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Abstract. The Ramsey number for a graph G versus a graph H, denoted by

R(G, H), is the smallest positive integer n such that for any graph F of order n,

either F contains G as a subgraph or F contains H as a subgraph. In this paper,

we investigate the Ramsey numbers for union of stars versus small cycle and small

wheel. We show that if ni ≥ 3 for i = 1, 2, . . . , k and ni ≥ ni+1 ≥
√

ni − 2, then

R(
⋃k

i=1 S1+ni , C4) =
∑k

i=1 ni + k + 1 for k ≥ 2. Furthermore, we show that if ni

is odd and 2ni+1 ≥ ni for every i, then R(
⋃k

i=1 Sni , W4) = R(Snk , W4) +
∑k−1

i=1 ni

for k ≥ 1.
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Abstrak. Bilangan Ramsey untuk graf G terhadap graf H, dinotasikan oleh

R(G, H), yakni bilangan bulat terkecil n sehingga sembarang graf F berorde n,

memenuhi F memuat G sebagai suatu subgraf atau F memuat H sebagai suatu

subgraf. Dalam makalah ini, dikaji bilangan Ramsey untuk gabungan saling lepas

bintang terhadap siklus berorde empat dan roda berorde lima. Kita akan menun-

jukkan bahwa apabila ni ≥ 3, i = 1, 2, . . . , k dan ni ≥ ni+1 ≥
√

ni − 2, maka

R(
⋃k

i=1 S1+ni , C4) =
∑k

i=1 ni + k + 1 untuk k ≥ 2. Selanjutnya, ditunjukkan

bahwa jika ni ganjil dan 2ni+1 ≥ ni untuk setiap i, maka R(
⋃k

i=1 Sni , W4) =

R(Snk , W4) +
∑k−1

i=1 ni dengan k ≥ 1.

Kata kunci: Bilangan Ramsey, siklus, roda.

1. Introduction

For given graphs G and H, the Ramsey number R(G,H) is defined as the
smallest positive integer n such that for any graph F of order n, either F contains
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G or F contains H, where F is the complement of F . Chvátal and Harary [4]
established a useful lower bound for finding the exact Ramsey numbers R(G,H),
namely R(G,H) ≥ (χ(G)− 1)(C(H)− 1) + 1, where χ(G) is the chromatic number
of G and C(H) is the number of vertices of the largest component of H. We
present some notations used in this note. Let G be any graph with the vertex set
V (G) and the edge set E(G). The order of G, denoted by |G|, is the number of
its vertices. The graph G, the complement of G, is obtained from the complete
graph on |V (G)| vertices by deleting the edges of G. A graph F = (V ′, E′) is a
subgraph of G if V ′ ⊆ V (G) and E′ ⊆ E(G). For S ⊆ V (G), G[S] represents
the subgraph induced by S in G. If G is a graph and H is a subgraph of G, then
denote G[V (G)\V (H)] by G\H. For v ∈ V (G) and S ⊂ V (G), the neighborhood
NS(v) is the set of vertices in S which are adjacent to v. Furthermore, we define
NS [v] = NS(v)∪{v}. If S = V (G), then we use N(v) and N [v] instead of NV (G)(v)
and NV (G)[v], respectively. The degree of a vertex v in G is denoted by dG(v).
Let Sn be a star on n vertices and Cm be a cycle on m vertices. We denote the
complete bipartite whose partite sets are of order n and p by Kn,p.

Since then the Ramsey numbers R(G,H) for many combinations of graphs G
and H have been extensively studied by various authours, see a nice survey paper
[8]. In particular, the Ramsey numbers for combinations involving union of stars
have also been investigated. Let Sn be a star of n vertices and Wm a wheel with
m spokes.

For a combination of stars with wheels, Surahmat et al. [9] determined the
Ramsey numbers for large stars versus small wheels. Their result is as follows.

Theorem A. (Surahmat and E. T. Baskoro, [9]) For n ≥ 3,

R(Sn,W4) =
{

2n+ 1, if n is even,
2n− 1, if n is odd.

Parsons in [7] considered about the Ramsey numbers for stars versus cycles
as presented in Theorem .

Theorem B. (Parsons’s upper bound, [7]) For p ≥ 2, R(S1+p, C4) ≤ p+
√
p+ 1.

Hasmawati et al. in [6] and [5] proved that R(S6, C4) = 8, and R(S6,K2,m) = 13
for m = 5 or 6 respectively.

