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Abstract. In this paper we derive the limit process of the sequence of set-indexed

least-squares residual partial sum processes of observations obtained form a spatial

linear regression model. For the proof of the result we apply the uniform central

limit theorem of Alexander and Pyke [1] and generalize the geometrical approach

of Bischoff [7] and Bischoff and Somayasa [8]. It is shown that the limit process is

a projection of the set-indexed Brownian sheet onto the reproducing kernel Hilbert

space of this process. For that we define the projection via Choquet integral [14,

15, 17] of the regression function with respect to the set-indexed Brownian sheet.

Key words: Set-indexed Brownian sheet, set-indexed partial sum process, spatial

linear regression model, least-squares residual, Choquet integral.

Abstrak. Dalam makalah ini diturunkan proses limit dari barisan himpunan

berindeks proses jumlah parsial residual least-square dari pengamatan yang diper-

oleh dari suatu model regresi linear spasial. Pembuktian hasil menggunakan teorema

limit pusat dari Alexander dan Pyke [1] dan perumuman pendekatan geometris dari

Bischoff [7] serta Bischoff dan Somayasa [8]. Hasil penelitian menunjukkan bahwa

proses limit adalah sebuah proyeksi dari himpunan berindeks Brownian pada re-

produksi kernel Ruang Hilbert dari proses ini. Untuk memperoleh hal tersebut

didefinisikan proyeksi melalui integral Choquet [14, 15, 17] dari fungsi regresi ter-

hadap himpunan berindeks Brownian.

Kata kunci: Himpunan berindeks Brownian, himpunan berindeks proses jumlah

parsial, model regresi linear spasial, least-squares residual, integral Choquet.
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1. Introduction

Boundary detection problem (BDP) in spatial linear regression model (SLRM)
is commonly handled by investigating the partial sum process of the least-squares
residuals. The existence of the boundary is detected by conducting a nonparamet-
ric test based on the limit of the processes as for instance a test of Kolmogorov,
Kolmogorov-Smirnov and Cramér-von Mises types. This technique can also be used
to conduct model-check concerning the correctness of the assumed SLRM. MacNeill
and Jandhyala [13] studied this residual partial sums process (RPSP) in order to
detect the existence of a boundary in the experimental region, whereas in [8] it was
studied from the perspective of model-check in SLRM.

The study has been extended to the set-indexed RPSP. To explain the prob-
lem in detail, suppose that a regression model

Y (`/n, k/n) = g(`/n, k/n) + ε(`/n, k/n)

is observed under an experimental design given by a regular lattice

Ξn := {(`/n, k/n) : 1 ≤ `, k ≤ n}, n ≥ 1

on I := [0, 1]× [0, 1] ⊂ R2, where Y (`/n, k/n) and ε(`/n, k/n) are the observation
and the random error at the point (`/n, k/n), respectively and g is the unknown
regression function defined on I. Throughout this paper for any real-valued function
f on I, the matrix (f(`/n, k/n))n,nk=1,`=1 will be denoted by f(Ξn). So the whole

observation can be presented as Yn = g(Ξn) +En, where Yn := (Y`k)nk=1,`=1 is the

matrix of observations, and En := (ε`k)n,nk=1,`=1 is the matrix of independent and

identically distributed random errors with mean 0 and variance σ2, 0 < σ2 < ∞.
For a fixed n ≥ 1, let Wn := [f1(Ξn), . . . , fp(Ξn)] be a subspace of Rn×n generated
by f1(Ξn), . . . , fp(Ξn) , where f1, . . . , fp are known, linearly independent, real-
valued regression functions defined on I. Model-check for this SLRM concerns with
the question whether the hypothesis H0 : g(Ξn) ∈Wn is or is not supported by the
sample. Let PWn

and PW⊥
n

= Id−PWn
denote the orthogonal projector onto the

subspace Wn and onto the orthogonal complement W⊥
n of Wn with respect to the

Euclidean inner product 〈·, ·〉Rn×n on the Euclidean space of n× n matrices Rn×n,
defined by 〈A,B〉Rn×n := trace(A>B), A,B ∈ Rn×n. Analogous to the result in
Arnold [2], the corresponding matrix of least squares residuals of the observations
under H0 is given by

