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Abstract. Kotzig and Rosa (1970) conjectured that every tree admits edge-magic

total labeling. Enomoto et al. (1998) proposed the conjecture that every tree is

super edge-magic total. In this paper, we describe super (a, d)-edge-antimagic total

labelings on a subclass of the subdivided stars denoted by T (n, n, n, n, n5, n6..., nr)

for d ∈ {0, 1, 2}, where n ≥ 3 odd, r ≥ 5 and nm = 2m−4(n− 1) + 1 for 5 ≤ m ≤ r.

Key words: Super (a, d)-EAT labelings, subdivision of stars.

Abstrak. Kotzig dan Rosa (1970) telah membuat konjektur bahwa setiap tree

dapat menghasilkan edge-magic total labeling. Enomoto et al. (1998) telah membuat

konjektur bahwa setiap tree adalah super edge-magic total. Di dalam makalah ini,

kami menjelaskan super (a, d)-edge-antimagic total labeling pada sebuah sub-kelas

dari star yang terbagi yang dinyatakan oleh T (n, n, n, n, n5, n6..., nr) untuk d ∈
{0, 1, 2}, dimana n ≥ 3 ganjil, r ≥ 5 dan nm = 2m−4(n− 1) + 1 untuk 5 ≤ m ≤ r.

Kata kunci: Super (a, d)-EAT labelings, pembagian stars.

1. INTRODUCTION

All graphs in this paper are finite, undirected and simple. For a graph G, V (G)
and E(G) denote the vertex-set and the edge-set, respectively. A (v, e)-graph G
is a graph such that |V (G)| = v and |E(G)| = e. A general reference for graph-
theoretic ideas can be seen in [29]. A labeling (or valuation) of a graph is a map
that carries graph elements to numbers (usually to positive or non-negative inte-
gers). In this paper, the domain will be the set of all vertices and edges and such
a labeling is called a total labeling. Some labelings use the vertex-set only or the
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edge-set only and we shall call them vertex-labelings or edge-labelings, respectively.
A number of classification studies on edge antimagic total graphs has been inten-
sively investigated. For further studies on antimagic labelings, reader can see [13, 5].

Definition 1.1 A (s, d)-edge-antimagic vertex ((s, d)-EAV) labeling of a graph G
is a bijective function λ : V (G) → {1, 2, . . . , v} such that the set of edge-sums of all
edges in G, {w(xy) = λ(x) + λ(y) : xy ∈ E(G)}, forms an arithmetic progression
{s, s + d, s + 2d, . . . , s + (e− 1)d}, where s > 0 and d ≥ 0 are two fixed integers.

Definition 1.2. An (a, d)-edge-antimagic total ((a, d)-EAT) labeling of a graph
G is a bijective function λ : V (G) ∪ E(G) → {1, 2, . . . , v + e} such that the set
of edge-weights of all edges in G, {w(xy) = λ(x) + λ(xy) + λ(y) : xy ∈ E(G)},
forms an arithmetic progression {a, a + d, a + 2d, . . . , a + (e − 1)d}, where a > 0
and d ≥ 0 are two fixed integers. If such a labeling exists then G is said to be
an (a, d)-EAT graph. Additionally, if λ(V (G)) = {1, 2, ..., v} then λ is called a su-
per (a, d)-edge-antimagic total (super (a, d)-EAT) labeling and G becomes a super
(a, d)-EAT graph.

In the above definition, if d = 0 then (a, 0)-EAT labeling is called edge-magic to-
tal (EMT) labeling and super (a, 0)-EAT labeling is called super edge-magic total
(SEMT) labeling. The subject of edge-magic total (EMT) labeling of graphs has its
origin in the works of Kotzig and Rosa [20, 21] on what they called magic valuations
of graphs. The definition of (a, d)-EAT labeling was introduced by Simanjuntak,
Bertault and Miller in [27] as a natural extension of EMT labeling defined by Kotzig
and Rosa. A super (a, d)-EAT labeling is a natural extension of the notion of SEMT
labeling defined by Enomoto, Lladó, Nakamigawa and Ringel in [9]. Moreover, they
proposed the following conjecture:

Conjecture 1.1 Every tree admits SEMT labeling [9].

