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Abstract. Let M be an R-module. The module M is called multiplication if for

any submodule N of M we have N = IM , where I is an ideal of R. In this paper

we state some basic properties of submodules of these modules. Also, we study the

relationship between the submodules of a multiplication R-module M and ideals of

ring R. Finally, by definition of semiprime submodule, we state some properties of

radical submodules of multiplication modules.

Key words and Phrases: Multiplication module, prime submodule, primary sub-
module.

Abstrak. Diberikan ring R dan diketahui M adalah R-modul. Modul M disebut

modul multiplikasi jika untuk setiap submodul N di M memenuhi sifat N = IM ,

untuk suatu ideal I di R. Dalam paper ini diberikan beberapa sifat dasar submodul-

submodul dalam modul multiplikasi. Selain itu diberikan juga hubungan antara

submodul di dalam modul multiplikasi M atas R dan ideal-ideal di dalam ring R.

Dengan menggunakan definisi submodul semiprima, dihasilkan juga beberapa sifat

submodule radikal dalam modul multiplikasi.

Kata kunci: Modul multiplikasi, submodul prima, submodul utama.

1. Introduction

In this paper all rings are commutative with identity and all modules over
rings are unitary. Let K and N be submodules of an R-module M , we recall that
(N :R K) = (N : K) = {r ∈ R | rK ⊆ N}, which is an ideal of R. Let N be a
proper submodule of an R-module M , then N is called a prime submodule of M ,
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if for every r ∈ R , x ∈ M ; rx ∈ N we have x ∈ N or r ∈ (N : M). In such a
case p = (N : M) is a prime ideal of R and N is said to be p-prime. The set of
all prime submodules of M is denoted by Spec(M) and for a submodule N of M ,
rad(N) =

⋂
L∈Spec(M),N⊆L L. If no prime submodule of M contains N , we write

rad(N) = M . Also the set of all maximal submodules of M is denoted by Max(M)
and RadM =

⋂
P∈Max(M) P . Also we recall that if I is an ideal of a ring R, then

radical of I, i.e., r(I) is defined as {r ∈ R | ∃k ∈ N ; rk ∈ I}. Now, let a be an ideal

of a ring R and a =
⋂l
i=1 qi, where r(qi) = pi is a normal primary decomposition

of a, then ass(a) = {p1, ..., pl}.
An R-module M is called a multiplication module if for every submodule N of
M there exists an ideal I of R such that N = IM . It can be shown that
N = (N : M)M .

2. Definitions and Results

Lemma 2.1. Let R be a non-trivial ring and let M be a multiplication R-module.
Then IM 6= M for any proper ideal I of R.

Proof. Let I be an arbitrary proper ideal of R, then there exists a maximal ideal
m of R such that I ⊆ m. We remind that Rm = S−1R and Mm = S−1M are
quotient ring of R and quotient module respectively where S = R−m.
We show that mM 6= M . By [1, Lemma 2(i)], Mm is a multiplication Rm-module
and also by [3, Theorem 2.5], (mRm)Mm is the only maximal submodule of Mm.
Thus (mRm)Mm = (mM)m 6= Mm and hence ((mM)m : Mm) = mRm. Therefore
mM 6= M .
Now since IM ⊆ mM 6= M , therefore IM 6= M for every proper ideal I of R.

Lemma 2.2. Let M be a multiplication R-module, then pM ∈ Spec(M) and (pM :
M) = p for every (0) 6= p ∈ Spec(R).

Proof. Let M be a multiplication R-module and let (0) 6= p ∈ Spec(R) be arbi-
trary. By Lemma 2.1, pM 6= M . We show that (pM : M) = p.
Let r ∈ (pM : M) be arbitrary then rM ⊆ pM and hence we have:

(rM)p ⊆ (pM)p =⇒ r

1
Mp ⊆ (pM)p =⇒ r

1
∈ ((pM)p : Mp).