Rn := (r`k)n,nk=1,`=1 = PW⊥
n
Yn = PW⊥

n
En = En −PWnEn. (1)

The hypothesis mentioned above is commonly tested by using either the Cramér-
von Mises or Kolmogorov-Smirnov functional of the set-indexed RPSP

Zn :=

{
n∑
k=1

n∑
`=1

nr`kλI(B ∩ C`k) : B ∈ A

}
,

indexed by the Borel σ−algebra A over I, where λI is the corresponding Lebesgue
measure on A, and C`k is the half-open rectangle ((`−1)/n, `/n]× ((k−1)/n, k/n].
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Xie and MacNeill [18] established the limit process of the sequence (Zn)n≥1

by applying the method proposed by MacNeill [12]. Their result were presented as
a complicated function of the set-indexed Brownian sheet. The aim of this paper is
to derive the limit of the set-indexed RPSP by applying the geometrical approach of
[7, 8] which is different form that of [13, 18], see Section 2. By our consideration we
get the structure of the limit process as a projection of the set-indexed Brownian
sheet onto a certain subspace of its reproducing kernel Hilbert space (RKHS).
Under the alternative hypotheses we will observe localized nonparametric regression
models Yn = gloc(Ξn) + En, where gloc(Ξn) := 1

ng(Ξn). Several examples are
discussed in Section 3.

2. Main Results

Let C(A) be the space of bounded, real-valued set functions which are con-
tinuous on A in the symmetric difference pseudometric dλI

, see [1, 4, 10]. As
usual C(A) is furnished with the norm ‖ · ‖A, defined by ‖u‖A := supA∈A |u(A)|,
A ∈ C(A), and every function ν ∈ C(A) is further assumed to satisfies ν(∅) = 0. A
set-indexed partial sum operator is a linear operator Tn : Rn×n → C(A), such that
for every An := (a`k)n,nk=1,`=1 ∈ Rn×n, and B ∈ A,

Tn(An)(B) :=

n∑
k=1

n∑
`=1

na`kλI(B ∩ C`k), Tn(An)(∅) := 0.

Thus the set-indexed RPSP Zn is a stochastic process with sample path in C(A).

Theorem 2.1. (Alexander and Pyke [1]) If ((Xn)n≥1 is a sequence of random
matrices taking values in Rn×n, whose components are independent and identically
distributed random variables having mean zero and variance σ2, 0 < σ2 <∞, then

1

σ
Tn(Xn×n)

D−→ Z, in C(A), as n→∞,

where Z := {Z(A) : A ∈ A} is the set-indexed Brownian sheet, and ”
D−→” stands

for the convergence in distribution or weak convergence, see Billingsley [6].

By extending the result given in Berlinet and Agnan [5] and Lifshits [11] into
the set-indexed Brownian sheet, the corresponding RKHS of Z is

HZ :=

{
h : A → R| ∃f ∈ L2(λI) such that h(A) =

∫
A

f dλI , A ∈ A
}
,

where L2(λI) is the space of real-valued functions which are squared integrable on
I with respect to λI . In the sequel hf will always denote an absolutely continuous
set function on A with an L2(λI) density f . The space HZ is also a Hilbert space
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with respect to the inner product and the corresponding norm defined by

〈hf1 , hf2〉HZ
:=〈f1, f2〉L2

=

∫
I

f1f2 dλI , ∀hfi ∈ HZ , i = 1, 2,

‖hf‖2HZ
:= ‖f‖2L2

:=

∫
I

|f |2 dλI .

