SOME PROPERTIES OF MULTIPLICATION MODULES

H. A. Tavallaee ${ }^{1}$ and R. Mahtabi ${ }^{2}$
${ }^{1}$ Department of Mathematics, Tehran-North Branch, Islamic Azad University, Tehran, Iran
tavallaee@iust.ac.ir
${ }^{2}$ Faculty of sciences, University of Garmsar, P.O.Box 318000062, Garmsar, Iran
r.mahtabi@gmail.com

Abstract

Let M be an R-module. The module M is called multiplication if for any submodule N of M we have $N=I M$, where I is an ideal of R. In this paper we state some basic properties of submodules of these modules. Also, we study the relationship between the submodules of a multiplication R-module M and ideals of ring R. Finally, by definition of semiprime submodule, we state some properties of radical submodules of multiplication modules.

Key words and Phrases: Multiplication module, prime submodule, primary submodule.

Abstract

Abstrak. Diberikan ring R dan diketahui M adalah R-modul. Modul M disebut modul multiplikasi jika untuk setiap submodul N di M memenuhi sifat $N=I M$, untuk suatu ideal I di R. Dalam paper ini diberikan beberapa sifat dasar submodulsubmodul dalam modul multiplikasi. Selain itu diberikan juga hubungan antara submodul di dalam modul multiplikasi M atas R dan ideal-ideal di dalam ring R. Dengan menggunakan definisi submodul semiprima, dihasilkan juga beberapa sifat submodule radikal dalam modul multiplikasi.

Kata kunci: Modul multiplikasi, submodul prima, submodul utama.

1. Introduction

In this paper all rings are commutative with identity and all modules over rings are unitary. Let K and N be submodules of an R-module M, we recall that $\left(N:_{R} K\right)=(N: K)=\{r \in R \mid r K \subseteq N\}$, which is an ideal of R. Let N be a proper submodule of an R-module M, then N is called a prime submodule of M,

[^0]if for every $r \in R, x \in M ; r x \in N$ we have $x \in N$ or $r \in(N: M)$. In such a case $p=(N: M)$ is a prime ideal of R and N is said to be p-prime. The set of all prime submodules of M is denoted by $\operatorname{Spec}(M)$ and for a submodule N of M, $\operatorname{rad}(N)=\bigcap_{L \in \operatorname{Spec}(M), N \subseteq L} L$. If no prime submodule of M contains N, we write $\operatorname{rad}(N)=M$. Also the set of all maximal submodules of M is denoted by $\operatorname{Max}(M)$ and $\operatorname{RadM}=\bigcap_{P \in \operatorname{Max}(M)} P$. Also we recall that if I is an ideal of a ring R, then radical of I, i.e., $r(I)$ is defined as $\left\{r \in R \mid \exists k \in \mathbb{N} ; r^{k} \in I\right\}$. Now, let \underline{a} be an ideal of a ring R and $\underline{a}=\bigcap_{i=1}^{l} q_{i}$, where $r\left(q_{i}\right)=p_{i}$ is a normal primary decomposition of \underline{a}, then $\operatorname{ass}(\underline{a})=\left\{p_{1}, \ldots, p_{l}\right\}$.
An R-module M is called a multiplication module if for every submodule N of M there exists an ideal I of R such that $N=I M$. It can be shown that $N=(N: M) M$.

2. Definitions and Results

Lemma 2.1. Let R be a non-trivial ring and let M be a multiplication R-module. Then $I M \neq M$ for any proper ideal I of R.

Proof. Let I be an arbitrary proper ideal of R, then there exists a maximal ideal \underline{m} of R such that $I \subseteq \underline{m}$. We remind that $R_{\underline{m}}=S^{-1} R$ and $M_{\underline{m}}=S^{-1} M$ are quotient ring of R and quotient module respectively where $S=R-\underline{m}$.
We show that $\underline{m} M \neq M$. By [1, Lemma 2(i)], $M_{\underline{m}}$ is a multiplication $R_{\underline{m}}$-module and also by $\left[3\right.$, Theorem 2.5], $\left(\underline{m} R_{\underline{m}}\right) M_{\underline{m}}$ is the only maximal submodule of $M_{\underline{m}}$. Thus $\left(\underline{m} R_{\underline{m}}\right) M_{\underline{m}}=(\underline{m} M)_{\underline{m}} \neq M_{\underline{m}}$ and hence $\left((\underline{m} M)_{\underline{m}}: M_{\underline{m}}\right)=\underline{m} R_{\underline{m}}$. Therefore $\underline{m} M \neq M$.
Now since $I M \subseteq \underline{m} M \neq M$, therefore $I M \neq M$ for every proper ideal I of R.

