
J. Indones. Math. Soc.
Vol. 23, No. 2 (2017), pp. 21–31.

BOUNDS ON ENERGY AND LAPLACIAN ENERGY OF
GRAPHS

Sridhara G 1,2, M.R.Rajesh kanna 3,4

1,3Post Graduate Department of Mathematics,
Maharani’s Science College for Women,
J. L. B. Road, Mysore - 570 005, India.

2Research Scholar, Research and Development Centre,
Bharathiar University, Coimbatore 641 046, India

srsrig@gmail.com
4 Government First Grade College, Bettampady, Puttur,D.K, India

mr.rajeshkanna@gmail.com

Abstract. Let G be simple graph with n vertices and m edges. The energy E(G)

of G, denoted by E(G), is defined to be the sum of the absolute values of the

eigenvalues of G. In this paper, we present two new upper bounds for energy of

a graph, one in terms of m,n and another in terms of largest absolute eigenvalue

and the smallest absolute eigenvalue. The paper also contains upper bounds for

Laplacian energy of graph.

Key words and Phrases: Adjacency matrix, Laplacian matrix, Energy of graph,

Laplacian energy of graph.

Abstrak. Misalkan G adalah graf sederhana dengan n titik dan m sisi. Energi

E(G) dari G, dinotasikan dengan E(G), didefinisikan sebagai jumlahan dari nilai

mutlak dari nilai-nilai eigen G. Pada paper ini, kami menyatakan dua batas atas

baru untuk energi dari graf, satu batas dalam suku m, n dan batas yang lain dalam

suku nilai eigen mutlak terbesar dan terkecil. Paper ini juga memuat batas atas

untuk energi Laplace dari graf.

Kata kunci: Matriks ketetanggaan, matriks Laplace, energi dari graf, energi Laplace

dari graf.
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1. Introduction

The concept of energy of a graph was introduced by I. Gutman [6] in the year
1978. Let G be a graph with n vertices {v1, v2, ..., vn} and m edges and A = (aij)
be the adjacency matrix of the graph. The eigenvalues λ1, λ2, · · · , λn of A, assumed
in non increasing order, are the eigenvalues of the graph G. The energy E(G) of G
is defined to be the sum of the absolute values of the eigenvalues of G. i.e.,E(G) =
n∑

i=1

|λi|. For details on the mathematical aspects of the theory of graph energy see

the papers [2, 3, 8] and the references cited there in. The basic properties including
various upper and lower bounds for energy of a graph have been established in [10]
and it has found remarkable chemical applications in the molecular orbital theory
of conjugated molecules [5, 9]. The bounds for eigenvalues of graph can be found
in [1,13].

Definition 1.1. Let G be a graph with n vertices and m edges. The Laplacian
matrix of the graph G, denoted by L = (Lij), is a square matrix of order n whose
elements are defined as

Lij =

 −1 if vi and vj are adjacent
0 if vi and vj are not adjacent
di if i = j

where di is the degree of the vertex vi.
Eigenvalues of L is called eigenvalues of G.

Definition 1.2. Let µ1, µ2, · · · , µn be the Laplacian eigenvalues of G. Laplacian

energy LE(G) of G is defined as LE(G) =

n∑
i=1

∣∣∣µi −
2m

n

∣∣∣.
The matrix L is positive semi-definite and therefore its eigenvalues are non-

negative. The least eigenvalue is always equal to zero. The second largest eigenvalue
is called the algebraic connectivity of G. The basic properties including various up-
per and lower bounds for Laplacian energy have been established in [7, 11, 12, 13].

2. Main Results

2.1. Energy of graph. We denote the decreasing order of the the absolute value
of eigenvalues of G by ρ1 ≥ ρ2 ≥ ... ≥ ρn. The following are the elementary results
that follows from this notation.
(1) ρi =| λk | for some k
(2) ρi ≥ λi for all i

(3) E(G) =

n∑
i=1

ρi
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(4) ρn ≤
n∑

i=1

ρi = E(G)

(5) By Cauchy-Schwarz inequality( n∑
i=1

λiρi

)2
≤
( n∑
i=1

ρ2i

)( n∑
i=1

λ2i

)
n∑

i=1

λiρi ≤
√

(2m)(2m)

Therefore

n∑
i=1

λiρi ≤ 2m, equality holds if ρi = λi.

