the tangent spherical indicatrix αt, one can have

tβ = b(s), (8)

and
dsβ
ds

= τ(s). (9)

Differentiating of the formula (8), we obtain

t′β = ṫβ
dsβ
ds

= −τ(s)n(s) + σ(s)e(s),

or

t′β = −n(s) +
σ(s)

τ(s)
e(s).

Therefore, we have the first curvature and the principal normal vector of β

κβ(s) =
∥∥∥t′β∥∥∥ =

√
1 + (

σ

τ
)2, (10)

and

nβ =
1

κβ
[−n+

σ

τ
]. (11)

Differentiating (11) gives

n′β =
dnβ
dsβ

dsβ
ds

= n′β
dsβ
ds

, or n′β =
dsβ
ds

(τβbβ) = (
1

κβτ
[−n+

σ

τ
e])′.

Thus, the torsion and the binormal vector of β are expressed as

τβ = ([
1

κβτ
(1 + (

σ

τ
)2)]′)2, (12)

and

bβ = −(
1

κβ
)′n− b+ (

σ

τ
)[(

1

κβ
)′ +

1

κβ
]e.
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Calculating µ(tβ ∧ nβ ∧ bβ), we get

eβ = µ(
1

κβ
)
′
t,

and also using the third curvature formula, we find

σβ = (
1

κβ
)′2κ. (13)

3.3. The binormal spherical indicatrix of a curve in G4.

Definition 3.3. Let α(s) = (s, y(s), z(s), w(s)) be a curve parametrized by arc-
length s in G4. If we translate the binormal vector field of Frenet frame to the
center O of the unit sphere S3

G, we obtain a spherical indicatrix φ = φ(sφ) which is
called the binormal spherical indicatrix αb of the curve α = α(s).

Let φ = φ(sφ) be the binormal spherical indicatrix αb of a regular curve
α = α(s). In terms of the Frenet frame vector fields in G4, one can differentiate of
φ respect to s

φ′ =
dφ

dsφ
.
dsφ
ds

= −τ(s)n(s) + σ(s)e(s).

In terms of the Frenet frame vector fields in G4, we have the binormal vector
of the spherical indicatrix as follows:

tφ =
−τn+ σe√
τ2 + σ2

, (14)

where
dsφ
ds

=
√
τ2 + σ2.

In order to determine the first curvature of φ , we write

t′φ = ṫφ
dsφ
ds

=
1

τ2 + σ2

[
−(

τ√
τ2 + σ2

)′n+ (
√
τ2 + σ2)b+ (

σ√
τ2 + σ2

)′e

]
,

(15)

hence we arrive at

κφ =
∥∥ṫφ∥∥ =

1

τ2 + σ2

√
((

τ√
τ2 + σ2

)′)
2
+τ2 + σ2 + (

σ√
τ2 + σ2

)
2
, (16)

and the normal vector field of the spherical indicatrix αb is obtained as follows:

nφ =
1

κφ(τ2 + σ2)
[−(

τ√
τ2 + σ2

)
′
n+
√
τ2 + σ2b+ (

σ√
τ2 + σ2

)
′
e]. (17)

Differentiating (17) gives

n′φ =
dnφ
dsφ

dsφ
ds

=τφbφ
dsφ
ds

,
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or

τφbφ =
1√

τ2 + σ2
({− 1

κφ(τ2 + σ2)
[(

1√
τ2 + σ2

)′′ + τ
√
τ2 + σ2]

−(
1

κφ(τ2 + σ2)
)′(

τ√
τ2 + σ2

)′}n+
1

κφ(τ2 + σ2)
{(
√
τ2 + σ2)′

−(
τ√

τ2 + σ2
)′τ + (

σ√
τ2 + σ2

)′σ − (
1

κφ(τ2 + σ2)
)
′√
τ2 + σ2}b

+({ 1

κφ(τ2 + σ2)
[(

σ√
τ2 + σ2

)′′ + σ
√
τ2 + σ2]

+(
1

κφ(τ2 + σ2)
)′(

σ√
τ2 + σ2

)′}e).

(18)

For (18), using the expression τφbφ = η(s), then we obtain

τφ = ‖η(s)‖ ,
and also

bφ =
η(s)

‖η(s)‖
, (19)

where ηi are the components of the η(s) (i = 1, 2, 3, 4),

ηϕ(s) = η1(s) + η2(s) + η3(s) + η4(s).