Lemma 2.2. Let M be a multiplication R-module, then $p M \in \operatorname{Spec}(M)$ and ($p M$: $M)=p$ for every $(0) \neq p \in \operatorname{Spec}(R)$.

Proof. Let M be a multiplication R-module and let $(0) \neq p \in \operatorname{Spec}(R)$ be arbitrary. By Lemma 2.1, $p M \neq M$. We show that $(p M: M)=p$.
Let $r \in(p M: M)$ be arbitrary then $r M \subseteq p M$ and hence we have:

$$
(r M)_{p} \subseteq(p M)_{p} \Longrightarrow \frac{r}{1} M_{p} \subseteq(p M)_{p} \Longrightarrow \frac{r}{1} \in\left((p M)_{p}: M_{p}\right)
$$

But by [1, Lemma 2(i)], M_{p} is a multiplication R_{p}-module and by [3, Theorem 2.5], $(p M)_{p}$ is the only maximal submodule of M_{p} and so $\left((p M)_{p}: M_{p}\right)=p R_{p}$. Thus $r \in p$ and hence $(p M: M)=p$.
Now by [2, Corollary 2], $p M$ is a primary submodule of M and also by [5, Proposition 1], $p M \in \operatorname{Spec}(M)$. The proof is now completed.

Corollary 2.3. Let R be an arbitrary ring and let M be a multiplication R-module. Then there exists a bijection between non-zero prime ideals of R and non-zero prime submodules of M.
Proof. We show that for every $N \in \operatorname{Spec}(M), N=p M$ where $p \in \operatorname{Spec}(R)$. First, we show that, if M is a multiplication R-module and N is a submodule of M, then $N=(N: M) M$. Since M is a multiplication R-module, hence there exists an ideal I of R such that $N=I M$. From this, we have $I \subseteq(N: M)$, and $N=I M \subseteq(N: M) M \subseteq N$, hence $N=(N: M) M$. Second, let $N \in \operatorname{Spec}(M)$. Since M is a multiplication R-module, $N=(N: M) M$ and by [5, Proposition 1], $(N: M) \in \operatorname{Spec}(R)$.
Now we define $\psi: \operatorname{Spec}(M) \longrightarrow \operatorname{Spec}(R)$ by $\psi(p M)=(p M: M)$ for any non-zero prime ideal p of R. Clearly ψ is well defined and by Lemma 2.2, ψ is a bijection.

Proposition 2.4. Let M be a faithful multiplication R-module. Then every proper direct summand of M is prime. Hence M is indecomposable.
Proof. By [3, Lemma 4.1], M is torsion-free and by [5, Result 1], every direct summand of M is a prime submodule.
Now we show that M is indecomposable. If $M=M_{1} \oplus M_{2}$ where $M_{1}, M_{2} \neq 0$ then by the current form of the proposition, M_{1} is a p-prime for some ideal p of R. Thus $M_{1}=p M=p M_{1} \oplus p M_{2}$. Hence $p M_{2}=0$. Since M is torsion-free and $M_{2} \neq 0$, we have $p=(0)$ and hence $M_{1}=0$, a contradiction.
Proposition 2.5. Let M be a multiplication R-module. Then for every submodule $I M$ of M, if $I M \subseteq p M$ where $p \in \operatorname{Spec}(R)$, then $I \subseteq p$.

Proof. Let $I M \subseteq p M$ for $I \unlhd R$ and $p \in \operatorname{Spec}(R)$. Since $I \subseteq(I M: M) \subseteq(p M$: $M)$, then by Lemma 2.2, $I \subseteq p$.
Corollary 2.6. If M is a faithful multiplication R-module then M is finitely generated.

Proof. Since M is a multiplication R-module, hence by Lemma 2.1, $M \neq I M$ for every proper ideal of I of R. Now, since M is a faithful multiplication R-module, then by [3, Theorem 3.1 part (i), (iv)], M is finitely generated.
Corollary 2.7. Let M be a faithful multiplication R-module. Then for every ideal I of $R,(I M: M)=I$.

