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Abstract. In this paper, the graphs P 3
n and S2(P 3

n) are shown to admit an α-

valuation, where P 3
n is the graph obtained from the path Pn by joining all the pairs

of vertices u, v of Pn with d(u, v) = 3 and S2(P 3
n) is the graph obtained from P 3

n by

merging the centre of the star Sn1 and that of the star Sn2 respectively at the two

unique 2-degree vertex of Pn3 (the origin and terminus of the path Pn contained in

P 3
n). It follows from the significant theorems due to Rosa [1967] and EI-Zanati and

Vanden Eynden [1996] that the complete graphs K2cq+1 or the complete bipartite

graphs Kmq,nq can be cyclically decomposed into the copies of P 3
n or copies of

S2(P 3
n), where c,m, n are arbitrary positive integer and q denotes either |E(P 3

n)|
or |E(S2(P 3

n))|. Further, it is shown that join of complete graph K2 and path Pn,

denoted K2 + Pn, for n ≥ 1 is harmonious graph.

Key words: α-labeling, harmonious labeling, P 3
n graphs, join, path.

2000 Mathematics Subject Classification: 05C78.
Received: 09-08-2011, revised: 09-09-2011, accepted: 04-12-2011.

109



110 P. Selvaraju and G. Sethuraman

Abstrak. Pada paper ini, graf-graf P 3
n dan S2(P 3

n) ditunjukkan mempunyai nilai-

α, dengan P 3
n adalah graf yang diperoleh dari lintasan Pn dengan menghubungkan

semua pasangan titik u, v dari Pn dengan d(u, v) = 3 dan S2(P 3
n) adalah graf yang

diperoleh dari P 3
n dengan menggabungkan secara berurutan pusat dari bintang Sn1

dan dari bintang Sn2 pada dua titik berderajat-2 tunggal dari Pn3 (awal dan akhir

dari lintasan Pn termuat di P 3
n). Dengan mengikuti teorema-teorema yang terkenal

dari Rosa [1967] dan EI-Zanati dan Vanden Eynden [1996] bahwa graf-graf lengkap

K2cq+1 atau graf-graf bipartit lengkap Kmq,nq dapat didekomposisikan secara siklis

menjadi kopi-kopi dari P 3
n atau kopi-kopi S2(P 3

n), dengan c,m, n adalah bilangan

bulat positif tertentu dan q menyatakan |E(P 3
n)| atau |E(S2(P 3

n))|. Lebih jauh,

ditunjukkan juga bahwa join dari graf lengkap K2 dan lintasan Pn, dinotasikan

dengan K2 + Pn, untuk n ≥ 1 adalah graf harmonis.

Kata kunci: Pelabelan-α, pelabelan harmonis, graf-graf P 3
n , join, lintasan.

1. Introduction

In [1964], Ringel [9] conjectured that the complete graph K2m+1 can be de-
composed into 2m+ 1copies of any Tree with m edges. In an attempt to solve the
Ringel conjecture, Rosa [1967] introduced hierarchy of labeling called ρ, σ, β and
α-labeling. Later in [1972], Golomb [6] called β-labeling as Graceful and this term
is widely used. A function f is called a graceful labeling of a graph G with q edges
if f is an injection from the set of vertices of G to the set {0, 1, 2, · · · , q} such that
when each edge uv is assigned the label |f(u)− f(v)|, the resulting edge labels are
distinct.

A stronger version of the graceful labeling is the α-labeling. A graceful label-
ing f of a graph G = (V,E) is said to be an α-valuation (interlaced or balanced)
if there exists a λ such that f(u) ≤ λ < f(v) or f(v) ≤ λ < f(u) for every edge
uv ∈ E(G).

A graph which admits an α-labeling is necessarily a bipartite graph. In his
classical paper Rosa [10] proved the significant theorem Theorem A: If a graph G
with q edges admits α-labeling, then the complete graphs K2cq+1 can be cyclically
decomposed into 2cq + 1 copies of G, where c is an arbitrary positive number.

Later in 1996, EI-Zanati and Vanden Eynden [3] extended the cyclic de-
composition for the complete bipartite graphs and proved the following significant
theorem. Theorem B: If a graph G with q edges admits an α-valuation, then the
complete bipartite graphs Kmq,nq can be cyclically decomposed into copies of G
where q = |E(G)|. These two results motivate to construct graphs which would
admit an α-labeling. Many interesting families of graphs where proved to admit an
α-labeling [5]. In this paper we show that P 3

n and S2(P 3
n) admit an α-valuation.

