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Abstract. We study the relation between two known n-norms on `p, the space of

p-summable sequences. One n-norm is derived from Gähler’s formula [3], while the

other is due to Gunawan [6]. We show in particular that the convergence in one

n-norm implies that in the other. The key is to show that the convergence in each

of these n-norms is equivalent to that in the usual norm on `p.
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Abstrak. Dalam makalah ini dipelajari kaitan antara dua norm-n di `p, ruang

barisan summable-p. Norm-n pertama diperoleh dari rumus Gähler [3], sementara

norm-n kedua diperkenalkan oleh Gunawan [6]. Ditunjukkan antara lain bahwa

kekonvergenan dalam norm-n yang satu mengakibatkan kekonvergenan dalam norm-

n lainnya. Kuncinya adalah bahwa kekonvergenan dalam masing-masing norm-n

tersebut setara dengan kekonvergenan dalam norm biasa di `p.

Kata kunci: ruang norm-n, ruang barisan summable-p, kesetaraan norm-n

1. Introduction

In [6], Gunawan introduced an n-norm on `p (1 ≤ p ≤ ∞), the space of
p-summable sequences (of real numbers), given by the formula

‖x1, . . . , xn‖p :=


 1

n!

∑

j1

· · ·
∑

jn

abs

∣∣∣∣∣∣∣

x1j1 · · · xnj1
...

. . .
...

x1jn · · · xnjn

∣∣∣∣∣∣∣

p


1/p
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for 1 ≤ p < ∞, and

‖x1, . . . , xn‖∞ = sup
j1

sup
j2

· · · sup
jn





abs

∣∣∣∣∣∣∣

x1j1 · · · x1jn

...
. . .

...
xnj1 · · · xnjn

∣∣∣∣∣∣∣





,

where xi = (xij), i = 1, . . . , n. For p = 2, the above formula may be rewritten as

‖x1, . . . , xn‖2 =

∣∣∣∣∣∣∣

〈x1, x1〉 · · · 〈x1, xn〉
...

. . .
...

〈xn, x1〉 · · · 〈xn, xn〉

∣∣∣∣∣∣∣

1/2

,

where 〈xi, xj〉 denotes the usual inner product on `2. Here ‖x1, . . . , xn‖2 represents
the volume of the n-dimensional parallelepiped spanned by x1, . . . , xn in `2.

In general, an n-norm on a real vector space X is a mapping ‖·, . . . , ·‖ : Xn →
R which satisfies the following four conditions:

(N1) ‖x1, . . . , xn‖ = 0 if and only if x1, . . . , xn are linearly dependent;

(N2) ‖x1, . . . , xn‖ is invariant under permutation;

(N3) ‖αx1, . . . , xn‖ = |α| ‖x1, . . . , xn‖ for α ∈ R;

(N4) ‖x1 + x′1, x2, . . . , xn‖ ≤ ‖x1, x2, . . . , xn‖+ ‖x′1, x2, . . . , xn‖.
The theory of n-normed spaces was developed by Gähler in 1969 and 1970 [3, 4, 5].
The special case where n = 2 was studied earlier, also by Gähler, in 1964 [2].
Related work may be found in [1]. For more recent works, see [7, 8, 10].

If X is equipped with a norm ‖ · ‖, then according to Gähler, one may define
an n-norm on X (assuming that X is at least n-dimensional) by the formula

‖x1, . . . , xn‖∗ := sup
fi∈X′, ‖fi‖≤1

i = 1,...,n

∣∣∣∣∣∣∣

f1(x1) · · · f1(xn)
...

. . .
...

fn(x1) · · · fn(xn)

∣∣∣∣∣∣∣
.

Here X ′ denotes the dual of X, which consists of bounded linear functionals on X.
For X = `p (1 ≤ p < ∞), we know that X ′ = `p′ with 1

p + 1
p′ = 1. In this

case the above formula reduces to

‖x1, . . . , xn‖∗p := sup
zi∈`p′ , ‖zi‖p′≤1

i = 1,...,n

∣∣∣∣∣∣∣

∑
x1jz1j · · · ∑

x1jznj

...
. . .

