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Abstract. This paper establishes certain sufficient conditions to guarantee the non-

existence of periodic solutions for a class of nonlinear vector differential equations

of fifth order. With this work, we extend and improve two related results in the

literature from scalar cases to vectorial cases. An example is given to illustrate the

theoretical analysis made in this paper.
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Abstrak. Makalah ini membahas kondisi cukup untuk menjamin non-eksistensi

dari solusi periodek untuk suatu kelas vektor nonlinear dari persamaan differensial

orde lima. Dalam pembahasan makalah ini, dua hasil terkait yang ada dalam liter-

atur telah dikembankan dan diperluas dari kasus skalar menjadi kasus vektor. Se-

buah contoh diberikan untuk mengilustrasikan analisis teoritis yang dibahas dalam

makalah ini.

Kata kunci: .

1. Introduction

It is well known that in applied sciences, some practical problems concern-
ing mechanics, the engineering technique fields, economy, control theory, physics,
chemistry, biology, medicine, atomic energy, information theory, etc. are associated
with certain differential equations of higher order. Here, we would not like to give
the details of them. By this time, perhaps, the most effective basic tool in the
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literature to investigate the qualitative behaviors of certain differential equations
whose orders are more than two is the Lyapunov’s direct method. Hence, Lyapunov
functions have been successfully used and are still being used to discuss stability,
instability, existence and non-existence of periodic solutions, etc. of differential
equations whose orders are more than two.

In (2012), Tejumola [10] investigated the non-existence of periodic solutions
to the following nonlinear scalar differential equations of fifth order

x(5) + φ1(
...
x )x(4) + φ2(ẍ)

...
x + φ3(ẋ)ẍ+ φ4(ẋ) + φ5(x) = 0 (1)

and

x(5) + b1x
(4) + ψ2(ẍ)

...
x + ψ3(ẋ)ẍ+ ψ4(ẋ) + ψ5(x) = 0. (2)

The author established certain sufficient conditions which guarantee that
Eq.(1) and Eq.(2) have no non-trivial periodic solutions of whatever period with
the aid of the Lyapunov’s direct method.

In this direction, in recent years, Ezeilo [1]-[3], Li and Duan [6], Li and Yu
[7], Sadek [8], Sun and Hou [9], Tejumola [10], Tunc [11]-[13], [15], Tunc and Erdo-
gan [16], Tunc and Karta [17], Tunc and Şevli [18], etc., continued to discuss the
existence, non-existence of periodic solutions and instability of solutions to certain
nonlinear scalar and vector differential equations of fifth order by the Lyapunov’s
second method. These researchers obtained many new and considerable results
concerning to the mentioned topics. It should be noted that throughout these
mentioned papers, the Lyapunov’s direct method has been used as a basic tool to
investigate the main results thereof.

In this paper, we focus on the work of Tejumola [10]. Namely, instead of
Eq.(1) and Eq.(2), we consider their following vectorial forms:

X(5) + Φ1(
...
X)X(4) + Φ2(Ẍ)

...
X + Φ3(Ẋ)Ẍ + Φ4(Ẋ) + Φ5(X) = 0 (3)

and

X(5) +AX(4) + Ψ2(Ẍ)
...
X + Ψ3(Ẋ)Ẍ + Ψ4(Ẋ) + Ψ5(X) = 0, (4)

respectively, where X ∈ <n; A is a constant n × n-symmetric matrix; Φ1, Φ2,
Φ3, Ψ2 and Ψ3 are n × n-symmetric continuous matrix functions; Φ4 : <n → <n,
Φ5 : <n → <n,Ψ4 : <n → <n,Ψ5 : <n → <n with Φ4(0) = Φ5(0) = Ψ4(0) =
Ψ5(0) = 0 are continuous functions and so constructed such that the uniqueness
theorem is valid.