Here P 3
n is the graph obtained from the path Pn by joining all the pairs of vertices

u, v of Pn with d(u, v) = 3 and S2(P 3
n) is the graph obtained from P 3

n by merging
the center of the Sn1

and that of star Sn2
respectively at the two unique 2-degree

vertex of P 3
n (the origin and terminus of the path Pn contained in P 3

n ).



Decomposition of Complete Graphs 111

In [1980] Graham and Sloane [4] introduced harmonious labeling in connec-
tion with their study in error correcting codes. Recently, it is established that
recognizing a graph is harmonious is a NP-complete problem [7]. Thus it motivates
to construct graphs admitting harmonious labeling. Number of interesting results
where proved in this direction [1,2,4,5,6,8,11]. Here we show that join of K2 and
Pn, denoted K2 + Pn is harmonious graph for all n ≥ 1.

A function f is called a harmonious if f is an injection from the set of vertices
of graph G to the group of integer modulo q, {0, 1, 2, · · · , q − 1}, such that when
each edge uv is assigned the label (f(u) + f(v)) (modq) the resulting edges labels
are distinct.

2. α-Valuation of the Graph P 3
n and the Graph S2(P 3

n)

Here, in this section we show that P 3
n and S2(P 3

n) admit an α-valuation. Let
v1, v2, · · · vn be vertices of P 3

n . Observe that in P 3
n , each viis adjacent to vi+1 for

1 ≤ i ≤ n− 1 and it is also adjacent to vi+3 for 1 ≤ i ≤ n− 3. It is clear that P 3
n

has n vertices and 2n− 4 edges. The graph P 3
n is given in Figure 1.

Figure 1. The Graph P 3
n .

Theorem 2.1 For n ≥ 4, the graph P 3
n admits an α− valuation.

Proof. f : V (G)→ {0, 1, 2, · · · ,M} by

f(vi) =



i− 1

2
, for 1 ≤ i ≤ n and i odd

M − 3

(
i− 2

2

)
, for 1 ≤ i ≤ n− 1 and i even

M − 3

(
n− 2

2

)
+ 1, for i = n and even

(2.1)

Observe that the sequence f(vi), 1 ≤ i ≤ n and i even, form a monotonically
decreasing sequence.
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Further, when n is odd,

max{f(vi) | 1 ≤ i ≤ n with i odd } =
n− 1

2
and (2)

min{f(vi) | 1 ≤ i ≤ n with i even } = M − 3

(
n− 1− 2

2

)
= 2n− 4−

(
3n− 9

2

)
=

4n− 8− 3n+ 9

2

=
n+ 1

2
. (3)

Therefore, from equation (2.2) and (2.3), we have

min{f(vi) | 1 ≤ i ≤ n with i even } > max{f(vi) | 1 ≤ i ≤ n with i odd }. (2.4)

Also, when n is even,

max{f(vi) | 1 ≤ i ≤ n with i odd} =
n− 2

2

=
n

2
− 1 (5)

and

min{f(vi) | 1 ≤ i ≤ n with i even } = M − 3

(
n− 2

2

)
+ 1

= 2n− 4− (3n− 6)

2
+ 1

=
4n− 8− 3n+ 6 + 2

2

=
n

2
(6)

Therefore, from equations (2.5) and (2.6), it follows

min{f(vi) | 1 ≤ i ≤ n with i even } = max{f(vi) | 1 ≤ i ≤ n with i odd }+ 1
(2.7)

Since f(vi), 1 ≤ i ≤ n, with i odd, is a monotonically increasing sequence and
f(vi), 1 ≤ i ≤ n with i even, is a monotonically decreasing sequence and from
equations (2.4) and (2.7), it follows f(vi), 1 ≤ i ≤ n are all distinct.

Let A be the set of edges vivi+1, 1 ≤ i ≤ n− 1 along the path and B be the
set of edges vivi+3, 1 ≤ i ≤ n− 3 of G.

Observe from the definition of fthat when n is even, the member of A get the
values {M,M − 1,M − 4,M − 5,M − 8,M − 9, · · · , 4, 3, 1} and when n is odd, the
members of A get the values {M,M−1,M−4,M−5, M−8, M−9, · · · , 6, 5, 2, 1}.

Similarly, when n is even, the members of B get the values {M − 3, M − 2,
M − 7,M − 6, · · · , 5, 6, 2} and when n is odd, the number of B get the values
{M − 3,M − 2,M − 7,M − 6, · · · , 7, 8, 3, 4}.
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Thus, it is clear that the edge values of all the edges of P 3
n are distinct and

range from 1 and M . Hence P 3
n is graceful.