...∑
xnjz1j · · · ∑

xnjznj

∣∣∣∣∣∣∣
,

where ‖·‖p′ denotes the usual norm on `p′ and each of the sums is taken over j ∈ N.
Thus, on `p, we have two definitions of n-norms, one is due to Gunawan and the
other is derived from Gähler’s formula. For p = 2, one may verify that the two
n-norms are identical.

The purpose of this paper is to study the relation between the two n-norms
on `p for 1 ≤ p < ∞. In particular, we shall show that the two n-norms are weakly
equivalent, that is, the convergence in one n-norm implies that in the other. Here
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a sequence (x(m)) in an n-normed space (X, ‖·, . . . , ·‖) is said to converge to x ∈ X
if ‖x(m)− x, x2, . . . , xn‖ → 0 as m →∞, for every x2, . . . , xn ∈ X.

For convenience, we prove the result for n = 2 first, and then extend it to
any n ≥ 2.

2. Main Results

Recall that Gunawan’s definition of 2-norm on `p (1 ≤ p ≤ ∞) is given by

‖x, y‖p =


1

2

∑

j

∑

k

abs
∣∣∣∣

xj xk

yj yk

∣∣∣∣
p



1/p

if 1 ≤ p < ∞, and

‖x, y‖∞ = sup
j

sup
k

{
abs

∣∣∣∣
xj xk

yj yk

∣∣∣∣
}

.

Meanwhile, Gähler’s definition is given by

‖x, y‖∗p = sup
z,w∈`p′ , ‖z‖p′ , ‖w‖p′≤1

∣∣∣∣
∑

xjzj

∑
xjwj∑

yjzj

∑
yjwj

∣∣∣∣ .

By the same trick as in [6], one may obtain

‖x, y‖∗p = sup
z,w∈`p′ , ‖z‖p′ , ‖w‖p′≤1

1
2

∑

j

∑

k

∣∣∣∣
xj xk

yj yk

∣∣∣∣
∣∣∣∣

zj zk

wj wk

∣∣∣∣ .

From the last expression, we have the following fact.

Fact 2.1. The inequality ‖x, y‖∗p ≤ 21/p‖x, y‖p holds for every x, y ∈ `p.

Proof. By Hölder’s inequality for 1
p + 1

p′ = 1, we have

1
2

∑

j

∑

k

∣∣∣∣
xj xk

yj yk

∣∣∣∣
∣∣∣∣

zj zk

wj wk

∣∣∣∣ ≤

1

2

∑

j

∑

k

abs
∣∣∣∣

xj xk

yj yk

∣∣∣∣
p



1/p

×

1

2

∑

j

∑

k

abs
∣∣∣∣

zj zk

wj wk

∣∣∣∣
p′




1/p′
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Now, observe that

∑

j

∑

k

abs
∣∣∣∣

zj zk

wj wk

∣∣∣∣
p′




1/p′

≤

∑

j

∑

k

[|zjwk|+ |zkwj |
]p′




1/p′

≤

∑

j

∑

k

|zjwk|p
′




1/p′

+


∑

j

∑

k

|zkwj |p
′




1/p′

= 2 ‖z‖p′‖w‖p′ .

But for ‖z‖p′ , ‖w‖p′ ≤ 1 we have

1

2

∑

j

∑

k

abs
∣∣∣∣

zj zk

wj wk

∣∣∣∣
p′




1/p′

≤ 21−(1/p′) = 21/p.

This proves the inequality.
Note that for p = 1, Hölder’s inequality gives

1
2

∑

j

∑

k

∣∣∣∣
xj xk

yj yk

∣∣∣∣
∣∣∣∣

zj zk

wj wk

∣∣∣∣ ≤ ‖x, y‖1 . ‖z, w‖∞ .