Instead of Eq.(3) and Eq.(4), we consider their equivalent differential systems:

Ẋ = Y, Ẏ = Z, Ż = W, Ẇ = U,

U̇ = −Φ1(W )U − Φ2(Z)W − Φ3(Y )Z − Φ4(Y )− Φ5(X), (5)

and

Ẋ = Y, Ẏ = Z, Ż = W, Ẇ = U,

U̇ = −AU −Ψ2(Z)W −Ψ3(Y )Z −Ψ4(Y )−Ψ5(X), (6)
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respectively.

For the sake of the brevity, we assume that the symbol JΦ1(W ), JΦ2(Z),
JΦ4

(Y ), JΦ5
(X), JΨ2

(Z), JΨ3
(Y ), JΨ4

(Y ) and JΨ5
(X) denote the Jacobian ma-

trices corresponding to Φ1, Φ2, Φ4, Φ5,Ψ2,Ψ3,Ψ4 and Ψ5, respectively. In addi-
tion, it is assumed, as basic throughout the paper, that these Jacobian matrices
exist and are continuous and symmetric.

We establish two new theorems on the non-existence of periodic solutions
of Eq.(3) and Eq.(4). This paper is inspired by the results established in the
aforementioned papers, Tunc [14] and in the literature. Our aim is to generalize
and improve the results of Tejumola [10, Theorem 3, 5]. This paper has also a
contribution to the subject in the literature, and it may be useful for researchers
who work on the qualitative behaviors of solutions. The equation considered and
the assumptions to be established here are different from those in aforementioned
papers and in the literature.

The symbol 〈X,Y 〉 corresponding to any pair X,Y in <n stands for the
usual scalar product

∑n
i=1 xiyi and λi(A), (A = (aij)), (i, j = 1, 2, . . . , n) are the

eigenvalues of the n×n-symmetric matrix A and the matrix A = (aij) is said to be
positive definite if and only if the quadratic form XTAX is positive definite, where
X ∈ <n and XT denotes the transpose of X.

Consider the linear constant coefficient differential equation of fifth order:

x(5) + a1x
(4) + a2

...
x + a3ẍ+ a4ẋ+ a5x = 0, (7)

where a1, a2, . . . , a5 are some real constants. It can be seen from Tejumola [10]
that if either of the conditions

(i) a1 6= 0, sgn a1 = sgn a5, a3 sgn a1 < 0

and

(ii) a2 < 0, a4 > 0

holds, then Eq.(7) has no non-trivial periodic solutions of any period. It
should also be noted that these odd and even subscripts features run through the
generalized criteria obtained for the non-linear equations studied here.

2. Main Results

The following lemma plays a key role in proving our main results.

Lemma 2.1. (Horn and Johnson [4]) Let A be a real n×n-symmetric matrix and

a′ ≥ λi(A) ≥ a, (i = 1, 2, . . . , n)

where a′ and a are some positive constants. Then

a′ 〈X,X〉 ≥ 〈AX,X〉 ≥ a 〈X,X〉

and

a′2 〈X,X〉 ≥ 〈AX,AX〉 ≥ a2 〈X,X〉 .
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Our first main result is the following theorem.

Theorem 2.2. In addition to the basic assumptions imposed on Φ1, Φ2, Φ3, Φ4

and Φ5 that appearing in Eq.(3), we assume that there are positive constants a1, a4

and a5 and a3(< 0) such that the following assumptions hold:

λi(Φ1(W )) ≥ a1, λi(Φ3(Y )) ≤ a3, λi(JΦ4
(Y )) ≥ a4,

Φ5 (0) = 0, Φ5(X) 6= 0, when X 6= 0, λi(JΦ5
(X)) ≥ a5.

Then, Eq.(3) has no non-trivial periodic solution of whatever period.

Remark 1. There is no restriction on matix function Φ2 except Φ2 is an
n× n-symmetric continuous matrix function.