But by [1, Lemma 2(i)], Mp is a multiplication Rp-module and by [3, Theorem 2.5],
(pM)p is the only maximal submodule of Mp and so ((pM)p : Mp) = pRp. Thus
r ∈ p and hence (pM : M) = p.
Now by [2, Corollary 2], pM is a primary submodule of M and also by [5, Propo-
sition 1], pM ∈ Spec(M). The proof is now completed.
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Corollary 2.3. Let R be an arbitrary ring and let M be a multiplication R-module.
Then there exists a bijection between non-zero prime ideals of R and non-zero prime
submodules of M .

Proof. We show that for every N ∈ Spec(M), N = pM where p ∈ Spec(R).
First, we show that, if M is a multiplication R-module and N is a submodule of
M , then N = (N : M)M . Since M is a multiplication R-module, hence there
exists an ideal I of R such that N = IM . From this, we have I ⊆ (N : M), and
N = IM ⊆ (N : M)M ⊆ N , hence N = (N : M)M . Second, let N ∈ Spec(M).
Since M is a multiplication R-module, N = (N : M)M and by [5, Proposition 1],
(N : M) ∈ Spec(R).
Now we define ψ : Spec(M) −→ Spec(R) by ψ(pM) = (pM : M) for any non-zero
prime ideal p of R. Clearly ψ is well defined and by Lemma 2.2, ψ is a bijection.

Proposition 2.4. Let M be a faithful multiplication R-module. Then every proper
direct summand of M is prime. Hence M is indecomposable.

Proof. By [3, Lemma 4.1], M is torsion-free and by [5, Result 1], every direct
summand of M is a prime submodule.
Now we show that M is indecomposable. If M = M1⊕M2 where M1,M2 6= 0 then
by the current form of the proposition, M1 is a p-prime for some ideal p of R. Thus
M1 = pM = pM1 ⊕ pM2. Hence pM2 = 0. Since M is torsion-free and M2 6= 0, we
have p = (0) and hence M1 = 0, a contradiction.

Proposition 2.5. Let M be a multiplication R-module. Then for every submodule
IM of M , if IM ⊆ pM where p ∈ Spec(R), then I ⊆ p.

Proof. Let IM ⊆ pM for I � R and p ∈ Spec(R). Since I ⊆ (IM : M) ⊆ (pM :
M), then by Lemma 2.2, I ⊆ p.

Corollary 2.6. If M is a faithful multiplication R-module then M is finitely gen-
erated.

Proof. Since M is a multiplication R-module, hence by Lemma 2.1, M 6= IM for
every proper ideal of I of R. Now, since M is a faithful multiplication R-module,
then by [3, Theorem 3.1 part (i), (iv)], M is finitely generated.

Corollary 2.7. Let M be a faithful multiplication R-module. Then for every ideal
I of R, (IM : M) = I.

Proof. Let M is a faithful multiplication R-module, then by Corollary 2.6, M is
a finitely generated R-module. Now, let (IM : M) = q where I and q be ideals of
R. Since (IM : M) = q, qM ⊆ IM and by [3, Theorem 3.1 part (ii)], q ⊆ I. Now,
since I ⊆ (IM : M) = q, therefore I = (IM : M).

Lemma 2.8. If M is a faithful multiplication R-module. Then there exists a bi-
jection between ideals of R and submodules of M .

Proof. Since M is a multiplication R-module, hence for every submodule N of
M there exists an ideal I of R such that N = IM and by Corollary 2.7, (N : M) =



50 Tavallaee, H.A. and Mahtabi, R.

(IM : M) = I. Now we define ψ : M −→ R by ψ(IM) = (IM : M) for any ideal I
of R. Obviously ψ is well defined and also ψ is an epimorphism. Now let N1, N2 be
submodules of M , then there exist I1, I2 �R such that N1 = I1M and N2 = I2M .
If ψ(N1) = ψ(N2) then (I1M : M) = (I2M : M) and by Corollary 2.7, I1 = I2.
Therefore ψ is a bijection.

Corollary 2.9. Let M be a Noetherian multiplication R-module. Then R satisfies
the ascending chain condition on prime ideals.