By the cross product µtφ ∧ nφ ∧ bφ we find

eφ =
1

κ2φ(τ2 + σ2)2
{τ [(

σ√
τ2 + σ2

)′η3 − η4
√
τ2 + σ2]

−σ[η3(
τ√

τ2 + σ2
)′ + η2

√
τ2 + σ2]},

we express derivative of eφ so that

e′φ = ξ(s). (20)

Using the third curvature formula, we have

σφ = −e′φbφ, (21)

and substituting (19) and (20) into (21), we obtain

σφ = −ξ
′(s)η(s)

‖η(s)‖
.

3.4. The trinormal spherical indicatrix of a curve in G4.

Definition 3.4. Let α(s) = (s, y(s), z(s), w(s)) be a curve parametrized by arc-
length s in G4. If we translate the trinormal vector field of Frenet frame to the
center O of the unit sphere S3

G, we obtain a spherical indicatrix ψ = ψ(sψ) which
is called the trinormal spherical indicatrix αe of the curve α = α(s).

Let ψ = ψ(sψ) be the trinormal spherical indicatrix αe of the curve α = α(s).
Differentiating ψ = ψ(sψ) respect to s gives

ψ′ =
dψ

dsψ

dsψ
ds

= −σ(s)b(s).
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The tangent vector of the trinormal spherical indicatrix is obtained as

tψ = −b, (22)

and ‖ψ′‖ =
dsψ
ds

= σ.

Differentiating (22) we obtain

ṫψ = κψnψσ = τn− σe,

then one can easily have the principal normal vector and the first curvature

nψ = τn− σ√
τ2 + σ2

e, (23)

and

κψ =

√
1 + (

τ

σ
)2, (24)

respectively. Differentiating (23) we get

n′ψ =
dnψ
dsψ

.
dsψ
ds

= [(
1√

τ2 + σ2
)′τ +

τ ′√
τ2 + σ2

]n+
√
τ2 + σ2b

−[(
1√

τ2 + σ2
)
′
σ +

σ
′

√
τ2 + σ2

]e.

(25)

Taking the norm of both sides of (25), we obtain the second curvature as
follows:

τψ=
1

σ

√
τ2(

1√
τ2 + σ2

)′2+
τ ′2

τ2
+σ2+τ2+σ2+(

1√
τ2 + σ2

)′2σ2+
σ′2

τ2 + σ2

=Γ(s).

(26)

To determine the binormal vector field, we express

bψ =
1

Γ(s)
{[( 1√

τ2 + σ2
)′τ +

τ ′√
τ2 + σ2

]n

+(
√
τ2 + σ2)b− [(

1√
τ2 + σ2

)′σ +
σ′√

τ2 + σ2
]e}.

Finally, let us form the vector µtψ ∧ nψ ∧ bψ as

eψ = µ[σ(
τ√

τ2 + σ2
)′ − τ(

σ√
τ2 + σ2

)′]t.

4. Characterizations of the spherical indicatrices of curves in G4

Theorem 4.1. Let α = α(s) be a unit speed curve and ϕ(sϕ) be its tangent spherical
indicatrix. If α is a ccr−curve or a helix (i.e. W curve), then ϕ is also a helix in
G4.
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Proof. Let α = α(s) be a unit speed ccr−curve in G4. Then, we know that

l1 =
τ

κ
= const. and l2 =

σ

κ
= const. (27)

From (5), (6), and (7), we have

κϕ = l1, τϕ =
√
l21(1 + l22), σϕ =

1

l21(1 + l22)
, (28)

respectively. Therefore ϕ(sϕ) is also helix. The condition for α to be helix can be
immediately seen by (27). �

By this theorem , it is presented that a characterization of the tangent spher-
ical indicatrix is associated to the Frenet-Serret curvature ratios to be constant (or
helices). It is also observed that the mentioned indicatrix can be a helix, so one can
ask whether this tangent spherical indicatrix is a general helix or not? Therefore
it is characterized by the following statements.

Theorem 4.2. Let α = α(s) be a unit speed ccr−curve and ϕ = ϕ(sϕ) be its
tangent spherical indicatrix. If ϕ is a general helix, then there exists a relation
among the Frenet-Serret curvatures of α as

ϕ = c1tϕ + c2nϕ + c3bϕ − c3
∫ s
0
σdscϕ.