Let n ≥ 1 be fixed. For every An,Bn ∈ Rn×n, it holds Tn(An) ∈ HZ , and

〈An,Bn〉Rn×n = 〈Tn(An),Tn(Bn)〉HZ
. (2)

Eq. (2) can also be verified analogously as in the results in [7, 8]. In particular
for large enough n, Wn is isometric with WnHZ

:= Tn(Wn), where Tn(Wn) :=
[Tn(f1(Ξn)), . . . ,Tn(fp(Ξn))] ⊂ HZ . Hence by Eq. (1) and Eq. (2),

Tn(Rn) = Tn(PW⊥
n
En) = Tn(En)−PWnHZ

Tn(En). (3)

The basis of WnHZ
can also be constructed in the following manner. For i =

1, . . . , p, let s
(n)
i :=

∑n
k=1

∑n
`=1 fi(`/n, k/n)1C`k

be a step function on I, where 1C`k

is the indicator of the half-open rectangle C`k. Then by the preceding result the set
of absolutely continuous set functions {h

s
(n)
1
, . . . , h

s
(n)
p
} becomes a basis of WnHZ

,

because it satisfies the condition h
s
(n)
i

= 1
nTn(fi(Ξn)). Without loss of generality

we assume in the following that {f̃1, . . . , f̃p} and {s̃(n)
1 , . . . , s̃

(n)
p } are the Gram-

Schmidt orthonormal bases (ONB) of W and a subspace in L2(λI), respectively,

associated with {f1, . . . , fp} and {s(n)
1 , . . . , s

(n)
p }, respectively. Then by the defini-

tion {hf̃1 , . . . , hf̃p} and {h
s̃
(n)
1
, . . . , h

s̃
(n)
p
} are the associated Gram-Schmidt ONB of

WHZ
and WnHZ

, respectively. Hence the orthogonal projection of any set function
u ∈ HZ to WHZ

and WnHZ
, respectively with respect to these bases are repre-

sented by PWHZ
u =

∑p
i=1〈hf̃i , u〉HZ

hf̃i and PWnHZ
u =

∑p
i=1〈hs̃(n)

i
, u〉HZ

h
s̃
(n)
i

,

respectively. Furthermore, if fi is continuous on I, then
∥∥∥hs̃(n)

i
− hf̃i

∥∥∥
HZ

and∥∥∥hs̃(n)
i
− hf̃i

∥∥∥
A

converge to zero, as n→∞, by the fact
∥∥∥s̃(n)
i − f̃i

∥∥∥
∞

converges to

zero, as n→∞. A direct consequence of this results is that: if (un)n≥1 converges

to u in HZ , i.e. converges with respect to ‖·‖HZ
, then

∥∥∥PWnHZ
un −PWHZ

u
∥∥∥
A

converges to zero, as n→∞.

To be able to project Z, we extend the inner product 〈·, ·〉HZ
into a mapping

〈·, ·〉 defined on the space HZ × C(A), such that for every (hf , u) ∈ HZ × C(A),

〈hf , u〉 :=
∫ (C)

I
f du. The integral

∫ (C)

I
f du is the Choquet integral of f with

respect to u over I, defined by∫ (C)

B

f du :=

∫ ∞
0

u(B∩{f ≥ x}) dx+

∫ 0

−∞
[u(B∩{f ≥ x})−u(B)] dx, B ∈ A, (4)

where {f ≥ x} stands for the set {ω ∈ I : f(ω) ≥ x}. The integral on the right-
hand side of Eq. (4) is the usual Lebesgue integral. By the definition and by the
integration by parts, in case where u is a signed measure on A, the Choquet integral
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coincides with the Lebesgue integral [14, 15, 19]. Hence, if u ∈ HZ with the L2(λI)
density û, we get

〈hf , u〉 =

∫ (C)

I

f du =

∫
I

f du =

∫
I

fû dλI = 〈hf , u〉HZ
.

This means that PWnHZ
as well as PWHZ

are the restrictions of the set functions

P∗WnHZ
: C(A) → R and P∗WHZ

: C(A) → R, to HZ , respectively, where for

u ∈ C(A), P∗WnHZ
u =

∑p
i=1〈hs̃(n)

i
, u〉h

s̃
(n)
i

and P∗WHZ
u =

∑p
i=1〈hf̃i , u〉hf̃i . The

mapping P∗WHZ
is a continuous projections onto WHZ

in the sense of Definition

5.15 in [16], since they are linear, continuous, idempotent and surjective.