Proof. Let M is a faithful multiplication R-module, then by Corollary 2.6, M is a finitely generated R-module. Now, let $(I M: M)=q$ where I and q be ideals of R. Since $(I M: M)=q, q M \subseteq I M$ and by $[3$, Theorem 3.1 part (ii)], $q \subseteq I$. Now, since $I \subseteq(I M: M)=q$, therefore $I=(I M: M)$.
Lemma 2.8. If M is a faithful multiplication R-module. Then there exists a bijection between ideals of R and submodules of M.

Proof. Since M is a multiplication R-module, hence for every submodule N of M there exists an ideal I of R such that $N=I M$ and by Corollary 2.7, $(N: M)=$
$(I M: M)=I$. Now we define $\psi: M \longrightarrow R$ by $\psi(I M)=(I M: M)$ for any ideal I of R. Obviously ψ is well defined and also ψ is an epimorphism. Now let N_{1}, N_{2} be submodules of M, then there exist $I_{1}, I_{2} \unlhd R$ such that $N_{1}=I_{1} M$ and $N_{2}=I_{2} M$. If $\psi\left(N_{1}\right)=\psi\left(N_{2}\right)$ then $\left(I_{1} M: M\right)=\left(I_{2} M: M\right)$ and by Corollary $2.7, I_{1}=I_{2}$. Therefore ψ is a bijection.

Corollary 2.9. Let M be a Noetherian multiplication R-module. Then R satisfies the ascending chain condition on prime ideals.

Proof. Let $p_{1} \subseteq p_{2} \subseteq p_{3} \subseteq \ldots$ be an ascending chain of prime ideals of R. Then $p_{1} M \subseteq p_{2} M \subseteq p_{3} M \subseteq \ldots$. But, M is a Noetherian R-module, hence there exists submodule (by [3, Theorem 2.5 part (i)], specially a maximal submodule) N of M such that $p_{1} M \subseteq p_{2} M \subseteq p_{3} M \subseteq \ldots \subseteq N$. But M is a multiplication R-module, hence by [3, Theorem 2.5 part (ii)], there exists a maximal ideal \underline{m} of R such that $N=\underline{m} M$. So we have $p_{1} M \subseteq p_{2} M \subseteq p_{3} M \subseteq \ldots \subseteq \underline{m} M$ and hence $\left(p_{1} M: M\right) \subseteq\left(p_{2} M: M\right) \subseteq\left(p_{3} M: M\right) \subseteq \ldots \subseteq(\underline{m} M: M)$. Now by Lemma 2.2, $p_{1} \subseteq p_{2} \subseteq p_{3} \subseteq \ldots \subseteq \underline{m}$. The proof is now completed.

Corollary 2.10. Let R be an arbitrary ring and let M be a multiplication R module. Then $\operatorname{Ann}_{R}(M) \subseteq p$ for each $(0) \neq p \in \operatorname{Spec}(R)$.

Proof. By the Lemma $2.2, p M \in \operatorname{Spec}(M)$ for every $(0) \neq p \in \operatorname{Spec}(R)$. Therefore by [3, Corollary 2.11 part (i), (iii)], $A n n_{R}(M) \subseteq p$.

We recall that in the following lemma $J(R)$ and \underline{n}_{R} denote the Jacobson radical and nilradical of R, respectively.

Lemma 2.11. Let R be a ring and M a multiplication R-module. Then $\bigcap_{\lambda \in \Lambda}\left(p_{\lambda} M\right)=$ $\left(\bigcap_{\lambda \in \Lambda} p_{\lambda}\right) M$ for any non-empty collection of non-zero prime ideals $p_{\lambda}(\lambda \in \Lambda)$ of R. Also if R is a ring which is not an integral domain then $\bigcap_{0 \neq P \in \operatorname{Spec}(M)} P=\underline{n}_{R} M$ and $\operatorname{RadM}=J(R) M$.

Proof. Let M be a multiplication R-module and let $p_{\lambda}(\lambda \in \Lambda)$ be any non-empty collection of non-zero prime ideals of R. By [3, Corollary 1.7], $\bigcap_{\lambda \in \Lambda}\left(p_{\lambda} M\right)=$ $\left(\bigcap_{\lambda \in \Lambda}\left[p_{\lambda}+\operatorname{Ann}_{R}(M)\right]\right) M$. But by Corollary 2.10, $\bigcap_{\lambda \in \Lambda}\left(p_{\lambda} M\right)=\left(\bigcap_{\lambda \in \Lambda} p_{\lambda}\right) M$.
By Lemma 2.2, $\bigcap_{0 \neq P \in \operatorname{Spec}(M)} P=\bigcap_{(0) \neq p \in \operatorname{Spec}(R)}(p M)$ and also by above we have $\bigcap_{(0) \neq p \in \operatorname{Spec}(R)}(p M)=\underline{n}_{R} M$. So $\bigcap_{0 \neq P \in \operatorname{Spec}(M)} P=\underline{n}_{R} M$. Also by Lemma 2.2, $\operatorname{Rad} M=\bigcap_{\underline{\underline{m}} \in \operatorname{Max}(R)}(\underline{m} M)$ and by above $\bigcap_{\underline{m} \in \operatorname{Max}(R)} \underline{m} M=J(R) M$. Hence $\operatorname{RadM}=J(\bar{R}) M$.