Proof. Let p1 ⊆ p2 ⊆ p3 ⊆ ... be an ascending chain of prime ideals of R.
Then p1M ⊆ p2M ⊆ p3M ⊆ .... But, M is a Noetherian R-module, hence there
exists submodule (by [3, Theorem 2.5 part (i)], specially a maximal submodule )
N of M such that p1M ⊆ p2M ⊆ p3M ⊆ ... ⊆ N . But M is a multiplication
R-module, hence by [3, Theorem 2.5 part (ii)], there exists a maximal ideal m of
R such that N = mM . So we have p1M ⊆ p2M ⊆ p3M ⊆ ... ⊆ mM and hence
(p1M : M) ⊆ (p2M : M) ⊆ (p3M : M) ⊆ ... ⊆ (mM : M). Now by Lemma 2.2,
p1 ⊆ p2 ⊆ p3 ⊆ ... ⊆ m. The proof is now completed.

Corollary 2.10. Let R be an arbitrary ring and let M be a multiplication R-
module. Then AnnR(M) ⊆ p for each (0) 6= p ∈ Spec(R).

Proof. By the Lemma 2.2, pM ∈ Spec(M) for every (0) 6= p ∈ Spec(R). There-
fore by [3, Corollary 2.11 part (i), (iii)], AnnR(M) ⊆ p.

We recall that in the following lemma J(R) and nR denote the Jacobson radi-
cal and nilradical of R, respectively.

Lemma 2.11. Let R be a ring and M a multiplication R-module. Then
⋂
λ∈Λ(pλM) =

(
⋂
λ∈Λ pλ)M for any non-empty collection of non-zero prime ideals pλ (λ ∈ Λ) of R.

Also if R is a ring which is not an integral domain then
⋂

06=P∈Spec(M) P = nRM

and RadM = J(R)M .

Proof. Let M be a multiplication R-module and let pλ (λ ∈ Λ) be any non-empty
collection of non-zero prime ideals of R. By [3, Corollary 1.7],

⋂
λ∈Λ(pλM) =

(
⋂
λ∈Λ[pλ +AnnR(M)])M . But by Corollary 2.10,

⋂
λ∈Λ(pλM) = (

⋂
λ∈Λ pλ)M .

By Lemma 2.2,
⋂

06=P∈Spec(M) P =
⋂

(0) 6=p∈Spec(R)(pM) and also by above we have⋂
(0) 6=p∈Spec(R)(pM) = nRM . So

⋂
06=P∈Spec(M) P = nRM . Also by Lemma 2.2,

RadM =
⋂
m∈Max(R)(mM) and by above

⋂
m∈Max(R)mM = J(R)M . Hence

RadM = J(R)M .

Lemma 2.12. Let R be a ring and M a multiplication R-module. Let IM be an
arbitrary non-zero proper submodule of M for some ideal I of R. Then rad(IM) =
(radI)M and (rad(IM) : M) = radI, where radI = r(I).

Proof. It is easy to show that rad(IM) =
⋂
p∈v(I)(pM) (we recall that v(I) =

{p ∈ Spec(R)| I ⊆ p}). By Lemma 2.11, rad(IM) = (radI)M and consequently
(rad(IM) : M) = radI.
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We recall the following definition from [6].

Definition 2.13. A proper submodule N of an R-module M is said to be semiprime
in M , if for every ideal I of R and every submodule K of M , I2K ⊆ N implies
that IK ⊆ N . Note that since the ring R is an R-module by itself, a proper ideal I
of R is semiprime if for every ideals J and K of R, J2K ⊆ I implies that JK ⊆ I.

Definition 2.14. There exists another definition of semiprime submodules in [4]
as follows:
A proper submodule N of the R-module M is semiprime if whenever rkm ∈ N for
some r ∈ R, m ∈M and positive integer k, then rm ∈ N .
By [7, Remark 2.6], we see that this definition is equivalent to Definition 2.13.

Definition 2.15. Let M be an R-module and N ≤ M . The envelope of the sub-
module N is denoted by EM (N) or simply by E(N) and is defined as E(N) = {x ∈
M | ∃r ∈ R, a ∈M ; x = ra and rna ∈ N for some positive integer n}.