From the definition of f , observe that in the above labeling, when n is even,
if we consider λ = n

2 − 1 then f(u) ≤ λ < f(v) for every edge uv of P 3
n and when

n is odd, if we consider λ = n−1
2 then f(u) ≤ λ < f(v) for every edge uv of P 3

n .

Thus P 3
n admits an α-valuation.

Hence the theorem.

The following two corollaries are immediate consequence of Rosa’s theorem
(1967) and the theorem of El-Zanati and Vanden Eynden (1996) respectively.

Corollary 1. If a graph P 3
n with q edges has an α-valuation, then there exists

a cyclic decomposition of the edges of the complete graphs K2cq+1 into sub-graphs
isomorphic to P 3

n , where c is an arbitrary positive integer.

Corollary 2. If a graph P 3
n with q edges has an α-valuation, then there exists a

decomposition of the edges of the complete bipartite graphs Kmq,nq into subgraphs
isomorphic to P 3

n , where m and n are arbitrary positive integers.

Illustrative example of labeling given in the proof of Theorem 1 are given in
Figures 2,3.

Figure 2. α-valuation of P 3
8 .

Figure 3. α-valuation of P 3
9 .

Let S2(P 3
n) denote the graph obtained from P 3

n by attaching the centre of the
stars Sn

1
and Sn

2
at end the vertices v1 and vn of P 3

n .

As in the last theorem we assume that v1, v2, · · · , vn be the vertices of P 3
n .

Let v1,1, v1,2, · · · , v1,n1
be the n1 pendant vertices of the star Sn1

attached at v1 of

(P 3
n) and let vn,1, vn,2, · · · , vn,n2

be the n2 pendent vertices of star Sn2
attached at
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vn of (P 3
n). It is clear that S2(P 3

n) has n + n1 + n2 vertices and 2n + n1 + n2 − 4
edges.

Theorem 2.2. For n ≥ 4, the graph S2(P 3
n), admits an α− valuation.

Proof. For n ≥ 4, let G be the graph S2(P 3
n). Let M = |E(G)| = 2n+n1 +n2−4.

Define f : V (G)→ {0, 1, 2, · · · ,M} by

f(v1,j) = M − (j − 1), for 1 ≤ j ≤ n1 (2.8)

f(vi) =



i− 1

2
, if 1 ≤ i ≤ n with i odd

(M − n1)− 3

(
i− 2

2

)
, If 1 ≤ i ≤ n− 1 with i even

(M − n1)− 3

(
n− 2

2

)
+ 1, if i = n and even

(2.9)

f(vn,j) =


n− 1

2
+ j, for 1 ≤ j ≤ n2 when n is odd

n− 2

2
+ j, for 1 ≤ j ≤ n2 when n is even.

(2.10)

From the above definition of f , observe that the sequence f(v1,j), 1 ≤ j ≤ n1
and f(vi), 1 ≤ i ≤ n when i is even, form monotonically decreasing sequence
and the sequence f(vi), 1 ≤ i ≤ n when i is odd and f(vn,j), 1 ≤ j ≤ n2, form
monotonically increasing sequence.

Further, when n is odd

max({f(vi) | 1 ≤ i ≤ n and i odd }∪ {f(vn,j) | 1 ≤ j ≤ n2}) = n2 +
n− 1

2
(2.11)

min({f(v1,j) | 1 ≤ j ≤ n1} ∪ {f(vi) | 1 ≤ i ≤ n and i even }) = n2 +
n+ 1

2
.

(2.12)
Therefore, from equations (2.11) and (2.12), it follows

min({f(v1,j) | 1 ≤ j ≤ n1} ∪ {f(vi) | 1 ≤ i ≤ n and i even })
= max({f(vi) | 1 ≤ i ≤ n and i odd } ∪ {f(vn,j) | 1 ≤ j ≤ n2}) + 1. (13)

When n is even,

max({f(vi) | 1 ≤ j ≤ n and i odd }∪ {f(vn,j) | 1 ≤ j ≤ n2}) = n2 +
n

2
− 1 (2.14)

min({f(v1,j) | 1 ≤ j ≤ n1} ∪ {f(vi) | 1 ≤ i ≤ n and i even }) = n2 +
n

2
. (2.15)

Therefore, from the equations (2.14) and (2.15), it follows:

min({f(v1,j) | 1 ≤ j ≤ n1} ∪ {f(vi) | 1 ≤ i ≤ n and i even })
= max({f(vi) | 1 ≤ i ≤ n and i odd and f(vn,j) | 1 ≤ j ≤ n2}) + 1. (16)