Theorem 2.2. Suppose that the regression functions f1, . . . , fp are continuous and
have bounded variation in the sense of Vitali [9] on I, then under H0 it holds

1

σ
Tn(Rn)

D−→ Zf̃ := Z −P∗WHZ
Z, in C(A), as n→∞,

where for every B ∈ A, Zf̃ (B) = Z(B)−
∑p
i=1〈hf̃i , Z〉hf̃i(B).

Proof. Let (un)n≥1 be a sequence in C(A) such that ‖un − u‖A → 0, as n→∞.

By the three angles inequality and by the fact
∥∥∥hs̃(n)

i

∥∥∥
A
≤ Mi, for some positive,

real number Mi, i = 1, . . . , p, we get∥∥∥P∗WnHZ
un −PW∗

HZ
u
∥∥∥
A

=

∥∥∥∥∥
p∑
i=1

〈h
s̃
(n)
i
, un〉hf̃(n)

i
−

p∑
i=1

〈hf̃i , u〉hf̃i

∥∥∥∥∥
A

≤
p∑
i=1

(∣∣∣〈hs̃(n)
i
, un − u〉

∣∣∣ ∥∥∥hs̃(n)
i

∥∥∥
A

+
∣∣∣〈hs̃(n)

i
, u〉 − 〈hf̃i , u〉

∣∣∣ ∥∥∥hs̃(n)
i

∥∥∥
A

+
∣∣∣〈hf̃i , u〉∣∣∣ ∥∥∥hs̃(n)

i
− hf̃i

∥∥∥
A

)
≤

p∑
i=1

(∣∣∣〈hs̃(n)
i
, un − u〉

∣∣∣Mi +
∣∣∣〈hs̃(n)

i
, u〉 − 〈hf̃i , u〉

∣∣∣Mi

+
∣∣∣〈hf̃i , u〉∣∣∣ ∥∥∥hs̃(n)

i
− hf̃i

∥∥∥
∞

)
. (5)

For every n ≥ 1, s̃
(n)
i is A− measurable and bounded by some positive, real number

Ni. Hence, we get∣∣∣〈hs̃(n)
i
, un − u〉

∣∣∣Mi ≤ 3Ni ‖un − u‖AMi → 0, as n→∞.

Next we consider the second term on the right-hand side of (5). Since s̃
(n)
i converges

uniformly to f̃i, the corresponding sequences of sets {s̃(n)
i ≥ t}, clearly converges

with respect to the symmetric difference metric dλI
to the set {fi ≥ t}, for every

t ∈ [−Ni, Ni]. Hence by the continuity of u on A, Fn converges to F , point-wise,

as n → ∞, where Fn(t) := u({s̃(n)
i ≥ t}) and F (t) := u({f̃i ≥ t}). Furthermore

we have |Fn(t)| ≤ ‖u‖A and |Fn(t)− u(I)| ≤ 2 ‖u‖A, for every n ≥ 1 and every
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t ∈ [−Ni, Ni], by the fact u is bounded by ‖u‖A on A. Hence, the Lebesgue
bounded convergence theorem [3] implies∣∣∣〈hs̃(n)

i
, u〉 − 〈hf̃i , u〉

∣∣∣Mi → 0, as n→∞.

For the last term we have∣∣∣〈hf̃i , u〉∣∣∣ ∥∥∥s̃(n)
i − f̃i

∥∥∥
∞
≤ 3 ‖u‖ANi

∥∥∥s̃(n)
i − f̃i

∥∥∥
∞
→ 0, as n→∞.