The envelope of a submodule is not a submodule in general.
Let M be an R-module and N ≤ M . If there exists a semiprime submodule of M
which contains N , then the intersection of all semiprime submodules containing N
is called semi-radical of N and is denoted by S − radMN , or simply S − radN . If
there is no semiprime submodule containing N , then we define S − radN = M , in
particular S − radM = M .
We say that M satisfies the radical formula, or M (s.t.r.f) if for every N ≤ M ,
radN = 〈E(N)〉. Also we say that M satisfies the semi-radical formula, or M
(s.t.s.r.f) if for every N ≤ M , S − radN = 〈E(N)〉. Now let x ∈ E(N) and P be
a semiprime submodule of M containing N . Then x = ra for some r ∈ R, a ∈ M
and for some positive integer n, rna ∈ N . But rna ∈ P and since P is semiprime
we have ra ∈ P . Hence E(N) ⊆ P . We see that E(N) ⊆

⋂
P (P is a semiprime

submodule containing N). So 〈E(N)〉 ⊆ S − radN . On the other hand, since
every prime submodule of M is clearly semiprime, we have S− radN ⊆ radN . We
conclude that 〈E(N)〉 ⊆ S − radN ⊆ radN and as a result if M (s.t.r.f) then it is
also (s.t.s.r.f).

Lemma 2.16. Let R be a ring and let M be a multiplication R-module. Then
every proper submodule of M is a radical submodule, i.e., radN = N .

Proof. By [3, Theorem 2.12], radN = rad(N : M)M . But rad(N : M)M ⊆
〈E(N)〉 ⊆ radN , hence M (s.t.r.f) and so (s.t.s.r.f). Then 〈E(N)〉 = S − radN =
radN for every proper submodule N of M . But by [6, Proposition 4.1], S−radN =
N and therefore radN = N .
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Corollary 2.17. Let R and M and IM be as in Lemma 2.12. Then IM =
(radI)M .

Proof. Let M be a multiplication R-module and IM be an arbitrary non-zero
proper submodule of M for some ideal I of R. By Lemma 2.12, rad(IM) =
(radI)M and by Lemma 2.16, rad(IM) = IM . Therefore IM = (radI)M .

Theorem 2.18. Let R be a ring and let M be a multiplication R-module. Then
N is a primary submodule of M if and only if it is a prime submodule of M .

Proof. ⇐=. It is clear.
=⇒. Let M be a multiplication R-module and let N be an arbitrary primary
submodule of M . Then by [2, Corollary 2], there exists a primary ideal q (radq = p)
of R such that N = qM .
But by Lemma 2.16 and Corollary 2.17, qM = (radq)M = pM . Therefore the
proof is now completed.

Corollary 2.19. Let R be a ring which satisfies ascending chain condition on
semiprime ideals and let M be a multiplication R-module. Then M is a Noetherian
R-module.

Proof. LetM be a multiplicationR-module. ThenM (s.t.r.f) and hence (s.t.s.r.f).
Thus by [6, Proposition 4.1], every proper submodule of M is a semiprime submod-
ule of M . Now, let I1M ⊆ I2M ⊆ I3M ⊆ ... where Ii are ideals of R be ascending
chain of submodules of M . Then (I1M : M) ⊆ (I2M : M) ⊆ (I3M : M) ⊆ .... But
by [6, Proposition 2.3(ii)], (N : M) is a semiprime ideal of R for any semiprime
submodule N of M , hence by assumption there exists n ∈ N such that (InM :
M) = (In+kM : M) for each k ∈ N. But then (InM : M)M = (In+kM : M)M and
so InM = In+kM . Therefore M is a Noetherian R-module.

It should be noted that the above results (Lemma 2.16, Corollary 2.17, The-
orem 2.18, Corollary 2.19) they are not necessarily true if M = R, the ring itself.
Because according to [6, Theorem 4.4], R (s.t.s.r.f) if we have one of the following.
(i) For every free R-module F , F (s.t.s.r.f).
(ii) For every faithful R-module B, B (s.t.s.r.f).
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