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Abstract. A graph is said to be semisymmetric if its full automorphism group acts

transitively on its edge set but not on its vertex set. In this paper, we prove that

there is only one semisymmetric cubic graph of order 28p2, where p is a prime.
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Abstrak. Suatu graf dikatakan semisimetris jika grup automorfisma penuhnya bek-

erja secara transitif pada himpunan sisinya tapi tidak pada himpunan titiknya. Pada

paper ini, kami membuktikan bahwa terdapat hanya satu graf kubik semisimetris

dengan orde 28p2, dimana p adalah sebuah bilangan prima.

Kata kunci: Semisimetris, graf selimut, subgrup semireguler.

1. Introduction

Throughout this paper, graphs are assumed to be finite, simple, undirected
and connected. For the group-theoretic concepts and notations not defined here
we refer to [16, 20]. Given a graph X, we let V (X), E(X), A(X) and Aut(X)
(or A) be the vertex set, the edge set, the arc set and the full automorphism group
of X, respectively. For u, v ∈ V (X), we denote by {u, v} the edge incident to u
and v in X. If a subgroup G of Aut(X) acts transitively on V (X) and E(X), we
say that X is G-vertex-transitive and G-edge-transitive, respectively. In the spe-
cial case when G =Aut(X) we say that X is vertex-transitive and edge-transitive,
respectively. It can be shown that a G-edge-transitive but not G-vertex-transitive
graph X is necessarily bipartite, where the two parts of the bipartition are orbits of
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G ≤Aut(X). Moreover, if X is regular then these two parts have the same cardinal-
ity. A regular G-edge-transitive but not G-vertex-transitive graph will be referred
to as a G-semisymmetric graph. In particular, if G =Aut(X) the graph is said to be
semisymmetric. We denote by K4, F28 and S112, the symmetric cubic complete
graph of order 4, the symmetric cubic graph of order 28 and the semisymmetric
cubic graph of order 112, which is Z3

2 -covering graph of the symmetric cubic graph
F14 (the Heawood graph) of order 14, respectively (for more details see [3, 4]). Let
X be a graph and let N be a subgroup of Aut(X). For u ∈ V (X) denote by NX(u)
the set of vertices adjacent to u in X. The quotient graph X/N or XN induced by
N is defined as the graph such that the set Σ of N -orbits in V (X) is the vertex set
of X/N and B,C ∈ Σ are adjacent if and only if there exist u ∈ B and v ∈ C such
that {u, v} ∈ E(X).

A graph X̃ is called a covering of a graph X with projection ℘ : X̃ → X if
there exists a surjection ℘ : V (X̃) → V (X) such that ℘|N

X̃
(ṽ) : NX̃(ṽ) → NX(v)

is a bijection for any vertex v ∈ V (X) and ṽ ∈ ℘−1(v). A covering graph X̃ of X
with a projection ℘ is said to be regular (or K-covering) if there is a semiregular
subgroup K of the automorphism group Aut(X̃) such that graph X is isomorphic
to the quotient graph X̃/K, say by h, and the quotient map X̃ → X̃/K is the
composition ℘h of ℘ and h. The fibre of an edge or a vertex is its preimage under
℘. The group of automorphisms of which maps every fibre to itself is called the
covering transformation subgroup of Aut(X̃).

Let X be a graph and let K be a finite group. By a−1 we mean the reverse
arc to an arc a. A voltage assignment (or, K-voltage assignment) of X is a function
φ : A(X) → K with the property that φ(a−1) = φ(a)−1 for each arc a ∈ A(X).
The values of φ are called voltages, and K is the voltage group. The graph X ×φK
derived from a voltage assignment φ : A(X)→ K has vertex set V (X)×K and edge
set E(X)×K, so that an edge (e, g) of X ×φ K joins a vertex (u, g) to (v, φ(a)g)
for a = (u, v) ∈ A(X) and g ∈ K, where e = {u, v}. Clearly, the derived graph
X ×φ K is a covering of X with the first coordinate projection ℘ : X ×φ K → X,
which is called the natural projection. By defining (u, g

′
)g = (u, g

′
g) for any g ∈ K

and (u, g
′
) ∈ V (X ×φ K), K becomes a subgroup of Aut(X ×φ K) which acts

semiregularly on V (X ×φ K). Therefore, X ×φ K can be viewed as a K-covering.
Conversely, each regular covering X̃ of X with a covering transformation group K
can be derived from a K-voltage assignment.