In the favour of this conjecture, many authors have proved the existence of SEMT
labelings for various particular classes of trees for examples [1-8, 10-12, 14-17, 24,
25, 28, 29]. Lee and Shah [22] verified this conjecture by a computer search for
trees with at most 17 vertices. However, this conjecture is still open. Bača et al.
investigated the following relationship between (s, d)-EAV labeling and (a, d)-EAT
labeling [3]:

Proposition 1.1. If a (v, e)-graph G has a (s, d)-EAV labeling then G admits

(i) a super (s + v + 1, d + 1)-EAT labeling,
(ii) a super (s + v + e, d− 1)-EAT labeling. �
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The notion of dual labeling has been introduced by Wallis [30]. The next lemma
follows from the principal of duality, which is first studied by Baskoro [8].

Lemma 1.1 If g is a super edge-magic total labeling of G with the magic constant
c, then the function g1 : V (G) ∪ E(G) → {1, 2, ..., v + e} defined by

g1(x) =

 v + 1− g(x), for x ∈ V (G),

2v + e + 1− g(x), for x ∈ E(G),

is also a super-magic total labeling of G with the magic constant c1 = 4v+e+3−c. �

Definition 1.3 For ni ≥ 1 and r ≥ 2, let G ∼= T (n1, n2, ..., nr) be a graph obtained
by inserting ni−1 vertices to each of the ith edge of the star K1,r, where 1 ≤ i ≤ r.
Thus, the graph T (1, 1, ..., 1)︸ ︷︷ ︸

r−times

is a star K1,r.

Subdivided stars form a particular class of trees and many authors have proved the
antimagicness for various subclasses of subdivided stars as follows:

• Lu [23, 24] has called the subdivided star T (m,n, k) as a three-path tree.
Moreover, he has proved that it is a SEMT graph if n and m are odd with
k = n + 1 or k = n + 2.

• Ngurah et al. [25] have proved that T (m,n, k) is a SEMT graph if n and
m are odd with k = n + 3 or k = n + 4.

• In [26], Salman et al. have found the results related to SEMT labelings
on the subdivision of stars Sm

n for m = 1, 2, where S1
n
∼= T (2, 2, ..., 2)︸ ︷︷ ︸

n−times

and

S2
n
∼= T (3, 3, ..., 3)︸ ︷︷ ︸

n−times

.

• In [16], Javaid et al. have formulated SEMT labelings on the subdivision
of star K1,4 and w-trees.

• Javaid and Akhlaq [17] have proved that the subdivided stars T (n, n, n +
2, n + 2, n5, ..., np) admit super (a, d)-EAT labelings, where n ≥ 3 is odd,
r ≥ 5 and nm = 1 + (n + 1)2m−4 for 5 ≤ m ≤ r.

However, the problem to find super (a, d)-EAT labelings on T (n1, n2, n3, ..., nr) for
different {ni : 1 ≤ i ≤ r} is still open. In this paper, for d ∈ {0, 1, 2}, we find super
(a, d)-EAT labelings on the subdivided stars T (n, n, n, n, n5, n6, ..., nr), where n ≥ 3
is odd, r ≥ 5 and nm = 2m−4(n− 1) + 1 for 5 ≤ m ≤ r.

2. BOUNDS OF MAGIC CONSTANT

In this section, we present different lemmas related to lower and upper bounds of
the magic constant a for various subclasses of subdivided stars.
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Ngurah et al. [25] found the following lower and upper bounds of the magic con-
stant a for a particular subclass of the subdivided stars denoted by T (m,n, k),
which is given below:

Lemma 2.1. If T (m,n, k) is a super (a, 0)-EAT graph, then 1
2l (5l2 + 3l + 6) ≤

a ≤ 1
2l (5l2 + 11l − 6), where l = m + n + k .