Remark 2. To complete the proof of Theorem 1, subject to the assump-
tions of Theorem 1, we have to show that there exists a Lyapunov function V =
V (X,Y, Z,W,U), which satisfies the following Krasovskiis [5] criteria:

(K1): In every neighborhood of (0, 0, 0, 0, 0) there exists a point (ξ, η, ζ, µ, ρ)
such that V (ξ, η, ζ, µ, ρ) > 0;

(K2): the time derivative V̇ along solution paths of the system (5) is positive
semi-definite;

(K3): the only solution (X,Y, Z,W,U) = (X(t), Y (t), Z(t),W (t), U(t)) of sys-

tem (5) which satisfies V̇ = 0, (t ≥ 0), is the trivial solution (0, 0, 0, 0, 0).

These properties guarantee that Eq.(3) has no non-trivial periodic solution of any
period.

It should be noted that a similar discussion can be made for our second main
result, Theorem 2.

Proof. To prove Theorem 1, we define a Lyapunov function V = V (X,Y, Z,W,U):

V =

∫ 1

0

〈Φ1(σW )W,Z〉 dσ +

∫ 1

0

〈σΦ2(σZ)Z,Z〉 dσ − 1

2
〈W,W 〉

+

∫ 1

0

〈Φ4(σY ), Y 〉 dσ + 〈Φ5(X), Y 〉+ 〈U,Z〉 . (8)

First, it is easy to see from (8) that

V (0, 0, 0, 0, 0) = 0.

In view of the estimates ∂
∂σΦ4(σY ) = JΦ4(σY )Y and Φ4(0) = 0, it follows, on

integrating both sides from σ1 = 0 to σ1 = 1, that

Φ4(Y ) =

∫ 1

0

JΦ4
(σ1Y )Y dσ1.

Hence, we have∫ 1

0

〈Φ4(σY ), Y 〉 dσ =

∫ 1

0

∫ 1

0

〈σ1JΦ4
(σ1σ2Y )Y, Y 〉 dσ2dσ1

≥
∫ 1

0

∫ 1

0

〈σ1a4Y, Y 〉 dσ2dσ1 ≥
1

2
a4 〈Y, Y 〉
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by the assumption λi(JΦ4
(Y )) ≥ a4.

Using this estimate, one can easily see that

V (0, ε, 0, 0, 0) ≥ 1

2
a4 〈ε, ε〉 =

1

2
a4 ‖ε‖2 > 0

for all arbitrary ε 6= 0, ε ∈ <n, which verifies the property (K1) of Krasovskii [5].

Let (X,Y, Z,W,U) = (X(t), Y (t), Z(t),W (t), U(t)) be an arbitrary solution
of system (5). Differentiating the Lyapunov function V with respect to the time t
along this solution, we get

d

dt
V =

d

dt

∫ 1

0

〈Φ1(σW )W,Z〉 dσ + 〈JΦ5
(X)Y, Y 〉+

d

dt

∫ 1

0

〈σΦ2(σZ)Z,Z〉 dσ

−〈Φ3(Y )Z,Z〉+
d

dt

∫ 1

0

〈Φ4(σY ), Y 〉 dσ − 〈Φ1(W )U,Z〉

(9)

−〈Φ2(Z)W,Z〉 − 〈Φ4(Y ), Z〉 .

It can be checked that

d

dt

∫ 1

0

〈Φ1(σW )W,Z〉 dσ =

∫ 1

0

〈Φ1(σW )W,W 〉 dσ +

∫ 1

0

σ
∂

∂σ
〈Φ1(σW )U,Z〉 dσ

+

∫ 1

0

〈Φ1(σW )U,Z〉 dσ

= σ 〈Φ1(σW )U,Z〉
∣∣1
0 +

∫ 1

0

〈Φ1(σW )W,W 〉 dσ

= 〈Φ1(W )U,Z〉+

∫ 1

0

〈Φ1(σW )W,W 〉 dσ,

d

dt

∫ 1

0

〈σΦ2(σZ)Z,Z〉 dσ =

∫ 1

0

σ
∂

∂σ
〈Φ2(σZ)W,Z〉 dσ +

∫ 1

0

〈σΦ2(σZ)W,Z〉 dσ

= σ2 〈Φ2(σZ)W,Z〉 |10 = 〈Φ2(σZ)W,Z〉

and

d

dt

∫ 1

0

〈Φ4(σY ), Y 〉 dσ =

∫ 1

0

σ 〈JΦ4(σY )Z, Y 〉 dσ +

∫ 1

0

〈Φ2(σY ), Z〉 dσ

=

∫ 1

0

σ
∂

∂σ
〈Φ4(σY ), Z〉 dσ +

∫ 1

0

〈Φ4(σY ), Z〉 dσ

= σ 〈Φ4(σY ), Z〉
∣∣1
0 = 〈Φ4(Y ), Z〉 .