(6) Let G and H be any two graphs with same n vertices each. Let their number

of edges be respectively m1 and m2. If ρ1 ≥ ρ2 ≥ ... ≥ ρn and ρ
′

1 ≥ ρ
′

2 ≥ ... ≥ ρ
′

n

are their the absolute value of eigenvalues then

n∑
i=1

ρiρ
′

i ≤

√√√√( n∑
i=1

ρ2i

)( n∑
i=1

ρ2i

)
≤
√

(2m1)(2m2)

∴
n∑

i=1

ρiρ
′

i ≤ 2
√
m1m2

(7) Since λ1 is always positive, so ρ1 = λ1 ≥ 2m
n

(8) Since nρ2n ≤ ρ21 + ρ22 + ...+ ρ2n = 2m which implies ρn ≤
√

2m
n

Theorem 2.1. Let G be a graph with n vertices and m edges. Let ρ1 ≥ ρ2 ≥ ... ≥

ρn be the the absolute value of eigenvalues of G then ρn ≤
√

2m(n− 1)

n
.

Proof. We know that E(G) =

n∑
i=1

ρi and

n∑
i=1

ρ2i = 2m

Since ρn ≤ ρi ∀i ∴ ρn ≤
n−1∑
i=1

ρi

By Cauchy Schwarz inequality
(n−1∑

i=1

ρi

)2
≤

n−1∑
i=1

12
n−1∑
i=1

ρ2i

=(n− 1)

n−1∑
i=1

ρ2i

⇒
n−1∑
i=1

ρ2i ≥ 1
(n−1)

( n−1∑
i=1

ρi

)2
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2m− ρ2n ≥
1

(n− 1)

(n−1∑
i=1

ρi

)2
≥ 1

(n− 1)
ρ2n

⇒ ρn ≤
√

2m(n− 1)

n
which is an upper bound for the smallest absolute eigenvalue of the graph G �

Theorem 2.2. Let G be a graph with n vertices and m edges. Let ρ1 ≥ ρ2 ≥ ... ≥
ρn be the the absolute value of eigenvalues of G. If ρ1 is repeated k times then

ρ1 ≤
1

k(p− 1)

(√
2mkp(p− 1)−

kp∑
i=k+1

ρi

)
where kp ≤ n and p 6= 1, k 6= 0.

Proof. Let H =
(⋃

k

Kp

)
∪
(
Kn−kp

)c
where kp ≤ n

That is H is the union of graphs Kp, repeated k times and a graph (Kn−kp)c.

The number of vertices of H is n and the number of edges is
kp(p− 1)

2
.

Its the absolute value of eigenvalues spectrum is(
p− 1 1 0
k k(p− 1) (n− kp)

)
.

By Cauchy Schwarz inequality

ρ1(p−1)+...+ρk(p−1)+ρk+1(1)+...+ρkp(1)+ρkp+1(0)+...+ρn(0) ≤ 2
√
mkp(p−1)

2

But ρ1 = ρ2 = ... = ρk

∴ (p− 1)kρ1 +

kp∑
i=k+1

ρi ≤ 2

√
m
kp(p− 1)

2

ρ1 ≤
1

k(p− 1)

(√
2mkp(p− 1)−

kp∑
i=k+1

ρi

)
. Here (p 6= 1, k 6= 0)

�

Corollary 2.3. If kp = n, then by the above theorem

(n− k)ρ1 +

n∑
i=k+1

ρi ≤
√

2mn(n− k)

k

(n− k)ρ1 + E(G)− kρ1 ≤
√

2mn(n− k)

k
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(n− 2k)ρ1 + E(G) ≤
√

2mn(n− k)

k

E(G) ≤
√

2mn(n− k)

k
− (n− 2k)ρ1

Also if p = 2 and 2k = n then the upper bound for energy of graph is

E(G) ≤
√

2mn(2k − k)

k

E(G) ≤
√

2mn.