But ‖z, w‖∞ ≤ 2 ‖z‖∞ ‖w‖∞ (see [6]), and so taking the supremum over ‖z‖∞ and
‖w‖∞ ≤ 1, we get ‖x, y‖∗1 ≤ 2‖x, y‖1. ¤

Corollary 2.2 If (x(m)) converges in ‖·, ·‖p, then it also converges (to the same
limit) in ‖·, ·‖∗p.

We shall show next that the convergence in ‖·, ·‖∗p also implies the convergence
in ‖·, ·‖p. We do so by showing that: (1) the convergence in ‖·, ·‖∗p implies that in
‖ · ‖p, and (2) the convergence in ‖ · ‖p implies that in ‖·, ·‖p.

The second implication is already proved in [6] (using the inequality ‖x, y‖p ≤
21−(1/p)‖x‖p‖y‖p). Hence it remains only to show the first implication.

Theorem 2.3 If (x(m)) converges in ‖·, ·‖∗p, then it also converges (to the same
limit) in ‖ · ‖p.

Proof. Let (x(m)) be a sequence in `p which converges to x ∈ `p in ‖·, ·‖∗p. Then,
for any ε > 0, there exists an N ∈ N such that for m ≥ N we have

1
2

∑

j

∑

k

∣∣∣∣
xj(m)− xj xk(m)− xk

yj yk

∣∣∣∣
∣∣∣∣

zj zk

wj wk

∣∣∣∣ < ε

for every y ∈ `p and z, w ∈ `p′ with ‖z‖p′ , ‖w‖p′ ≤ 1. [Notice here that, for each m,
we have x(m) = (xj(m)) ∈ `p.] In particular, if we take y := (1, 0, 0, . . . ), z = (zj)
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with zj := sgn(xj(m)−xj)|xj(m)−xj |p−1

‖x(m)−x‖p−1
p

and w := (1, 0, 0, . . . ), then we have

∞∑

j=2

|xj(m)− xj |p
‖x(m)− x‖p−1

p

< ε.

[Here we are handling only the case where ‖x(m) − x‖p 6= 0.] Next, if we take
y := (0, 1, 0, . . . ), z = (z1, 0, 0, . . . ) with z1 := sgn(x1(m)−x1)|x1(m)−x1|p−1

‖x(m)−x‖p−1
p

and w :=

(0, 1, 0, . . . ), then we have
|x1(m)− x1|p
‖x(m)− x‖p−1

p

< ε.

Adding up, we get

‖x(m)− x‖p =
∞∑

j=1

|xj(m)− xj |p
‖x(m)− x‖p−1

p

< 2ε.

This shows that (x(m)) converges to x in ‖ · ‖p. ¤

Corollary 2.4 A sequence is convergent in ‖·, ·‖∗p if and only if it is convergent (to
the same limit) in ‖·, ·‖p.

All these results can be extended to n-normed spaces for any n ≥ 2. As an
extension of Fact 2.1, we have:

Fact 2.5 The inequality ‖x1, . . . , xn‖∗p ≤ (n!)1/p‖x1, . . . , xn‖p holds for every x1, . . . ,
xn ∈ `p.

Corollary 2.6 If (x(m)) converges in ‖·, . . . , ·‖p, then it converges (to the same
limit) in ‖·, . . . , ·‖∗p.

Analogous to Theorem 2.3, we have:

Theorem 2.7 If (x(m)) converges in ‖·, . . . , ·‖∗p, then it also converges (to the same
limit) in ‖ · ‖p.

Proof. Let (x1(m)) be a sequence in `p which converges to x1 = (x11, x12, . . . ) ∈ `p

in ‖·, . . . , ·‖∗p. Then, for any ε > 0, there exists an N ∈ N such that for m ≥ N we
have

1
n!

∑

j1

· · ·
∑

jn

∣∣∣∣∣∣∣

x1j1(m)− x1j1 · · · x1jn(m)− x1jn

...
. . .

...
xnj1 · · · xnjn

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

z1j1 · · · z1jn

...
. . .