Combining the last three estimates into (9) and in viewing of Lemma and the as-
sumptions of Theorem 1, λi(Φ1(W )) ≥ a1 > 0, λi(Φ3(Y )) ≤ a3 < 0, λi(JΦ5

(X)) ≥
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a5 > 0, we obtain

V̇ = 〈JΦ5(X)Y, Y 〉 − 〈Φ3(Y )Z,Z〉+

∫ 1

0

〈Φ1(σW )W,W 〉 dσ ≥ 0,

which verifies the property (K2) of Krasovskii [5].

Thus, the assumptions of Theorem 1 imply that V̇ (t) ≥ 0 for all t ≥ 0, that is,

V̇ is positive semi-definite. Finally, V̇ = 0, (t ≥ 0), necessarily implies that Y = 0

for all t ≥ 0, and Z = Ẏ = 0, W = Ÿ = 0, Ẇ =
...
Y = 0 for all t ≥ 0 so that

X = ξ, (ξ 6= 0 is a constant vector) , Y = Z = W = U = 0.

From the last estimate and system (5), we have Φ5(ξ) = 0 which necessarily
implies that ξ = 0 since Φ5 (0) = 0. Then

X = Y = Z = W = U = 0 for all t ≥ 0,

which verifies the property (K3) of Krasovskii [5]. Therefore, the Lyapunov function
has the entire criteria of Krasovskii [5] if the assumptions of Theorem 1 hold. Thus,
the basic properties of the Lyapunov function which were shown above, prove that
system (5) has no non-trivial periodic solutions of whatever period. Since system
(5) is equivalent to Eq.(3), this completes the proof of Theorem 1.

Example. As a special case of system (5), we choose Φ1,Φ2,Φ3,Φ4 and Φ5

as the following:

Φ1 (W ) =

[
2 + (1 + w2)−1 1

1 2 + (1 + w2)−1

]
,

Φ2(Z) =

[
−2− z2 1

1 −2− z2

]
,

Φ3(Z) =

[
−4− y2 1

1 −4− y2

]
,

Φ4(Z) =

[
2y + arctan y
2y + arctan y

]
, Φ4(0) = 0,

Φ5(Z) =

[
3x+ arctanx
3x+ arctanx

]
, Φ5(0) = 0.

It follows from Φ4 and Φ5 that

JΦ4
(Y ) =

[
2 + (1 + y2)−1 0

0 2 + (1 + y2)−1

]
and

λi(JΦ5
(X)) =

[
3 + (1 + x2)−1 0

0 3 + (1 + x2)−1

]
.

Then, respectively, we get

λ1(Φ1(W )) = 1 +
1

1 + w2
, λ2(Φ1(W )) = 3 +

1

1 + w2
,
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λi(Φ1(W )) ≥ 1 = a1,

λ1(Φ2(Z)) = −1− z2, λ2(Φ2(Z)) = −3− z2,

λi(Φ2(Z)) < 0,

λ1(Φ3(Y )) = −3− y2, λ2(Φ3(Y )) = −5− y2,

λi(Φ3(Y )) ≤ −3 = a3,

λ1(JΦ4
(Y )) = 2 +

1

1 + y2
, λ2(JΦ4

(Y )) = 2 +
1

1 + y2
,

λi(JΦ4(Y )) ≥ 2 = a4,

λ1(JΦ5
(X)) = 3 +

1

1 + x2
, λ2(JΦ5

(X)) = 3 +
1

1 + x2
,

λi(JΦ5
(X)) ≥ 3 = a5.