Proof. Let α = α(s) be a unit speed curve and ϕ = ϕ(sϕ) be its tangent spherical
indicatrix in G4. If ϕ = ϕ(sϕ) is a general helix, then for a constant vector U , we
can express

〈tϕ, U〉G = const., (29)

differentiating (29), we obtain κ 〈n,U〉 = 0. For κ 6= 0, we have

〈n,U〉 = const. (30)

One can write linear combination of {t, n, b, e} of the constant vector U as

U = ε1t+ ε2n+ ε3b+ ε4e. (31)

Differentiating (31) respect to s, we have the following system of ordinary differen-
tial equations 

ε′1 = 0,
ε1κ+ ε′2 − ε3τ = 0,
ε′3 + ε2τ − ε4σ = 0,
ε3σ + ε′4 = 0.

(32)

We know that ε2 = c2 6= 0 is a constant. Moreover, from (321), we get ε1 = c1
constant. Using this system, we have two differential equations due to ε3 as

ε′3(
τ

κ
) + ε3(

τ

κ
)
′
= 0,

(
ε′3
σ

)′ + c(
τ

σ
)′ + ε3σ = 0.

(33)
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Suppose α = α(s)is a unit speed ccr−curve and ϕ = ϕ(sϕ) is its tangent spherical
indicatrix, then the relations (33) are satisfied. We know that ccr−curve has con-

stant curvature ratios such that
κ

τ
= l1 = const., and

τ

σ
= const. Therefore the

differential equations (33) turn into the following form:
1

l1
ε′3 = 0,

(
ε′3
σ

)′ + ε3σ = 0,
(34)

from (341), we get ε3 = c3 = const. �

Corollary 4.3. The fixed direction (constant vector U) can be composed by the
components 

ε1 = c1 =const.,
ε2 = c2 =const.,
ε3 = c3 =const.,
ε4 = −c3

∫ s
0
σds.

Theorem 4.4. Given that X = X(s), Y = Y (s) are curves in G4, and let the

curvature
√

(τX)2 + (σX)2 of X = X(s) be constant. If trinormal of X = X(s) is
tangent indicatrix of Y = Y (s), then σX is constant.

Proof. Lets calculate Frenet apparatus of Y = Y (s). Consider the Frenet apparatus
of curve X = X(s), and Y = Y (s), respectively, {tX , nX , bX , eX , κX , τX , σX} and
{tY , nY , bY , eY , κY , τY , σY }. Suppose that sY is the parameterized arc-length of
Y = Y (s). Then, we can write

Y =
∫ s
0
eX(s)ds. (35)

Differentiating both sides of (35) respect to s, we get

dY

ds
=

dY

dsY
.
dsY
ds

= eX . (36)

Since
dY

dsY
= tY , (37)

from (36), we find

tY .
dsY
ds

= eX . (38)

Using (37) and (38) in (36), we obtain

tY = eX , (39)

and
dsY
ds

= 1.

Taking the derivative of (39) respect to s, we have

κY nY = −σXbX . (40)
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From (40), we get
nY = −bX , (41)

and κY = σX . Differentiating (41) gives

τY bY = τXnX − σXeX ,

and using the expression τY =
√
τ2X + σ2

X , we obtain

bY =
τXnX − σXeX√

τ2X + σ2
X

. (42)

If exterior product tY ∧ nY ∧ bY is calculated, we get

eY =
tX√

τ2X + σ2
X

, (43)

and differentiating (43) respect to s , we find

−σY bY =
κXnX√
τ2X + σ2

X

+ (
1√

τ2X + σ2
X

)′tX .

Since r =
√
τ2X + σ2

X is constant, then

σY = σ
κX
r
, and bY = −nX .

Therefore, we arrive at

σY =
κX√

τ2X + σ2
X

, and σX =
1√(

τ

κX

)2

+

(
σX
κX

)2
.

So, the third curvature of X = X(s) is as follows:

σX =
1√

l21 + l1.l2
.

Since l1 and l2 are constant, then σX = const. �

Theorem 4.5. Let α(s) = (s, y(s), z(s), w(s)) be a unit speed curve and β = β(sβ)
be its principal normal spherical indicatrix. If α is a ccr−curve helix (i.e. W-curve),
then β is also a plane curve.

Proof. Let α = α(s) be unit speed ccr−curve. We know that

κ

τ
=

1

l1
= const. and

τ

σ
=

1

l2
= const.