The lower and upper bounds of the magic constant a for a particular subclass of
the subdivided stats T (n, n, ..., n)︸ ︷︷ ︸

n−times

are established by Salman et al. [26] as follows:

Lemma 2.2. If T (n, n, ..., n)︸ ︷︷ ︸
n−times

is a super (a, 0)-EAT graph, then 1
2l (5l2 + (9 −

2n)l + n2 − n) ≤ a ≤ 1
2l (5l2 + (2n + 5)l + n− n2), where l = n2. �

Javaid [19] has proved lower and upper bounds of the magic constant a for the
most extended subclasses of the subdivided stars denoted by T (n1, n2, n3, ..., nr)
with any ni ≥ 1 for 1 ≤ i ≤ r, which is presented in the following lemma:

Lemma 2.3. If T (n1, n2, n3, ..., nr) is a super (a, 0)-EAT graph, then 1
2l (5l2 +r2−

2lr + 9l − r) ≤ a ≤ 1
2l (5l2 − r2 + 2lr + 5l + r), where l =

r∑
i=1

ni. �

3. SUPER (a, d)-EAT LABELINGS OF SUBDIVIDED STARS

In this section, we prove the main results related to super (a, d)-EAT labelings on
a particular subclass of the subdivided stars for different values of the parameter
d.

Theorem 2.1. For any odd n ≥ 3, G ∼= T (n, n, n, n, 2n− 1) admits a super (a, 0)-
EAT labeling with a = 2v+s−1 and a super (á, 2)-EAT labeling with á = v+s+1,
where v = |V (G)| and s = 3n + 4.
Proof. Let us denote the vertices and edges of G, as follows:
V (G) = {c} ∪ {xli

i | 1 ≤ i ≤ 5 ; 1 ≤ li ≤ ni}, E(G) = {c x1
i | 1 ≤ i ≤5} ∪

{xli
i xli+1

i | 1 ≤ i ≤ 5 ; 1 ≤ li ≤ ni − 1}. If v = |V (G)| and e = |E(G)| then v = 6n,
and e = 6n− 1. Now, we define the labeling λ : V (G) → {1, 2, ..., v} as follows:

λ(c) = 4n + 2.
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For 1 ≤ li ≤ ni odd;

λ(u) =



l1+1
2 , for u = xl1

1 ,

(n + 2)− l2+1
2 , for u = xl2

2 ,

(n + 1) + l3+1
2 , for u = xl3

3 ,

(2n + 3)− l4+1
2 , for u = xl4

4

(3n + 3)− l5+1
2 , for u = xl5

5 .

For 2 ≤ li ≤ ni − 1 even;

λ(u) =



(3n + 2) + l1
2 , for u = xl1

1 ,

(4n + 2)− l2
2 , for u = xl2

2 ,

(4n + 2) + l3
2 , for u = xl3

3 ,

(5n + 2)− l4
2 , for u = xl4

4 ,

(6n + 1)− l5
2 , for u = xl5

5 .

The set of all edge-sums generated by the above formulas forms a consecutive integer
sequence s = 3n+4, 3n+5, · · · , 3n+3+e. Therefore, by Proposition 1.1, λ can be
extended to a super (a, 0)-EAT labeling with magic constant a = 2v+s−1 = 15n+3
and to a super (á, 2)-EAT labeling with minimum edge-weight á = v+1+s = 9n+5.
�

Theorem 2.2. For any odd n ≥ 3, G ∼= T (n, n, n, n, 2n − 1) admits a super
(a, 1)-EAT labeling with a = s + 3v

2 , where v = |V (G)| and s = 3n + 4.
Proof. Let us consider the vertex and edge set of G and the labeling λ : V (G) →
{1, 2, ..., v} by the same manner as in Theorem 2.1. It follows that edge-sums of all
the edges of G constitute an arithmetic sequence 3n+4, 3n+5, · · · , 3n+3+e, with
common difference 1. We denote it by A = {ai; 1 ≤ i ≤ e}. Now to show that λ is
an (a, 1)-EAT labeling of G, define the set of edge-labels as B = {bj = v + j ; 1 ≤
j ≤ e}. The set of edge-weights can be obtained as C = {a2i−1 + be−i+1 ; 1 ≤ i ≤
e+1
2 } ∪ {a2j + b e−1