Thus, it is shown that all the assumptions of Theorem1 hold.

Our second main result is the following theorem.

Theorem 2.3. In addition to the basic assumptions imposed on A, Ψ2, Ψ3, Ψ4

and Ψ5 that appearing in Eq.(4), we assume that there are constants b1(> 0), b2(<
0), b3(< 0), b4(> 0) and b5(> 0) such that the following conditions hold:

λi(A) ≥ b1, λi(Ψ2(Z)) ≤ b2, λi(Ψ3(Y )) ≤ b3,

λi(JΨ4
(Y )) ≥ b4, Ψ5(0) = 0, Ψ5(X) 6= 0 when X 6= 0, λi(Ψ5(Y )) ≥ b5.

Then, Eq.(4) has no non-trivial periodic solution of whatever period.

Proof. To prove Theorem 2, we define a Lyapunov function V1 = V1 (X,Y, Z,W,U):

V1 = −
∫ 1

0

〈Ψ2(σZ)Z, Y 〉 dσ − 〈U, Y 〉 −
∫ 1

0

〈σΨ3(σY )Y, Y 〉 dσ

−
∫ 1

0

〈Ψ5(σX), X〉 dσ − 〈AY,W 〉+
1

2
〈AZ,Z〉+ 〈Z,W 〉 . (10)

It is easy to see from (10) that

V (0, 0, 0, 0, 0) = 0.
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and

V (0, 0, ε, ε, 0) ≥ 1

2
〈Aε, ε〉+ 〈ε, ε〉

≥ 1

2
(b1 + 1) ‖ε‖2 > 0,

for all arbitrary ε 6= 0, ε ∈ <n by the assumption λi(A) ≥ b1 > 0.

Finally, let (X,Y, Z,W,U) = (X(t), Y (t), Z(t),W (t), U(t)) be an arbitrary
solution of system (6). Differentiating the Lyapunov function V1 with respect to
the time t along this solution, we obtain

V̇1 = − d

dt

∫ 1

0

〈Ψ2(σZ)Z, Y 〉 dσ − d

dt

∫ 1

0

〈σΨ3(σY )Y, Y 〉 dσ

− d

dt

∫ 1

0

〈Ψ5(σX), X〉 dσ + 〈Ψ2(Z)W,Y 〉

(11)

+ 〈Ψ3(Y )Z, Y 〉+ 〈Ψ4(Y ), Y 〉+ 〈Ψ5(X), Y 〉+ 〈W,W 〉 .

It can be checked that

d

dt

∫ 1

0

〈Ψ2(σZ)Z, Y 〉 dσ =

∫ 1

0

〈Ψ2(σZ)Z,Z〉 dσ +

∫ 1

0

σ
∂

∂σ
〈Ψ2(σZ)W,Y 〉 dσ

+

∫ 1

0

〈Ψ2(σZ)W,Y 〉 dσ

= σ 〈Ψ2(σZ)W,Y 〉
∣∣1
0 +

∫ 1

0

〈Ψ2(σZ)Z,Z〉 dσ

= 〈Ψ2(Z)W,Y 〉+

∫ 1

0

〈Ψ2(σZ)Z,Z〉 dσ,

d

dt

∫ 1

0

〈Ψ3(σY )Y, Y 〉 dσ =

∫ 1

0

σ
∂

∂σ
〈σΨ3(σY )Z, Y 〉 dσ +

∫ 1

0

〈σΨ2(σY )Z, Y 〉 dσ

= σ2 〈Ψ3(σY )Z, Y 〉
∣∣1
0 = 〈Ψ3(Y )Z, Y 〉 ,

d

dt

∫ 1

0

〈Ψ5(σX), X〉 dσ =

∫ 1

0

σ 〈JΨ5
(σX)Y,X〉 dσ +

∫ 1

0

〈Ψ5(σX), Y 〉 dσ

=

∫ 1

0

σ
∂

∂σ
〈Ψ5(σX), Y 〉 dσ +

∫ 1

0

〈Ψ5(σX), Y 〉 dσ

= σ 〈Ψ5(σX), Y 〉
∣∣1
0 = 〈Ψ5(X), Y 〉 .