Corollary 2.4. If kp = n− 1, then we get the following result.

E(G)− ρn ≤
√

2m(n− 1)(n− 1− k)

k
− (n− 1− 2k)ρ1

E(G) ≤
√

2m(n− 1)(n− 1− k)

k
− (n− 1− 2k)ρ1 + ρn.

Also if p = 2 and 2k = n− 1 then the upper bound for energy of graph is

E(G) ≤
√

2m(n− 1) + ρn.

Corollary 2.5. If k = 1, then E(G) ≤
√

2mn(n− 1)− (n− 2)ρ1 for p = n.

and E(G) ≤
√

2m(n− 1)(n− 2)− (n− 3)ρ1 + ρn for p = n− 1.

Corollary 2.6. Since ρ1 ≥
2m

n
and ρn ≤

√
2m

n
we get new upper bound

for energy of graph in term of m and n

E(G) ≤
√

2mn(n− k)

k
− (n− 2k)

2m

n
for pk = n.

E(G) ≤
√

2m(n− 1)(n− 1− k)

k
− (n− 1− 2k)

2m

n
+

√
2m

n
for pk = n− 1.

Corollary 2.7. For a r-regular graph m = rn
2 and ρ1 = r we have the following

upper bound

E(G) ≤ n
√

r(n−k)
k − (n− 2k)r for pk = n.

E(G) ≤
√

rn(n−1)(n−1−k)
k − (n− 1− 2k)r +

√
r for pk = n− 1.
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Theorem 2.8. Let G be a graph with n vertices and m edges. Let ρ1 ≥ ρ2 ≥ ... ≥
ρn be the the absolute value of eigenvalues of G. If ρ1 is repeated k times then

ρ1 ≤
1

k

(
2
√
mk −

2k∑
i=k+1

ρi

)
. (k 6= 0)

Proof. Here we compare the absolute value of eigenvalues of G with absolute eigen-

value of the graph H =
(⋃

k

Kp,q

)
.

Select p and q such that n = k(p+ q). The number of vertices of H is n and
the number of edges is kpq. Its the absolute value of eigenvalues spectrum are( √

pq 0
2k (n− 2k)

)
.

By Cauchy Schwarz inequality
ρ1
√
pq + ...+ ρk

√
pq + ρk+1

√
pq + ...+ ρ2k

√
pq + ρ2k+1(0) + ...+ ρn(0) ≤ 2

√
mkpq

But ρ1 = ρ2 = ... = ρk

∴ ρ1k
√
pq +

√
pq

2k∑
i=k+1

ρi ≤ 2
√
mkpq

ρ1k +

2k∑
i=k+1

ρi ≤ 2
√
mk

ρ1 ≤
1

k

(
2
√
mk −

2k∑
i=k+1

ρi

)
.

�

Corollary 2.9. If p = q = 1 and 2k = n then

ρ1k +

n∑
i=k+1

ρi ≤ 2

√
m
n

2

i.e., E(G) ≤
√

2mn.

Corollary 2.10. If p = q = 1 and 2k = n− 1 then

ρ1k +
n−1∑

i=k+1

ρi ≤ 2

√
m

(n− 1)

2

⇒ E(G) - ρn ≤
√

2m(n− 1)

i.e., E(G) ≤
√

2m(n− 1) + ρn



Bounds on Energy and Laplacian Energy of Graphs 27

i.e., E(G) ≤
√

2m(n− 1) +
√

2m
n .

Corollary 2.11. For k = 1 , ρ1 + ρ2 ≤ 2
√
m.

Using the above corollary we obtain another bound for energy of graphs.