2 −j+1 ; 1 ≤ j ≤ e+1
2 − 1}. It is easy to see that C constitutes an

arithmetic sequence with d = 1 and a = s + 3v
2 = 12n + 4. Since all vertices receive

the smallest labels, λ is a super (a, 1)-EAT labeling. �

Theorem 2.3. For any odd n ≥ 3, G ∼= T (n, n, n, n, 2n − 1, 4n − 3) admits a
super (a, 0)-EAT labeling with a = 2v + s− 1 and a super (á, 2)-EAT labeling with
á = v + s + 1, where v = |V (G)| and s = 5n + 3.
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Proof. Let us denote the vertices and edges of G, as follows:
V (G) = {c} ∪ {xli

i | 1 ≤ i ≤ 6 ; 1 ≤ li ≤ ni}, E(G) = {c x1
i | 1 ≤ i ≤6} ∪

{xli
i xli+1

i | 1 ≤ i ≤ 6 ; 1 ≤ li ≤ ni − 1}. If v = |V (G)| and e = |E(G)| then v =
10n − 3, and e = 10n − 4. Now, we define the labeling λ : V (G) → {1, 2, ..., v} as
follows:

λ(c) = 6n + 1.

For 1 ≤ li ≤ ni odd;

λ(u) =



l1+1
2 , for u = xl1

1 ,

(n + 2)− l2+1
2 , for u = xl2

2 ,

(n + 1) + l3+1
2 , for u = xl3

3 ,

(2n + 3)− l4+1
2 , for u = xl4

4

(3n + 3)− l5+1
2 , for u = xl5

5 ,

(5n + 2)− l6+1
2 , for u = xl6

6 .

For 2 ≤ li ≤ ni − 1 even;

λ(u) =



(5n + 1) + l1
2 , for u = xl1

1 ,

(6n + 1)− l2
2 , for u = xl2

2 ,

(6n + 1) + l3
2 , for u = xl3

3 ,

(7n + 1)− l4
2 , for u = xl4

4 ,

8n− l5
2 , for u = xl5

5 ,

(10n− 2)− l6
2 , for u = xl6

6 .

The set of all edge-sums generated by the above formulas forms a consecutive
integer sequence s = 5n + 3, 5n + 4, · · · , 5n + 2 + e. Therefore, by Proposi-
tion 1.1, λ can be extended to a super (a, 0)-EAT labeling with magic constant
a = 2v + s− 1 = 25n− 4 and to a super (á, 2)-EAT labeling with minimum edge-
weight á = v + 1 + s = 15n + 1. �

Theorem 2.4. For any odd n ≥ 3, G ∼= T (n, n, n, n, 2n− 1, 4n− 3, 8n− 7) admits
a super (a, 0)-EAT labeling with a = 2v + s − 1 and a super (á, 2)-EAT labeling
with á = v + s + 1, where v = |V (G)| and s = 9n.
Proof. Let us denote the vertices and edges of G, as follows:
V (G) = {c} ∪ {xli

i | 1 ≤ i ≤ 7 ; 1 ≤ li ≤ ni}, E(G) = {c x1
i | 1 ≤ i ≤7} ∪

{xli
i xli+1

i | 1 ≤ i ≤ 7 ; 1 ≤ li ≤ ni − 1}. If v = |V (G)| and e = |E(G)| then v =
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18n− 10, and e = 18n− 11. Now, we define the labeling λ : V (G) → {1, 2, ..., v} as
follows:

λ(c) = 10n− 2.

For 1 ≤ li ≤ ni odd;

λ(u) =



l1+1
2 , for u = xl1

1 ,

(n + 2)− l2+1
2 , for u = xl2

2 ,

(n + 1) + l3+1
2 , for u = xl3

3 ,

(2n + 3)− l4+1
2 , for u = xl4

4

(3n + 3)− l5+1
2 , for u = xl5

5 ,

(5n + 2)− l6+1
2 , for u = xl6

6

(9n− 1)− l7+1
2 , for u = xl7

7 .