Lemma 2.12. Let R be a ring and M a multiplication R-module. Let $I M$ be an arbitrary non-zero proper submodule of M for some ideal I of R. Then $\operatorname{rad}(I M)=$ $(\operatorname{rad} I) M$ and $(\operatorname{rad}(I M): M)=\operatorname{radI}$, where $\operatorname{rad} I=r(I)$.

Proof. It is easy to show that $\operatorname{rad}(I M)=\bigcap_{p \in v(I)}(p M)$ (we recall that $v(I)=$ $\{p \in \operatorname{Spec}(R) \mid I \subseteq p\}$). By Lemma 2.11, $\operatorname{rad}(I M)=(\operatorname{rad} I) M$ and consequently $(\operatorname{rad}(I M): M)=\operatorname{rad} I$.

We recall the following definition from [6].

Definition 2.13. A proper submodule N of an R-module M is said to be semiprime in M, if for every ideal I of R and every submodule K of $M, I^{2} K \subseteq N$ implies that $I K \subseteq N$. Note that since the ring R is an R-module by itself, a proper ideal I of R is semiprime if for every ideals J and K of $R, J^{2} K \subseteq I$ implies that $J K \subseteq I$.

Definition 2.14. There exists another definition of semiprime submodules in [4] as follows:
A proper submodule N of the R-module M is semiprime if whenever $r^{k} m \in N$ for some $r \in R, m \in M$ and positive integer k, then $r m \in N$.
By [7, Remark 2.6], we see that this definition is equivalent to Definition 2.13.
Definition 2.15. Let M be an R-module and $N \leq M$. The envelope of the submodule N is denoted by $E_{M}(N)$ or simply by $E(N)$ and is defined as $E(N)=\{x \in$ $M \mid \exists r \in R, a \in M ; x=r a$ and $r^{n} a \in N$ for some positive integer $\left.n\right\}$.

The envelope of a submodule is not a submodule in general.
Let M be an R-module and $N \leq M$. If there exists a semiprime submodule of M which contains N, then the intersection of all semiprime submodules containing N is called semi-radical of N and is denoted by $S-\operatorname{rad}_{M} N$, or simply $S-\operatorname{rad} N$. If there is no semiprime submodule containing N, then we define $S-\operatorname{rad} N=M$, in particular $S-\operatorname{rad} M=M$.
We say that M satisfies the radical formula, or M (s.t.r.f) if for every $N \leq M$, $\operatorname{radN}=\langle E(N)\rangle$. Also we say that M satisfies the semi-radical formula, or M (s.t.s.r.f) if for every $N \leq M, S-\operatorname{rad} N=\langle E(N)\rangle$. Now let $x \in E(N)$ and P be a semiprime submodule of M containing N. Then $x=r a$ for some $r \in R, a \in M$ and for some positive integer $n, r^{n} a \in N$. But $r^{n} a \in P$ and since P is semiprime we have $r a \in P$. Hence $E(N) \subseteq P$. We see that $E(N) \subseteq \bigcap P$ (P is a semiprime submodule containing $N)$. So $\langle E(N)\rangle \subseteq S-\operatorname{rad} N$. On the other hand, since every prime submodule of M is clearly semiprime, we have $S-\operatorname{rad} N \subseteq \operatorname{rad} N$. We conclude that $\langle E(N)\rangle \subseteq S-\operatorname{radN} \subseteq \operatorname{radN}$ and as a result if M (s.t.r.f) then it is also (s.t.s.r.f).

Lemma 2.16. Let R be a ring and let M be a multiplication R-module. Then every proper submodule of M is a radical submodule, i.e., $\operatorname{rad} N=N$.