Covering techniques have long been known as a powerful tool in topology and
graph theory. Regular covering of a graph is currently an active topic in algebraic
graph theory. Some general methods of elementary abelian coverings were devel-
oped in [6, 13, 14], which are useful tools for investigation of semisymmetric and
symmetric graphs. The class of semisymmetric graphs was introduced by Folkman
[8]. He constructed several infinite families of such graphs and posed eight open
problems. Afterwards, Bouwer [2], Titov [18], Klin [11], Iofinova and Ivanov A.A
[9], Ivanov A.V [10], Du and Xu [7] and others did much work on semisymmetric
graphs. They gave new constructions of such graphs by combinatorial and group-
theoretical methods. By now, the answers to most of Folkman’s open problems are
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known. By using the covering technique, cubic semisymmetric graphs of order 6p2,
8p2 and 2p3 were classified in [12, 1, 15], respectively.

The next proposition is a special case of [19, proposition 2.5].
Proposition 2.1. Let X be a G-semisymmetric cubic graph with bipartition sets
U(X) and W (X), where G ≤ A := Aut(X). Moreover, suppose that N is a normal
subgroup of G. Then,
(1) If N is intransitive on bipartition sets, then N acts semiregularly on both U(X)
and W (X), and X is a regular N -covering of G/N -semisymmetric graph XN .
(2) If 3 dose not divide |A/N |, then N is semisymmetric on X.

Proposition 2.2. [15, Proposition 2.4]. The vertex stabilizers of a connected
G-semisymmetric cubic graph X have order 2r · 3, where 0 ≤ r ≤ 7. Moreover, if
u and v are two adjacent vertices, then the edge stabilizer Gu ∩ Gv is a common
Sylow 2-subgroup of Gu and Gv.

Proposition 2.3. [16, pp.236]. Let G be a finite group and let p be a prime.
If G has an abelian Sylow p-subgroup, then p does not divide |G′

⋂
Z(G)|.

Proposition 2.4. [20, Proposition 4.4]. Every transitive abelian group G on a
set Ω is regular and the centralizer of G in the symmetric group on Ω is G.

2. Main Result

Theorem 2.1. Let p be a prime. Then, the graph S112 is the only semisymmetric
cubic graph of order 28p2.
Proof. Let X be a cubic semisymmetric graph of order 28p2. If p < 7, then
by [3] there is only one cubic semisymmetric graph S112 of order 28p2, in which
p = 2. Hence, we can assume that p ≥ 7. Set A := Aut(X). By Proposition 2.2,
|Av| = 2r · 3, where 0 ≤ r ≤ 7 and hence |A| = 2r+1 · 3 · 7 · p2. Let Q = Op(A) be
the maximal normal p-subgroup of A. We first show that Q 6= 1 and |Q| 6= p as
follows.

Let N be a minimal normal subgroup of A. Thus, N ∼= T ×T ×· · ·×T = T k,
where T is a simple group. Let N be unsolvable. By [5], T is isomorphic to
PSL(2, 7) or PSL(2, 13) of orders 23 · 3 · 7 and 22 · 3 · 7 · 13, respectively. Note that
32 - |N |, forcing k = 1. Then, 3 dose not divide |A/N | and hence by Proposition 2.1,
N is semisymmetric on X. Consequently, 14p2 | |N | , a contradiction. Therefore,
N is solvable and so elementary abelian. It follows that N acts intransitively on
bipartition sets of X and by Proposition 2.1, it is semiregular on each partition.
Hence, |N | | 14p2.

Suppose first that Q = 1. It implies two cases, N ∼= Z2 and N ∼= Z7 and we
get a contradiction in each case as follows.
case (I): N ∼= Z2.
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By Proposition 2.1, XN is a cubic A/N -semisymmetric graph of order 14p2. Let
T/N be a minimal normal subgroup of A/N . If T/N is unsolvable then by a
similar argument as above T/N is isomorphic to PSL(2, 7) or PSL(2, 13) and so
|T | = 24 ·3·7 or |T | = 23 ·3·7·13, respectively. However, 3 dose not divide |A/T | and
by Proposition 2.1, T is semisymmetric on X, a contradiction because 14p2 - |T |
where p ≥ 7. Hence, T/N is solvable and so elementary abelian. Therefore, T/N
acts intransitively on bipartition sets of XN and by Proposition 2.1, it is semiregular
on each partition, which force |T/N | | 7p2.