Theorem 2.12. Let G be a graph with n vertices and m edges and 2m ≥ n. If the
first absolute eigenvalue, ρ1not repeated then E(G) ≤

√
m(2 +

√
2n− 4)

Proof. Cauchy Schwarz inequality for (n− 2) terms is

( n∑
i=3

aibi

)2
≤
( n∑
i=3

a2i

)( n∑
i=3

b2i

)
Put ai = ρi and bi = 1

n∑
i=3

ρi ≤

√√√√( n∑
i=3

ρ2i

)( n∑
i=3

1
)

E(G)− (ρ1 + ρ2) ≤
√

(2m− (ρ21 + ρ22))(n− 2)

E(G) ≤ (ρ1 + ρ2) +
√
n− 2

√
(2m− (ρ21 + ρ22))

But ρ1 + ρ2 ≤ 2
√
m ∴ E(G) ≤ 2

√
m+

√
n− 2

√
(2m− (ρ21 + ρ22))

We maximize the function f(x, y) = 2
√
m+

√
n− 2

√
(2m− (x2 + y2))

Then fx =
−
√
n− 2x√

(2m− (x2 + y2))
and fy =

−
√
n− 2 y√

(2m− (x2 + y2))

For maxima value fx = 0 and fy = 0 which implies (x, y) ≡ (0, 0)

fxx =
−
√
n− 2(2m− y2)

(2m− (x2 + y2))
3
2

, fyy =
−
√
n− 2(2m− x2)

(2m− (x2 + y2))
3
2

, fxy =
√
n−2xy

(2m−(x2+y2))
3
2

At (x, y) ≡ (0, 0), fxx = −
√

n−2
2m , fyy = −

√
n−2
2m , fxy = 0 and

∆ = fxxfyy − (fxy)2 = n−2
2m

Thus f(x, y) attains maximum value at (0, 0) ∴ f(0, 0) =
√
m(2 +

√
2n− 4)

E(G) ≤
√
m(2 +

√
2n− 4). �

2.2. Laplacian energy of graph. Analogous to the bounds for energy of graphs,
now we obtain bounds for Laplacian energy of graphs.

Theorem 2.13. Let G and H are two graphs with n vertices each. Let their
number of edges be respectively be m1 and m2. If σ1 ≥ σ2 ≥ ... ≥ σn represent
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absolute Laplacian eigenvalues of G and λ1 ≥ λ2 ≥ ... ≥ λn eigenvalues of H then
n∑

i=1

σiλi ≤

√√√√(2m2)
(

2m1 +

n∑
i=1

(
di(G)

)2)
where di(G) is the degree of the vertex vi.

Proof. By Cauchy Schwarz inequality

n∑
i=1

σiλi ≤

√√√√( n∑
i=1

σ2
i

)( n∑
i=1

λ2i

)

But

n∑
i=1

σ2
i =

(
2m1 +

n∑
i=1

(
di(G)

)2)

∴
n∑

i=1

σiλi ≤

√√√√(2m2)
(

2m1 +

n∑
i=1

(
di(G)

)2)
. �

Theorem 2.14. Let G be a graph with n vertices and m edges. Let σ1 ≥ σ2 ≥
... ≥ σn be the absolute Laplacian eigenvalues of G. If σ1 is repeated k times then

σ1 ≤
1

k(p− 1)

(√√√√(2m+

n∑
i=1

(di(G))2
)kp(p− 1)

2
−

kp∑
i=k+1

σi

)
where kp ≤ n, k 6= 0, p 6= 1

Proof. Let H =
(⋃

k

Kp

)
∪
(
Kn−kp

)c
where kp ≤ n

That is H is union of graphs Kp, repeated k times and a graph (Kn−kp)c.

The number of vertices of H is n and the number of edges is
kp(p− 1)

2
.

Its the absolute value of eigenvalues spectrum is(
p− 1 1 0
k k(p− 1) (n− kp)

)
.