The combination of the preceding convergence result in
∥∥∥P∗WnHZ

un −PW∗
HZ
u
∥∥∥
A
→

0, as n → ∞. The proof of the theorem is complete by Eq. (3), Theorem 2.1 and
the mapping theorem of Rubyn in Bilingsley [6]. �

Theorem 2.3. The process Zf̃ is a centered Gaussian process with the covariance
function

KZf̃
(A,B) := Cov(Zf̃ (A), Zf̃ (B)), A,B ∈ A

= λI(A ∩B)− 2

p∑
i=1

hf̃i(A)hf̃i(B) +

p∑
i=1

p∑
j=1

hf̃i(A)Wijhf̃j (B),

where for 1 ≤ i, j ≤ p,

Wij :=

∫ ∞
0

∫ ∞
0

λI({f̃i ≥ s} ∩ {f̃j ≥ t}) dtds

+

∫ ∞
0

∫ 0

−∞
λI({f̃i ≥ s} ∩ {f̃j ≥ t}c) dtds

+

∫ 0

−∞

∫ ∞
0

λI({f̃i ≥ s}c ∩ {f̃j ≥ t}) dtds

+

∫ 0

−∞

∫ 0

−∞
λI({f̃i ≥ s}c ∩ {f̃j ≥ t}c) dtds.

Proof. By the bi-linearity of the covariance operator, for A,B ∈ A, we have

KZf̃
(A,B) := Cov(Zf̃ (A), Zf̃ (B))

= Cov(Z(A)−
p∑
i=1

〈hf̃i , Z〉hf̃i(A), Z(B)−
p∑
j=1

〈hf̃j , Z〉hf̃j (B))

= Cov(Z(A), Z(B))− Cov(Z(A),

p∑
j=1

〈hf̃j , Z〉hf̃j (B))

− Cov(

p∑
i=1

〈hf̃i , Z〉hf̃i(A), Z(B))

+ Cov(

p∑
i=1

〈hf̃i , Z〉hf̃i(A),

p∑
j=1

〈hf̃j , Z〉hf̃j (B)).
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Clearly Cov(Z(A), Z(B)) = λI(A ∩ B). The definition of the Choquet integral
gives

Cov(Z(A),

p∑
j=1

〈hf̃j , Z〉hf̃j (B))

=

p∑
j=1

Cov(Z(A),

∫ ∞
0

Z({f̃j ≥ t})dt−
∫ 0

−∞

[
Z({f̃j ≥ t})− Z(I)

]
dt)hf̃j (B)

=

p∑
j=1

(

∫ ∞
0

λI({f̃j ≥ t} ∩A)dt−
∫ 0

−∞

[
λI({f̃j ≥ t} ∩A)− λI(A)

]
dt)hf̃j (B)

=

p∑
j=1

(

∫ (C)

A

f̃j dλI)hf̃j (B) =

p∑
j=1

(

∫
A

f̃j dλI)hf̃j (B) =

p∑
j=1

hf̃j (A)hff̃j (B).

Analogously, we get

Cov(

p∑
i=1

〈hf̃i , Z〉hf̃i(A), Z(B)) =

p∑
i=1

hf̃i(A)hf̃i(B).

Furthermore, since Z({f̃i ≥ t}) − Z(I) = Z({f̃i ≥ t}c), then by the definition it
holds:

Wij := Cov(〈hf̃i , Z〉, 〈hf̃j , Z〉)

= Cov(

∫ ∞
0

Z({f̃i ≥ s})ds,
∫ ∞

0

Z({f̃j ≥ t})dt)

+ Cov(

∫ ∞
0

Z({f̃i ≥ s})ds,
∫ 0

−∞
Z({f̃j ≥ t}c)dt)

+ Cov(

∫ 0

−∞
Z({f̃i ≥ s}c)ds,

∫ ∞
0

Z({f̃j ≥ t})dt)

+ Cov(

∫ 0

−∞
Z({f̃i ≥ s}c)ds,

∫ 0

−∞
Z({f̃j ≥ t}c)dt)