Let G be a graph. The number of vertices in a maximum independent set of
G denoted by α0(G), and the union of s vertices-disjoint copies of G denoted by
sG . S. A. Burr et al. in [3], showed that if the graph G has n1 vertices and the
graph H has n2 vertices, then



Ramsey Numbers for Stars 135

n1s+ n2t−D ≤ R(sG, tH) ≤ n1s+ n2t−D + k,

where D = min{sα0(G), tα0(H)} and k is a constant depending only on G and H.
Recently, Baskoro et al. in [1] determined the Ramsey numbers for multiple copies
of a star versus a wheel. Their results are given in the next theorem.

Theorem C. [1] For n ≥ 3,

R(kSn,W4) =
{

(k + 1)n, if n is even and k ≥ 2,
(k + 1)n− 1, if n is odd and k ≥ 1.

2. Main Results

In this paper, we study the Ramsey numbers for disjoint union of stars versus
small cycle and small wheel. The results are presented in the next two theorems.
Before present these theorems let us present the lemma as follow.

Lemma 2.1. For k ≥ 2 and ni ≥ 3 for every i,

R(
k⋃

i=1

Sni+1, C4) ≥
k∑

i=1

ni + k + 1.

Proof. Let ni ≥ 3 for every i and k ≥ 2. Consider F ∼= K∑k
i=1(ni+1)−1 ∪ K1.

Graph F has
∑k

i=1 ni + k vertices, however it contains no
⋃k

i=1 S1+ni . It is easy
to see that F is isomorphic with K1,

∑k
i=1(ni+1)−1. So, F contains no C4. Hence,

R(
⋃k

i=1 S1+ni
, C4) ≥

∑k
i=1(ni + 1) + 1. �

Theorem 2.2. Let ni ≥ 3 for i = 1, 2, . . . , k. If ni ≥ ni+1 ≥
√
ni − 2, then

R(
⋃k

i=1 S1+ni
, C4) =

∑k
i=1 ni + k + 1 for k ≥ 2.

Proof. For k = 2, we show that R(S1+n2 ∪ S1+n2 , C4) = n1 + n2 + 3. Let F1 be
a graph of order n1 + n2 + 3 for n1, n2 ≥ 3. Suppose F 1 contains no C4. Since
n2 + 2 ≥

√
n1, then |F1| ≥ n1 +

√
n1 + 1. By Parsons’s upper bound, we have

|F1| ≥ R(S1+n1 , C4) for n1 ≥ 3. Thus F1 ⊇ S1+n1 .
Let V (S1+n1) = {v0, . . . , vn1} with center v0. Write T = F1\S1+n1 . Thus |T | =
n2 + 2. If there exists v ∈ T with dT (v) ≥ n2, then T contains S1+n2 . Hence
F1 contains S1+n2 ∪ S1+n2 . Therefore, we assume that for every vertex v ∈ T ,
dT (v) ≤ (n2 − 1).

Let u be any vertex in T . Write Q = T\NT [u]. Clearly, |Q| ≥ 2. Observe that if
there exists s ∈ F1 where s 6= u which is not adjacent to at least two vertices in Q,
then F1[{s, u} ∪ Q] will contains C4, a contradiction. Hence, for the remaining of
the proof we will use the following assumption.
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Assumption 1. Every vertex s ∈ F1, s 6= u is not adjacent to at most one vertex in
Q.

Let u be adjacent to at least n2 − |NT (u)| vertices in S1+n1 − v0, call them
v1, . . . , vn2−|NT (u)|. Observe that n2− |NT (u)| = |Q| − 1. By Assumption 1, vertex
v0 is adjacent to at least |Q|− 1 vertices in Q, namely q1, . . . , qn2−|NT (u)|. Then we
have two new complete bipartite graphs, namely S′1+n1

and S1+n2 , where

V (S′1+n1
) = (S1+n1\{v1, . . . , vn2−|NT (u)|}) ∪ {q1, . . . , qn2−|NT (u)|}

with v0 as the center and

V (S1+n2) = NT [u] ∪ {v1, . . . , vn2−|NT (u)|}

with u as the center. Hence, we have F1 ⊇ S1+n2 ∪ S1+n2 .

Now, we assume that u is adjacent to at most n2−|NT (u)|−1 vertices in S1+n1−v0.
This means u is not adjacent to at least |NT (u)| + 1 vertices in S1+n1 − v0. Let
Y = {y ∈ S1+n1 − v0 : yu /∈ E(F1)}. Then |Y | ≥ |NT (u)|+ 1 ≥ 1.

Suppose for every y ∈ Y , there exists r ∈ NT (u) such that yr /∈ E(F1). Since
|NT (u)| < |Y |, then there exists r0 ∈ NT (u) so that r0 is not adjacent to at least two
vertices in Y , say y1 and y2. This implies, F1[u, r0, y1, y2] forms a C4, a contradic-
tion. Hence, there exists y′ ∈ Y so that y′ is adjacent to all vertices in NT (u). Fur-
thermore, by Assumption 1 we have that |NT (y′)| ≥ |NT (u)|+|Q|−1 = |T |−2 = n2.