Since the sequences f(v1,j), 1 ≤ j ≤ n1 and f(vi), 1 ≤ i ≤ n with i even, form a
monotonically decreasing sequence and the sequences f(vi), 1 ≤ i ≤ n with i odd
and f(vn,j), 1 ≤ j ≤ n2, form a monotonically increasing sequence and from the
equations (2.13) and (2.16), it follows f(v1,j), 1 ≤ j ≤ n1, f(vi), 1 ≤ i ≤ n, f(vn,j),
1 ≤ j ≤ n2, are all distinct.
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Let A be the set of edges in Sn1
and B be the set of edges vivi+1, 1 ≤ i ≤ n−1

along the path C be the set of edges vivi+3, 1 ≤ i ≤ n−3 and D be the set of edges
in Sn

2
.

Observe from the definition of f that the members of A get the value {M,M−
1,M − 2, · · · ,M − (n1 − 1)}. The members of B get the value {M − n1,M − n1 −
1,M −n1− 4,M −n1− 5,M −n1− 8,M −n1− 9, · · · , n2 + 4, n2 + 3, n2 + 1} when
n is even and when n is odd, the members of B get the value {M − n1,M − n1 −
1,M − n1 − 4,M − n1 − 5, · · · , n2 + 2, n2 + 1}.

The members of C get the value {M − n1 − 3,M − n1 − 2, M − n1 − 7,
M−n1−6, · · · , n2+5, n2+6, n2+2} when n is even and when n is odd, the members
of C get the value {M −n3,M −n1−2,M −n1−7,M −n1−6, · · · , n2 +3, n2 +4}.
The members of D get the value

{
n+1
2 , n+3

2 , · · · , n+n2−1
2

}
when n is odd and

when n is even, the members of D get the value
{

n+2
2 , n+4

2 , · · · , n+2n2

2

}
. Thus

it is clear that the edge values of all the edges of P 3
n are distinct and range from 1

to M .

Hence S2(P 3
n) is graceful.

We consider λ = n or n−1
2 according as n is even or odd. Then by the

definition of f , it is clear that f(u) ≤ λ < f(v) for every edge uv of S2(P 3
n).

Thus, the graph S2(P 3
n) is graceful and admits an α-valuation. Hence, the

theorem.

The following corollary is an immediate consequence of Rosa’s theorem.

Corollary 3. There exists a cyclic decomposition of the complete graphs K2cq+1

into subgraphs isomorphic to S2(P 3
n), where c is an arbitrary positive integer.

Due to the theorem if El-Zanati and Vanden Eynden (1996) we have the
following corollary.

Corollary 4. There exists a partition of the complete bipartite graphs Kmq,nq into
subgraphs isomorphic to S2(P 3

n), where m and n are arbitrary positive integers.

Illustrative example of labeling given in the Proof of Theorem 2 are shown in
Figures 4,5,6.

Figure 4. The Graph S2

(
P 3
n

)
.
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Figure 5. α-valuation of S2

(
P 3
8

)
.

Figure 6. α-valuation of S2

(
P 3
9

)
.

3. Harmonious Labeling of K2 + Pn for n ≥ 1

In this section it is shown that join of complete graph K2 and path Pn,
denoted K2 + Pn is harmonious for all n.

Theorem 3.1 Join of K2 + Pn is harmonious, for n ≥ 1.

Proof: For n ≥ 1, let G be a graph K2 + Pn. Let u1 and u2 be the vertices of K2

and v1, v2, · · · , vn be the vertices of Pn. Then G has |E(G)| = M = 3n edges. We
define vertex labeling f in two cases depends on n is odd or even.

Case (i) n is odd

Define f(u1) = 0

f(u2) = M − 1

f(vi) = 3i− 2, 1 ≤ i ≤ n.

Then, it is clear that the vertex labeling f(ui), i = 1, 2 and f(vi), 1 ≤ i ≤ n are
distinct.
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Further,

f(u1u2) = 3n− 1,

f(u1vi) = 3i− 2, 1 ≤ i ≤ n,
f(u2ui) = 3i− 3, 1 ≤ i ≤ n

f(vivi+1) = 6i− 1(mod M), 1 ≤ i ≤ n− 1.

That is

f(vivi+1) = 6i− 1, 1 ≤ i ≤
⌊
n

2

⌋
,

f(vivi+1) = (6i− 1)(mod M),

⌊
n

2

⌋
+ 1 ≤ i ≤ n− 1,

= (6i− 1), i =

⌊
(n− 1)

2

⌋
+ j, 1 ≤ j ≤

⌊
(n− 1)

2

⌋
= 6

(⌊
(n− 1)

2

⌋
+ j

)
− 1, 1 ≤ j ≤

⌊
(n− 1)

2

⌋
,

= 3n− 6j − 4(mod M), 1 ≤ j ≤
⌊

(n− 1)

2

⌋
,

= 6j − 4, 1 ≤ j ≤
⌊

(n− 1)

2

⌋
.