If |T/N | = pi (i = 1, 2), then |T | = 2pi and so the Sylow p-subgroup of
T is characteristic and consequently normal in A. It contradicts our assumption
that Q = 1. Hence, |T/N | = 7 and so |T | = 14. Thus, T acts intransitively on
bipartition sets of X and by Proposition 2.1, XT is a cubic A/T -semisymmetric
graph of order 2p2. Let K/T be a minimal normal subgroup of A/T . One can see
that K/T is solvable and so elementary abelian. If K/T acts transitively on one
partition of XT then by Proposition 2.4, |K/T | = p2 and hence |K| = 14p2. Thus
K has a normal subgroup of order 7p2, say H. Since p ≥ 7, the Sylow p-subgroup
of H is characteristic in K and consequently normal in A, a contrary to the fact
that Q = 1. Therefore, K/T acts intransitively on bipartition sets of XT and by
Proposition 2.1, |K/T | = pi (i = 1, 2). Again, one can show that A has a normal
p-subgroup, a contradiction.
case (II): N ∼= Z7.
Consequently, by Proposition 2.1, XN is a cubic A/N -semisymmetric graph of order
4p2. Let L/N be a minimal normal subgroup of A/N . By a similar argument as
case (I), L/N is solvable and so elementary abelian. If L/N acts transitively on one
partition of XN , then by Proposition 2.4 |L/N | = 2p2, a contradiction. Therefore,
L/N acts intransitively on bipartition sets of XN and by Proposition 2.1, it is
semiregular on each partition, which force |L/N | | 2p2. If |L/N | = 2 then |L| = 14,
a contradiction (see case (I)). Hence, |L/N | = pi (i = 1, 2) and so |L| = 7pi. Again,
A has a normal p-subgroup, a contradiction.

We now suppose that |Q| = p and we show it is impossible. Set C := CA(Q)
the centralizer of Q in A. Let P be a Sylow p-subgroup of A. Clearly, Q < P and
also P ≤ C because P is abelian. Thus, p2 | |C|. If p2 | |C ′| (C ′ is the derived
subgroup of C) then Q ≤ C ′ and hence p | |C ′

⋂
Q|, a contradiction by Proposition

2.3, because Q ≤ Z(C). Consequently, p2 - |C ′| and so C ′ acts intransitively
on bipartition sets of X. Then by Proposition 2.1, it is semiregular and hence
|C ′| | 14p2. Let K/C ′ be a Sylow p-subgroup of C/C ′. Since C/C ′ is abelian,
K/C ′ is characteristic and hence normal in A/C ′, implying that K � A. Note
that p2 | |K| and |K| | 14p2. If |K| = tp2 < 14p2, where t | 14 then the Sylow
p-subgroup of K is characteristic in C and also in A, because K �C and C �A. If
|K| = 14p2,then the Sylow p-subgroup of A is normal as case (I), which contradicts
our assumption that |Q| = p.

Therefore it is clear when p > 7, |Q| = p2. Then, by Proposition 2.1 the
semisymmetric grah X is a regular Q-covering of A/Q-semisymmetric graph XQ

and so XQ is an edge-transitive bipartite cubic graph of order 28. But by [3,4] the
only edge-transitive cubic graph of order 28 is the symmetric graph F28, which is
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not bipartite, a contradiction. Suppose that p = 7. Thus, |Q| = 72 or |Q| = 73. If
|Q| = 72, we get the same contradiction as above. Let |Q| = 73. By Proposition 2.1,
the semisymmetric grah X is a regular Q-covering of A/Q-semisymmetric graph
XQ and so XQ is an edge-transitive bipartite cubic graph of order 4. But by [3,4]
the only edge-transitive cubic graph of order 4 is the symmetric graph K4, which
is not bipartite, a contradiction. Hence, the result now follows. 2
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