For 2 ≤ li ≤ ni − 1 even;

λ(u) =



(9n− 2) + l1
2 , for u = xl1

1 ,

(10n− 2)− l2
2 , for u = xl2

2 ,

(10n− 2) + l3
2 , for u = xl3

3 ,

(11n− 2)− l4
2 , for u = xl4

4 ,

(12n− 3)− l5
2 , for u = xl5

5 ,

(14n− 5)− l6
2 , for u = xl6

6

(18n− 9)− l7
2 , for u = xl7

7 .

The set of all edge-sums generated by the above formulas forms a consecutive integer
sequence s = 9n, 9n+1, · · · , 9n−1+e. Therefore, by Proposition 1.1, λ can be ex-
tended to a super (a, 0)-EAT labeling with magic constant a = 2v+s−1 = 45n−21
and to a super (á, 2)-EAT labeling with minimum edge-weight á = v + 1 + s =
27n− 9. �

Theorem 2.5. For any odd n ≥ 3, G ∼= T (n, n, n, n, 2n− 1, 4n− 3, 8n− 7) admits
a super (a, 1)-EAT labeling with a = s + 3v

2 , where v = |V (G)| and s = 9n.
Proof. Let us consider the vertex and edge set of G and the labeling λ : V (G) →
{1, 2, ..., v} by the same manner as in Theorem 2.4. It follows that edge-sums of all
the edges of G constitute an arithmetic sequence 9n, 9n + 1, · · · , 9n − 1 + e, with
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common difference 1. We denote it by A = {ai; 1 ≤ i ≤ e}. Now to show that λ is
an (a, 1)-EAT labeling of G, define the set of edge-labels as B = {bj = v + j ; 1 ≤
j ≤ e}. The set of edge-weights can be obtained as C = {a2i−1 + be−i+1 ; 1 ≤ i ≤
e+1
2 } ∪ {a2j + b e−1

2 −j+1 ; 1 ≤ j ≤ e+1
2 − 1}. It is easy to see that C constitutes

an arithmetic sequence with d = 1 and a = s + 3v
2 = 36n − 15. Since all vertices

receive the smallest labels, λ is a super (a, 1)-EAT labeling. �

Theorem 2.6. For any n ≥ 3 odd, G ∼= T (n, n, n, n, n5, ..., nr) admits a super
(a, 0)-EAT labeling with a = 2v + s − 1 and a super (á, 2)-EAT labeling with

á = v + s + 1 where v = |V (G)|, s = (2n + 4) +
r∑

m=5
[2m−5(n − 1) + 1], r ≥ 5 and

nm = 2m−4(n− 1) + 1 for 5 ≤ m ≤ r.
Proof. Let us denote the vertices and edges of G, as follows:
V (G) = {c} ∪ {xli

i | 1 ≤ i ≤ r ; 1 ≤ li ≤ ni}, E(G) = {c x1
i | 1 ≤ i ≤r} ∪

{xli
i xli+1

i | 1 ≤ i ≤ r ; 1 ≤ li ≤ ni − 1}. If v = |V (G)| and e = |E(G)| then v =

(4n + 1) +
r∑

m=5
[2m−4(n − 1) + 1] and e = v − 1. Now, we define the labeling

λ : V (G) → {1, 2, ..., v} as follows:

λ(c) = (3n + 2) +
r∑

m=5

[2m−5(n− 1) + 1].

For 1 ≤ li ≤ ni odd, where i = 1, 2, 3, 4 and 5 ≤ i ≤ r, we define

λ(u) =



l1+1
2 , for u = xl1

1 ,

(n + 2)− l2+1
2 , for u = xl2

2 ,

(n + 1) + l3+1
2 , for u = xl3

3 ,

(2n + 3)− l4+1
2 , for u = xl4

4 .

λ(xli
i ) = (2n + 3) +

i∑
m=5

[2m−5(n− 1) + 1]− li + 1
2

respectively.