Let q′ be the vertex in Q which is not adjacent with y′. If v0u /∈ E(F1), then
v0 must be adjacent to q′. (Otherwise F would contain C4 formed by {v0, y′, q′, u}).
Now we have two new stars, namely S1

1+n1
and S2

1+n2
, where V (S1

1+n1
) = NT [y′]

with y′ as the center and V (S2
1+n2

) = (S1+n1\{y′}) ∪ {q′}. If v0u ∈ E(F1), then
we also have two new stars. The first one is S1

1+n1
as in the previous case and the

second one is S3
1+n2

where V (S3
1+n2

) = (S1+n1\{y′}) ∪ {u} with v0 as the center.
In case that y′ is adjacent with all vertices in Q and v0u /∈ E(F1), then the second
star is S4

1+n2
where V (S4

1+n2
) = (S1+n1\{y′}) ∪ {q}, q ∈ Q with v0 as the center.

The fact that v0q ∈ E(F1) is guaranteed by Assumption 1.

Therefore, we have F1 ⊇ S1+n2 ∪ S1+n2 . Thus R(S1+n2 ∪ S1+n2 , C4) ≤
n1 + n2 + 3. By Lemma 2.1 we have R(S1+n2 ∪ S1+n2 , C4) = n1 + n2 + 3.

We assume the theorem holds for every 2 ≤ r < k. Let F2 be a graph of order∑k
i=1 ni + k+ 1. Suppose F 2 contains no C4. We will show that F2 ⊇

⋃k
i=1 S1+ni

.
By induction hypothesis, F2 ⊇

⋃k−1
i=1 S1+ni

. Write B = F2\
⋃k−2

i=1 S1+ni
and T ′ =

F2[B]. Thus |T ′| = nk−1 + nk + 3. Since T
′

contains no C4 and its follows from
the case k = 2 that T ′ contains S1+nk−1 ∪ S1+nk

. Hence F2 contains
⋃k

i=1 S1+ni
.
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Thus we have R(
⋃k

i=1 S1+ni
, C4) ≤

⋃k
i=1 ni + k + 1. On the other hand, we have

R(
⋃k

i=1 S1+ni
, C4) ≥

∑k
i=1 ni + k + 1 (by Lemma 2.1). The assertion follows. �

Theorem 2.3. Let ni be natural number for i = 1, 2, . . . , k and ni ≥ ni+1 ≥ 3
for every i. If ni is odd and 2ni+1 ≥ ni for every i, then R(

⋃k
i=1 Sni

,W4) =
R(Snk

,W4) +
∑k−1

i=1 ni for k ≥ 1.

Proof. Let ni be odd and 2ni+1 ≥ ni for every i. Consider F ∼= K−1+
∑k

i=1 ni
∪

Knk−1. Clearly, the graph F has order −2 + 2nk +
∑k−1

i=1 ni, without containing∑k
i=1 Sni

and F contains no W4. Hence,

R(
k⋃

i=1

Sni
,W4) ≥ −1 + 2nk +

k−1∑
i=1

ni.

To obtain the Ramsey number we use an induction on k. For k = 1, we have
R(Sn1 ,W4) = 2n1−1 (by Theorem 1). For k = 2, we show that R(Sn1∪Sn2 ,W4) =
2n2 − 1 + n1= R(Sn2 ,W4) + n1.

Let F1 be a graph with |F1| = 2n2 − 1 + n1 = 2n1 − 1 + 2n2 − n1. Assume
that F 1 contains no W4. We show that F1 contains Sn1 ∪ Sn2 . Since 2n2 ≥ n1,
then |F1| ≥ 2n1 − 1. By Theorem 1, F1 contains Sn1 . Write L = F1\Sn1 . Thus
|L| = 2n2 − 1, such that L contains Sn2 . Hence, F1 contains Sn1 ∪ Sn2 . Therefore,
R(Sn1 ∪ Sn2 ,W4) ≤ 2n2 − 1 + n1.

Suppose the theorem holds for every r < k. Let F2 be a graph of order
−1 + 2nk +

∑k−1
i=1 ni. Suppose F2 contains no W4. By the assumption, F2 contains⋃k−1

i=1 Sni
. Let L′ = F2\

⋃k−1
i=1 Sni

. Thus |L′| = 2nk − 1. Since L′ contains no W4,
then by Theorem 1, L′ ⊃ Snk

. Hence, F2 contains
⋃k

i=1 Sni
. Therefore, we have

R(
k⋃

i=1

Sni
,W4) = −1 + 2nk +

k−1∑
i=1

ni = R(Snk
,W4) +

k−1∑
i=1

ni.

�
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