=

∫ ∞
0

∫ ∞
0

λI({f̃i ≥ s} ∩ {f̃j ≥ t}) dtds

+

∫ ∞
0

∫ 0

−∞
λI({f̃i ≥ s} ∩ {f̃j ≥ t}c) dtds

+

∫ 0

−∞

∫ ∞
0

λI({f̃i ≥ s}c ∩ {f̃j ≥ t}) dtds

+

∫ 0

−∞

∫ 0

−∞
λI({f̃i ≥ s}c ∩ {f̃j ≥ t}c) dtds.
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Hence,

Cov(

p∑
i=1

〈hf̃i , Z〉hf̃i(A),

p∑
j=1

〈hf̃j , Z〉hf̃j (B)) =

p∑
i=1

p∑
i=j

hf̃i(A)Wijhf̃j (B).

By combining all of these results we get the covariance function of Zf as stated in
the theorem. �

Now let us consider the local alternatives H1 : Yn = gloc(Ξn) + En. The
set-index RPSP of the observation under H1 is

Tn(Rn) = Tn(gloc(Ξn))−PWnHZ
Tn(gloc(Ξn)) + Tn(En)−Tn(PWnEn).

If g is a continuous and has bounded variation in the sense of Vitaly on I, then
Tn(gloc(Ξn)) converges to hg uniformly. Consequently by the analogous argument
as in the proof of Theorem 2.2 we get PWnHZ

Tn(glocΞn
) converges to PWHZ

hg
uniformly. Thus by combining this result and Theorem 2.2 we obtain the following
corollary.

Corollary 2.4. Suppose that the regression functions f1, . . . , fp are continuous
and have bounded variations in the sense of Vitali on I. If g has bounded variation
in the sense of Vitali and is continuous on I, then under the local alternative
H1 : Yn = gloc(Ξn) + En it holds

1

σ
Tn(Rn)

D−→ 1

σ
ϕg + Zf̃ , as n→∞,

where ϕg := hg −PWHZ
hg ∈ HZ .

Remark 2.5. Without loss of generality the variance σ2 can be assumed to be
known, since otherwise, without altering the asymptotic results, σ2 can be replaced
by a consistent estimator for σ2. As for an example we can consider σ̂2 :=
‖Rn‖2Rn×n /(n2 − p) which converges to σ2 in probability, see [2]. The result in
this paper can be directly extended to the d− dimensional unit cube.

3. Examples

Example 3.1. As a first example let us consider the situation for which the model
is a zero model Yn = En. The regression function involved in this model is only
zero function. Hence the limit process of the set-indexed RPSP associated to this
model is Z.

Example 3.2. For the second example we consider a constant regression model
taking the form Yn = β + En, where β is an unknown parameter. The only one
regression function involved is f̃1(t, s) = 1, (t, s) ∈ I, which results hf̃1(A) = λI(A),
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A ∈ A, and∫ (C)

I

f̃1dZ =

∫ ∞
0

Z({f̃1 ≥ x})dx+

∫ 0

−∞
[Z({f̃1 ≥ x})− Z(I)]dx

=

∫ 1

0

Z(I)dx+

∫ ∞
1

Z(∅)dx+

∫ 0

−∞
[Z(I)− Z(I)]dx

=

∫ 1

0

Z(I)dx = Z(I),

by the fact Z(∅) = 0, almost surely. Hence, the associated limit process is given by
Zf̃1

(A) := Z(A)−Z(I)λI(A), for A ∈ A, which is the set-indexed Brownian bridge,

see also [18].

Example 3.3. Let us consider a first-order regression model as for the third ex-
ample which takes the form Yn =

∑3
i=1 βifi(Ξn) + En, where β1, β2, and β3 are

unknown parameters, and for (t, s) ∈ I, f1(t, s) = 1, f2(t, s) = t and f3(t, s) = s.