Let α = (2n + 2) +
r∑

m=5
[2m−5(n − 1) + 1]. For 2 ≤ li ≤ ni even, and 1 ≤ i ≤ r,

we define
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λ(u) =



α + l1
2 , for u = xl1

1 ,

(α + n)− l2
2 , for u = xl2

2 ,

(α + n) + l3
2 , for u = xl3

3 ,

(α + 2n)− l4
2 , for u = xl4

4 .

and

λ(xli
i ) = (α + 2n) +

i∑
m=5

[2m−5(n− 1)]− li
2

.

The set of all edge-sums generated by the above formulas forms a consecutive inte-
ger sequence s = α + 2, α + 3, · · · , α + 1 + e. Therefore, by Proposition 1.1, λ can
be extended to a super (a, 0)-EAT labeling with magic constant a = v + e + s =

2v + (2n + 3) +
r∑

m=5
[2m−5(n− 1) + 1] and to a super (á, 2)-EAT labeling with min-

imum edge-weight á = v + 1 + s = v + (2n + 5) +
r∑

m=5
[2m−5(n− 1) + 1]. �

Theorem 2.7. For any n ≥ 3 odd, G ∼= T (n, n, n, n, n5, ..., nr) admits super (a, 1)-
EAT labeling with a = s + 3v

2 if v is even, where v = |V (G)|, s = (2n + 4) +
r∑

m=5
[2m−5(n− 1) + 1], r ≥ 5, and nm = 2m−4(n− 1) + 1 for 5 ≤ m ≤ r.

Proof. Let us consider the vertex and edge set of G and the labeling λ : V (G) →
{1, 2, ..., v} by the same manner as in Theorem 2.6. It follows that edge-sums of all
the edges of G constitute an arithmetic sequence s = α+2, α+3, · · · , α+1+e with

common difference 1, where α = (2n + 2) +
r∑

m=5
[2m−5(n− 1) + 1]. We denote it by

A = {ai; 1 ≤ i ≤ e}. Now to show that λ is an (a, 1)-EAT labeling of G, define the
set of edge-labels as B = {bj = v+j ; 1 ≤ j ≤ e}. The set of edge-weights can be ob-
tained as C = {a2i−1 +be−i+1 ; 1 ≤ i ≤ e+1

2 }∪{a2j +b e−1
2 −j+1 ; 1 ≤ j ≤ e+1

2 −1}.
It is easy to see that C constitutes an arithmetic sequence with d = 1 and a = s+ 3v

2 .
Since, all vertices receive the smallest labels, λ is a super (a, 1)-EAT labeling. �

From Theorems 2.1, 2.3, 2.4 and 2.6 by the principal of duality it follows that we
can find the super (a, 0)-EAT labelings with different magic constant. Thus, we
have the following corollaries:

Corollary 2.1. For any odd n ≥ 3, T (n, n, n, n, 2n− 1) admits a super (a, 0)-EAT
total labeling with magic constant a = 15n− 1.
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Corollary 2.2. For any odd n ≥ 3, T (n, n, n, n, 2n − 1, 4n − 3) admits a super
(a, 0)-EAT labeling with magic constant a = 25n− 9.

Corollary 2.3. For any odd n ≥ 3, T (n, n, n, n, 2n − 1, 4n − 3, 8n − 7) admits a
super (a, 0)-EAT labeling with magic constant a = 45n− 27.

Corollary 2.4. For any n ≥ 3 odd, and r ≥ 5, T (n, n, n, n, n5, ..., nr) admits a

super (a, 0)-EAT total labeling with a = 3v − (2n + 1) −
r∑

m=5
[2m−5(n − 1) + 1],

where nm = 2m−4(n− 1) + 1 for 5 ≤ m ≤ r.

4. CONCLUSION

In this paper, we have proved that a subclass of subdivided stars denoted by
T (n, n, n, n, n5, ..., nr), admits super (a, d)-EAT labelings for d = 0, 1, 2, when n ≥ 3
is odd, r ≥ 5 and nm = 2m−4(n− 1) + 1 for 5 ≤ m ≤ r.
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