Substituting the last three estimates into (11), we have

V̇1 = 〈Ψ4(Y ), Y 〉 −
∫ 1

0

〈Ψ2(σZ)Z,Z〉 dσ + 〈W,W 〉 .
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On the other hand, it is clear that

Ψ4(Y ) =

∫ 1

0

JΨ4
(σ1Y )Y dσ1

so that

〈Ψ4(Y ), Y 〉 =

〈∫ 1

0

JΨ4(σ1Y )Y dσ1, Y

〉
≥ 1

2
b4 〈Y, Y 〉

by λi (JΦ4
(Y )) ≥ b4 > 0.

Then,

V̇1 ≥
1

2
b4 〈Y, Y 〉 −

∫ 1

0

〈Ψ2(σZ)Z,Z〉 dσ + 〈W,W 〉 ≥ 0

by the assumptions of Theorem 2. The rest of the proof is similar to the proof of
Theorem 1. Therefore, we omit the details of the poof.

References

[1] Ezeilo, J.O.C., ”Instability theorems for certain fifth-order differential equations”, Math.

Proc. Cambridge Philos. Soc., 84:2 (1978), 343-350.

[2] Ezeilo, J.O.C., ”Extension of certain instability theorems for some fourth and fifth order
differential equations”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 66:8 (1979),

no. 4, 239-242.

[3] Ezeilo, J.O.C., ”A further instability theorem for a certain fifth-order differential equation”,
Math. Proc. Cambridge Philos. Soc., 86:3 (1979), 491-493.

[4] Horn, R.A., and Johnson, C.R., Topics in matrix analysis, Cambridge University Press,

Cambridge, 1994.
[5] Krasovskii, N., ”On conditions of inversion of A. M. Lyapunov’s theorems on instability for

stationary systems of differential equations (Russian)”, Dokl. Akad. Nauk. SSSR (N.S.), 101,
(1955), 17-20.

[6] Li, W.J., and Duan, K.C., ”Instability theorems for some nonlinear differential systems of

fifth order”, J. Xinjiang Univ. Natur. Sci. 17:3 (2000), 1-5, 18.
[7] Li, W.J., and Yu, Y.H., ”Instability theorems for some fourth-order and fifth-order differential

equations”, (Chinese) J. Xinjiang Univ. Natur. Sci., 7:2 (1990), 7-10.

[8] Sadek, A.I., ”Instability results for certain systems of fourth and fifth order differential equa-
tions”, Appl. Math. Comput. 145:2-3 (2003), 541-549.

[9] Sun, W.J,, and Hou, X., ”New results about instability of some fourth and fifth order non-

linear systems”, (Chinese)J. Xinjiang Univ. Natur. Sci. 16:4 (1999), 14-17.
[10] Tejumola, H.O., ”Integral conditions of existence and non-existence of periodic solutions of

some sixth and fifth order ordinary differential equations”, J. Nigerian Math. Soc., 31 (2012),

23-33.
[11] Tunc, C., ”On the instability of solutions of certain nonlinear vector differential equations of

fifth order”, Panamer. Math. J., 14:4 (2004), 25-30.
[12] Tunc, C., ”An instability result for a certain non-autonomous vector differential equation of

fifth order. Panamer”, Math. J., 15:3 (2005), 51-58.

[13] Tunc, C., ”Further results on the instability of solutions of certain nonlinear vector differential
equations of fifth order”,Appl. Math. Inf. Sci. 2:1 (2008), 51-60.

[14] Tunc, C., ”Instability of solutions for certain nonlinear vector differential equations of fourth

order”, Nelnn Koliv. 12 (2009), no. 1, 120-129; translation in Nonlinear Oscil. (N. Y.) 12:1
(2009), 123-132.



92 C. Tunç, M. Ateş
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