The Gram-Schmidt ONB of W associated to this model is f̃1(t, s) = 1, f̃2(t, s) =√
3(2t−1), and f̃3(t, s) =

√
3(2s−1), which satisfy −

√
3 ≤ f̃2, f̃3 ≤

√
3. By the last

Example we need only to calculate the Choquet integral of f̃2 and f̃3 with respect to
the sample path of Z. By the definition we have∫ (C)

I

f̃2dZ =

∫ √3

0

Z({f̃2 ≥ x})dx+

∫ ∞
√

3

Z({f̃2 ≥ x})dx

+

∫ 0

−
√

3

[Z({f̃2 ≥ x})− Z(I)]dx+

∫ −√3

−∞
[Z({f̃2 ≥ x})− Z(I)]dx

=

∫ √3

0

Z({f̃2 ≥ x})dx+

∫ ∞
√

3

Z(∅)dx

+

∫ 0

−
√

3

[Z({f̃2 ≥ x})− Z(I)]dx+

∫ −√3

−∞
[Z(I)− Z(I)]dx

=

∫ √3

0

Z({f̃2 ≥ x})dx+

∫ 0

−
√

3

[Z({f̃2 ≥ x})− Z(I)]dx.

Analogously,
∫ (C)

I
f̃3dZ =

∫√3

0
Z({f̃3 ≥ x})dx +

∫ 0

−
√

3
[Z({f̃3 ≥ x}) − Z(I)]dx.

Hence, the limit process is presented by

Zf̃2
(A) = Zf̃1

(A)−

(∫ √3

0

Z({f̃2 ≥ x})dx+

∫ 0

−
√

3

[Z({f̃2 ≥ x})− Z(I)]dx

)
hf̃2(A)

−

(∫ √3

0

Z({f̃3 ≥ x})dx+

∫ 0

−
√

3

[Z({f̃3 ≥ x})− Z(I)]dx

)
hf̃3(A).

Example 3.4. A Full second-order regression model is a model that has the form
Yn =

∑6
i=1 βifi(Ξn) + En, where for (t, s) ∈ I, f1(t, s) = 1, f2(t, s) = t, f3(t, s) =

s, f4(t, s) = t2, f5(t, s) = s2, and f6(t, s) = ts. The Gram-Schmidt ONB of W is
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then given by f̃1(t, s) = 1, f̃2(t, s) =
√

3(2t − 1), f̃3(t, s) =
√

3(2s − 1), f̃4(t, s) =√
5(6t2 − 6t + 1), f̃5(t, s) =

√
5(6s2 − 6s + 1), and f̃6(t, s) = 1

3 (4ts− 2t− 2s + 1).

Since the limit process of the model that only involves f̃1, f̃2, f̃3 is already calculated
in Example 3.3, we just need in the present one to calculate the Choquet integral of
f̃4, f̃5 and f̃6. We have −

√
5/2 ≤ f̃4, f̃5 ≤

√
5 and −1/3 ≤ f̃6 ≤ 1/3. Hence, by

the definition of Choquet integral, we get∫ (C)

I

f̃4dZ =

∫ √5

0

Z({f̃4 ≥ x})dx+

∫ 0

−
√

5/2

[Z({f̃4 ≥ x})− Z(I)]dx,

∫ (C)

I

f̃5dZ =

∫ √5

0

Z({f̃5 ≥ x})dx+

∫ 0

−
√

5/2

[Z({f̃5 ≥ x})− Z(I)]dx∫ (C)

I

f̃6dZ =

∫ 1/3

0

Z({f̃6 ≥ x})dx+

∫ 0

−1/3

[Z({f̃6 ≥ x})− Z(I)]dx

Consequently, the set-indexed residual partial sums limit process of this model is
then given by

Zf̃3
(A) := Zf̃2

(A)

−

(∫ √5

0

Z({f̃4 ≥ x})dx+

∫ 0

−
√

5/2

[Z({f̃4 ≥ x})− Z(I)]dx

)
hf̃4(A)

−

(∫ √5

0

Z({f̃5 ≥ x})dx+

∫ 0

−
√

5/2

[Z({f̃5 ≥ x})− Z(I)]dx

)
hf̃5(A)

−

(∫ 1/3

0

Z({f̃6 ≥ x})dx+

∫ 0

−1/3

[Z({f̃6 ≥ x})− Z(I)]dx

)
hf̃6(A).
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