Proof. By [3, Theorem 2.12], $\operatorname{rad} N=\operatorname{rad}(N: M) M$. But $\operatorname{rad}(N: M) M \subseteq$ $\langle E(N)\rangle \subseteq \operatorname{rad} N$, hence M (s.t.r.f) and so (s.t.s.r.f). Then $\langle E(N)\rangle=S-\operatorname{rad} N=$ $\operatorname{rad} N$ for every proper submodule N of M. But by [6, Proposition 4.1], $S-\operatorname{rad} N=$ N and therefore $\operatorname{rad} N=N$.

Corollary 2.17. Let R and M and $I M$ be as in Lemma 2.12. Then $I M=$ (radI)M.

Proof. Let M be a multiplication R-module and $I M$ be an arbitrary non-zero proper submodule of M for some ideal I of R. By Lemma 2.12, $\operatorname{rad}(I M)=$ $(\operatorname{rad} I) M$ and by Lemma 2.16, $\operatorname{rad}(I M)=I M$. Therefore $I M=(\operatorname{rad} I) M$.

Theorem 2.18. Let R be a ring and let M be a multiplication R-module. Then N is a primary submodule of M if and only if it is a prime submodule of M.

Proof. \Longleftarrow. It is clear.
\Longrightarrow. Let M be a multiplication R-module and let N be an arbitrary primary submodule of M. Then by [2, Corollary 2], there exists a primary ideal $q(\operatorname{rad} q=p)$ of R such that $N=q M$.
But by Lemma 2.16 and Corollary 2.17, $q M=(\operatorname{radq}) M=p M$. Therefore the proof is now completed.
Corollary 2.19. Let R be a ring which satisfies ascending chain condition on semiprime ideals and let M be a multiplication R-module. Then M is a Noetherian R-module.

Proof. Let M be a multiplication R-module. Then M (s.t.r.f) and hence (s.t.s.r.f). Thus by [6, Proposition 4.1], every proper submodule of M is a semiprime submodule of M. Now, let $I_{1} M \subseteq I_{2} M \subseteq I_{3} M \subseteq \ldots$ where I_{i} are ideals of R be ascending chain of submodules of M. Then $\left(I_{1} M: M\right) \subseteq\left(I_{2} M: M\right) \subseteq\left(I_{3} M: M\right) \subseteq \ldots$. But by [6, Proposition 2.3(ii)], $(N: M)$ is a semiprime ideal of R for any semiprime submodule N of M, hence by assumption there exists $n \in \mathbb{N}$ such that ($I_{n} M$: $M)=\left(I_{n+k} M: M\right)$ for each $k \in \mathbb{N}$. But then $\left(I_{n} M: M\right) M=\left(I_{n+k} M: M\right) M$ and so $I_{n} M=I_{n+k} M$. Therefore M is a Noetherian R-module.

It should be noted that the above results (Lemma 2.16, Corollary 2.17, Theorem 2.18 , Corollary 2.19) they are not necessarily true if $M=R$, the ring itself. Because according to [6, Theorem 4.4], R (s.t.s.r.f) if we have one of the following.
(i) For every free R-module F, F (s.t.s.r.f).
(ii) For every faithful R-module B, B (s.t.s.r.f).

Acknowledgement. The authors would like to thank the referee for his/her careful reading and very useful comments and suggestions which improved the final version of this paper.

References

[1] Barnard, A., "Multiplication modules", J. Algebra, 71:1(1981), 174-178.
[2] Ebrahimi Atani, S., and Callialp, F., and Tekir, $̈$ U., "A short note on the primary submodules of multiplication modules", Int. J. Algebra,1:8(2007), 381-384.
[3] EL-Bast, Z.A., and Smith, P.F., "Multiplication modules", Comm. Algebra, 16:4(1988), 755-779.
[4] Jenkins, J., and Smith, P.F., "On the prime radical of module over a commutative ring", Comm. Algebra, 20:12 (1992), 3593-3602.
[5] Lu, C.P., "Prime submodules of modules", Comment. Math. Univ. Sancti Pauli, 33:1(1984), 61-96.
[6] Tavallaee, H.A., "Modules satisfying the semi-radical formula", Hadronic Journal, 32(2009), 407-424.
[7] Tavallaee, H.A. and Ghalandarzadeh, S., "Semiprime submodules and envelope of modules",IUST-International Journal of Engineering Sciences, 14:4(2003), 131-142.

[^0]: 2000 Mathematics Subject Classification: 13E05, 13E10, 13C99.
 Received: 2 Aug 2016, revised: 11 June 2017, accepted: 11 June 2017.