...
znj1 · · · znjn

∣∣∣∣∣∣∣
< ε

for every x2, . . . , xn ∈ `p and z1, . . . , zn ∈ `p with ‖z1‖ , . . . , ‖zn‖ ≤ 1. Now, take
xk = zk := (0, . . . , 0, 1, 0, . . . ) for every k = 2, . . . , n, where 1 is (n + 1 − k)-th
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term and z1 = (z11, z12, . . . ) ∈ `p′ with z1j := sgn(x1j(m)−x1j)|x1j(m)−x1j |p−1

‖x1(m)−x1‖p−1
p

, then

we have ∞∑

j1=n

|x1j1(m)− x1j1 |p
‖x1 (m)− x1‖p−1

p

< ε.

Next, if we take xk = zk := (0, . . . , 0, 1, 0, . . . ) for every k = 2, . . . , n, where 1 is
k-th term, and z1 := (z11, 0, 0, . . . ) with z11 := sgn(x11(m)−x11)|x11(m)−x11|p−1

‖x1(m)−x1‖p−1
p

, then

we have
|x11(m)− x11|p
‖x1(m)− x1‖p−1

p

< ε.

Similarly, if we alter the position of the entry 1 in xk and zk for k = 2, . . . , n, and
change the nonzero entry of z1 accordingly, then we can get

|x12(m)− x12|p
‖x1(m)− x1‖p−1

p

< ε

and so on until ∣∣x1(n−1)(m)− x1(n−1)

∣∣p

‖x1(m)− x1‖p−1
p

< ε.

Adding up, we get

‖x1(m)− x1‖p =
∞∑

j1=1

|x1j1(m)− x1j1 |p
‖x1(m)− x1‖p−1

p

< nε.

This shows that (x(m)) converges to x in ‖ · ‖p. ¤

Corollary 2.8 A sequence is convergent in ‖·, . . . , ·‖∗p if and only if it is convergent
(to the same limit) in ‖·, . . . , ·‖p.

Related to the above results, one may also prove that a sequence is Cauchy
in ‖·, . . . , ·‖∗p if and only if it is Cauchy in ‖·, . . . , ·‖p. [A sequence (x(m)) in an
n-normed space (X, ‖·, . . . , ·‖) is Cauchy if given ε > 0 there exists an N ∈ N such
that ‖x(l) − x(m), x2, . . . , xn‖ < ε whenever l, m ≥ N , for every x2, . . . , xn ∈ X.]
Since (`p, ‖·, . . . , ·‖p) is a Banach space [6], we conclude, by Theorem 2.7, that
(`p, ‖·, . . . , ·‖∗p) also forms an n-Banach space.

3. Concluding Remarks

As we have mentioned earlier, the case where p = 2 is of course special.
Here, the two n-norms ‖·, . . . , ·‖2 and ‖·, . . . , ·‖∗2 are identical. Indeed, by using
Cauchy-Schwarz inequality (see [9]), one may obtain

‖x1, . . . , xn‖∗2 = sup
zi∈`2, ‖zi‖2≤1

i = 1,...,n

∣∣∣∣∣∣∣

〈x1, z1〉 · · · 〈x1, zn〉
...

. . .
...

〈xn, z1〉 · · · 〈xn, zn〉

∣∣∣∣∣∣∣
≤ ‖x1, . . . , xn‖2.



Equivalence of n-Norms on the Space of p-Summable Sequences 7

By taking z1, . . . , zn to be the orthonormalized vectors obtained from x1, . . . , xn

through Gram-Schmidt process, one can show that the above upper bound is ac-
tually attained. Hence we have

‖x1, . . . , xn‖∗2 = ‖x1, . . . , xn‖2.
For p 6= 2, things are not so simple and we have difficulties in proving the strong
equivalence between the two n-norms ‖·, . . . , ·‖∗p and ‖·, . . . , ·‖p. The research on
this problem, however, is still ongoing.
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40 (1969), 165 - 189.
[4] Gähler, S., ”Untersuchungen über verallgemeinerte m-metrische Räume. II”, Math. Nachr.
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