From (10) and (12), we get the first and second curvatures of β = β(sβ) as follows

κβ =
√

1 + l21 =const., and τβ = 0 =const.

Substituting κβ and τβ to the first part of formula a spherical curve has to satisfy,
it is seen that β(sβ) is a spherical curve. By the way, we get

σβ = ((
1√

1 + l21
)′)2κ = 0 = const.
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Therefore β(sβ) is also a flat curve. �

Theorem 4.6. Let ψ and δ be unit speed curves such that ψ is trinormal spherical
indicatrix of δ, and δ be an evolute of ψ. The Frenet apparatus of ψ {tψ, nψ, bψ, eψ, κψ, τψ, σψ}
can be formed according to the Frenet apparatus of δ, {tδ, nδ, bδ, eδ, κδ, τδ, σδ}.

Proof. From definition of involute-evolute curve pair we write

δψ = ψ + λtψ, (44)

and differentiating (44) respect to s we obtain

dδ

dsδ
.
dsδ
ds

= t+
dλ

ds
tψ + λt

′

ψ.

Recalling definition of involute and evolute we can say

tψ⊥tδ,
hence we have

1 +
dλ

ds
= 0,

and we find
λ = c− s,

where c is constant. Rewriting (44), we have

δ = ψ + (c− s)tψ, (45)

and differentiating (45) respect to s, we have

tδ
dsδ
ds

= −(c− s)b, (46)

and
tδ = −b.

Taking the norm of both sides of (46) we have

dsδ
ds

= (c− s),

and
ṫδ = κδnδ = −τn+ σe, (47)

then one can easily have the principal vector and the first curvature

nδ =
−τn+ σe√
τ2 + σ2

, and κδ =
∥∥ṫδ∥∥ =

√
τ2 + σ2. (48)

Differentiating (48) gives

n′δ =
1

c− s
{( −τ

(
√
τ2 + σ2)′

− τ ′)n+ (
−τ2 − σ2

√
τ2 + σ2

)b

+(
σ

(
√
τ2 + σ2)′

+ σ′)e}.

Let us denote the derivative of the principal normal vector field as

n
′

δ = P (s), (49)
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where P (s) = (p1(s), p2(s), p3(s), p4(s)). Taking the norm of both sides of (49), we
have the second curvature and binormal vector as follows:

τδbδ = P ′(s),

and

τδ = P ′(s) and bδ =
P ′(s)

τδ
.

Calculating tδ ∧ nδ ∧ bδ gives

eδ =
τe− σn

τδ
√
τ2 + σ2

p
′

1(s),

and using the third curvature formula, we obtain

σδ = −e′δbδ,
and

σδ = −(
τe− σn

τδ.
√
τ2 + σ2

p′1(s))′
p′(s)

τδ
.

�

Theorem 4.7. Let α = α(s) be regular curve in G4. The curves β and ψ which
are spherical indicatrices of α are Bertrand mates. Also the curve β is the principal
normal spherical indicatrix, and ψ the trinormal spherical indicatrix of α.

Proof. Denote the principal normal vectors of φ and ψ, nφ and nψ, respectively,
and the principal normal vectors are given

nβ =
−τn+ σe√
τ2 + σ2

, and nφ =
τn− σe√
τ2 + σ2

.

It can be seen that nβ = −nφ. So the principal normal vectors of spherical indica-
trices β and ψ are linear dependent. Hence these curves are Bertrand mates. �

Theorem 4.8. Let α = α(s) be a regular curve in G4. Let us denote the principal
normal, binormal, and trinormal spherical indicatrices of α by β, φ and ψ, respec-
tively. Both of β and ψ which are spherical indicatrices of α are spherical involutes
for the binormal spherical indicatrices φ of α.

Proof. Let us denote the tangent vectors of the spherical indicatrices β, φ, and ψ
as tβ , tφ, and tψ, respectively. By (8), (14), and (22), these tangent vectors are as
follows

tβ = b, tφ =
−τn+ σe√
τ2 + σ2

, and tψ = −b,

If the inner products of these vectors are calculated, then we get

〈tβ , tφ〉 = 0, and 〈tψ, tφ〉 = 0.

The tangent vectors of the spherical indicatrices β, ψ are orthogonal to tan-
gent vector of binormal spherical indicatrix φ. So the proof is completed. �
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5. Example

Let’s consider the following parameterized curve

α(s) = (s, cos s,
√

2 sin s, cos s) (50)

in G4. Differentiating (50), we have α′(s) = t(s) = (1,− sin s,
√

2 cos s,− sin s).