By Cauchy Schwarz inequality
σ1(p−1) +σ2(p−1) + ...+σk(p−1) +σk+1(1) +σk+2(1) + ...+σkp(1) +σkp+1(0) +

...+ σn(0) ≤
√(

2m+
∑n

i=1(di(G))2
)kp(p− 1)

2

But σ1 = σ2 = ... = σk

(p− 1)kσ1 +

kp∑
i=k+1

σi ≤

√√√√(2m+

n∑
i=1

(di(G))2
)kp(p− 1)

2
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kσ1 ≤
1

p− 1

(√(
2m+

∑n
i=1(di(G))2

)kp(p− 1)

2
−

kp∑
i=k+1

σi

)

σ1 ≤
1

k(p− 1)

(√√√√(2m+

n∑
i=1

(di(G))2
)kp(p− 1)

2
−

kp∑
i=k+1

σi

)
. �

Corollary 2.15. If kp = n then by the above theorem

(n− k)σ1 +

kp∑
i=k+1

σi ≤

√√√√(2m+

n∑
i=1

(di(G))2
)n(n− k)

k

(n− k)σ1 + LE(G)− kσ1 ≤
√(

2m+
∑n

i=1(di(G))2
)

n(n−k)
k

(n− 2k)σ1 + LE(G) ≤
√(

2m+
∑n

i=1(di(G))2
)

n(n−k)
k

LE(G) ≤
√(

2m+
∑n

i=1(di(G))2
)

n(n−k)
k − (n− 2k)σ1.

Also if p = 2 and 2k = n then the upper bound for Laplacian energy of graph
is

LE(G) ≤
√(

2m+
∑n

i=1(di(G))2
)

n(2k−k)
k

LE(G) ≤
√(

2m+
∑n

i=1(di(G))2
)
n.

Corollary 2.16. If kp = n− 1 we get the following result.

LE(G)− σn ≤
√(

2m+
∑n

i=1(di(G))2
)

(n−1)(n−1−k)
k − (n− 1− 2k)σ1

LE(G) ≤
√(

2m+
∑n

i=1(di(G))2
)

(n−1)(n−1−k)
k − (n− 1− 2k)σ1 + σn

Also if p = 2 and 2k = n − 1 then we get the following upper bound for
Laplacian energy of graph

LE(G) ≤
√(

2m+
∑n

i=1(di(G))2
)

(n−1)(2k−k)
k + σn

LE(G) ≤
√(

2m+
∑n

i=1(di(G))2
)

(n− 1) + σn.

Corollary 2.17. If k = 1 then the upper bounds changes to

LE(G) ≤
√(

2m+
∑n

i=1(di(G))2
)
n(n− 1)− (n− 2)σ1 for p = n
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LE(G) ≤
√(

2m+
∑n

i=1(di(G))2
)

(n− 1)(n− 2)− (n− 3)σ1 + σn for p = n− 1.

Theorem 2.18. Let G be a graph with n vertices and m edges. Let σ1 ≥ σ2 ≥
... ≥ σn be the absolute Laplacian eigenvalues of G. If σ1 is repeated k times then

σ1 ≤
1

k

(√√√√(2m+

n∑
i=1

(di(G))2
)

2k −
2k∑

i=k=1

σi

)
(k 6= 0).

Proof. Here we compare absolute Laplacian eigenvalues of G with absolute eigen-

value of graph H =
(⋃

k

Kp,q

)
.

Select p and q such that n = k(p+ q). The number of vertices of H is n and
the number of edges is kpq. Its the absolute value of eigenvalues spectrum is( √

pq 0
2k (n− 2k)

)
.

By Cauchy Schwarz inequality
σ1
√
pq+...+σk

√
pq+σk+1

√
pq+...+σ2k

√
pq+σ2k+1(0)+...+σn(0) ≤

√
(2m+

∑n
i=1(di(G))2)2kpq

But σ1 = σ2 = ... = σk

∴σ1k
√
pq +

√
pq

2k∑
i=k+1

σi ≤

√√√√(2m+

n∑
i=1

(di(G))2
)

2kpq

σ1k +

2k∑
i=k+1

σi ≤

√√√√(2m+

n∑
i=1

(di(G))2
)

2k

σ1 ≤
1

k

(√√√√(2m+

n∑
i=1

(di(G))2
)

2k −
2k∑

i=k=1

σi

)
. �

Corollary 2.19. If 2k = n then by above theorem

LE(G) ≤
√

(2m+
∑n

i=1(di(G))2)n.

Corollary 2.20. If 2k = (n− 1) then by above theorem

LE(G) ≤
√

(2m+
∑n

i=1(di(G))2)(n− 1) + σn.
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