The principal normal vector n(s) becomes n(s) =
1√
2

(0,− cos s,−
√

2 sin s,− cos s).

The second curvature is obtained as τ(s) = 1. The binormal vector is found as

b(s) =
1√
2

(0, sin s,−
√

2 cos s, sin s). Using e(s) = µt(s) ∧ n(s) ∧ b(s), the trinormal

vector is e(s) =
µ√
2

(0,−1, 0, 1), hence the third curvature is calculated as σ(s) =

〈b′(s), e(s)〉G = 0.

Let us calculate the spherical indicatrices of the curve α, first let us express the
Frenet elements of the tangent indicatrix ϕ = ϕ(sϕ) in terms of the Frenet elements
of the curve α. Using the equations (4), (5), (6), the tangent vector of the tangent

indicatrix is calculated as tϕ = n(s) =
1√
2

(0,− cos s,−
√

2 sin s,− cos s), and the

first and second curvatures of the tangent indicatrix are found as κϕ =
1√
2
, τϕ =

1√
2
,respectively. The binormal and trinormal vectors of the tangent indicatrix are

obtained as bϕ =
1√
2

(0, cos s,
√

2 sin s, cos s), and eϕ =
µ√
2

(1,− sin s,
√

2 cos s,− sin s),

respectively.

Let us express the Frenet elements of the principal normal indicatrix β =
β(sβ) in terms of the Frenet elements of the curve α. Using the equations (8),
(10), (11), and (13), the tangent vector of the principal normal indicatrix is tβ =

n(s) =
1√
2

(0, sin s,−
√

2 cos s, sin s), and the first and second curvatures of the

principal normal indicatrix are obtained as κβ = 1, τβ = 0 respectively. The
binormal and trinormal vectors of the principal normal indicatrix are found as

bβ =
1√
2

(0,− sin s,
√

2 cos s,− sin s), and eβ = (0, 0, 0, 0), respectively. Hence the

third curvature is calculated as σβ(s) = 0.

Let us express the Frenet elements of the binormal indicatrix φ = φ(sφ) in
terms of the Frenet elements of the curve α. By the equations (9), (14), (16), (17)

and (20), the tangent vector of the binormal indicatrix is tφ =
1√
2

(0, cos s,
√

2 sin s, cos s),

and the first curvature of the binormal indicatrix is obtained as κφ = 1. The princi-

pal normal vector of the binormal indicatrix is as nφ = b =
1√
2

(0,sins,−
√

2 cos s, sin s),

and also the second curvature is τφ = 1. The binormal and trinormal vectors of

the binormal indicatrix are found as bφ = −n =
1√
2

(0, cos s,
√

2 sin s, cos s), and
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eφ =
1√
2

(0, 0, 0,− cos s), respectively. Hence the third curvature is calculated as

σφ(s) =
1

4
sin 2s.

Finally, Let us express the Frenet elements of the trinormal indicatrix ψ =
ψ(sψ) in terms of the Frenet elements of the curve α. By equations (22), (23),
(24), and (26), the tangent and principal normal vectors of the trinormal indi-

catrix are calculated tψ = −b =
1√
2

(0,− sin s,
√

2 cos s,− sin s), and nψ = n =

1√
2

(0,− cos s,−
√

2 sin s,− cos s), respectively. Also the first curvature of the tri-

normal indicatrix is obtained as κψ = 1, and the second curvature τψ is undefined

since
1

σ
(σ = 0). The binormal and trinormal vectors of the trinormal indicatrix

is found as bψ = (0, 0, 0, 0), and eψ = (0, 0, 0, 0), respectively. Hence the third
curvature is σψ(s) = 0.

6. CONCLUDING REMARKS

In this study, the tangent, principal normal, binormal, and trinormal spherical
indicatrices of a regular curve were obtained in 4D Galilean space. Then their Frenet
elements of these four special curves were found in terms of the Frenet elements of
the original curve at the same space. Moreover, using Frenet elements of spherical
indicatrix curves, some theorems were given characterizing these special curves as
ccr−curves, general helix, involute-evolute curve pairs, and Bertrand mates. As
an open problem, all the results in this study can be studied in pseudo-Galilean
spaces.
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