Observe that,

f(u1u2) = {3n− 1}
{f(u1vi) | 1 ≤ i ≤ n} = {1, 4, 7, 10, · · · , 3n− 2},
{f(u2vi) | 1 ≤ i ≤ n} = {0, 3, 6, 9, · · · , 3n− 3},

and

{f(vivi+1) | 1 ≤ i ≤ n− 1} = {(6i− 1) | 1 ≤ i ≤ n− 1},

= {(6i− 1) | 1 ≤ i ≤ (n− 1)/2} ∪ {(6i− 1) | 1 ≤ i ≤ (n− 1)/2}
= {(6i− 1) | 1 ≤ i ≤ (n− 1)/2} ∪ {6(((n− 1)/2) + j)− 1 | 1 ≤ j ≤ (n− 1)/2}
= {(6i− 1) | 1 ≤ i ≤ (n− 1)/2} ∪ {3n+ 6j − 4 | 1 + j ≤ (n− 1)/2}
= {(6i− 1) | 1 ≤ i ≤ (n− 1)/2} ∪ {(6j − 4) | 1 ≤ j ≤ (n− 1)/2}
= {5, 11, 17, · · · , 3n− 4} ∪ {2, 8, 14, · · · , 3n− 7}
= {2, 5, 8, 11, 14, · · · , 3n− 7, 3n− 4}.

From the above sets of the edge values, it follows that edge labeling of each edge is
distinct and edge values ranges from 0 to M − 1.

Case (ii), n is even

Case(ii)(a) n is even and n = 4k, n ≥ 1
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Define

f(u1) = 0,

f(u2) = M − 1,

f(vi) = 3(i− 1) + 1, 1 ≤ i ≤ 2k − 1,

f(vi) = 6(i− k) + 1, 2k ≤ i ≤ 3k − 1,

f(v3k) = 3(n− 1) + 1,

f(vi) = 3(n− 2(i− 3k)− 1) + 1, 3k + 1 ≤ i ≤ 4k.

It is clear that the vertex labeling f(vi) are distinct, for1 ≤ i ≤ n.

Further,

f(u1u2) = M − 1,

f(u1vi) = 3(i− 1) + 1, 1 ≤ i ≤ 2k − 1

f(u1vi) = 3(2(i− k)) + 1, 2k ≤ i ≤ 3k + 1

f(u1v3k) = 3(n− 1) + 1,

f(u1v3k+i) = 3(n− 2i− 1) + 1, 1 ≤ i ≤ k
f(u2vi) = 3(i− 1), 1 ≤ i ≤ 2k − 1,

f(u2vi) = 3(2(i− k)), 2k ≤ i ≤ 3k − 1,

f(u2v3k) = 3(n− 1)

f(u2vi) = 3(n− 2(i− 3k)− 1), 3k + 1 ≤ i ≤ 4k

and

f(vivi+1) = (3(i− 1) + 1) + (3i+ 1), 1 ≤ i ≤ 2k − 2,

= 3(2i− 1) + 2, 1 ≤ i ≤ 2k − 2

f(v2k−1v2k) = 3(4k − 2) + 2

f(vivi+1) = (3(2i− k)) + 1 + 3(2(i+ 1)− k)) + 1)(mod M), 2k ≤ i ≤ 3k − 2,

= (3(2(2i− 2k + 1) + 2))(mod M), 2k ≤ i ≤ 3k − 2,

f(v3k−1, v3k) = (3(2(3k + 1− k)) + 1 + 3n− 2)(mod M),

= (12k − 6 + 1− 2 + 3n)(mod M),

= (3(n− 3) + 2)(mod M),

f(v3k, v3k+1) = (3n− 2 + 3n− 6− 2)(mod M),

= (3n− 2 + 3n− 8)(mod M)

= (6n− 10)(mod M),

= (3n− 10)

= 3(n− 4) + 2

f(vivi+1) = (3(n− 4(i− 3k)− 4) + 2)(mod M), 3k + 1 ≤ i ≤ 4k − 1.

Similarly it follows that edge labeling are distinct and edge value ranges from 0 to
M − 1.

Case (ii) (b) n is even and n = 4k + 2, k ≥ 1.
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Define

f(u1) = 0,

f(u2) = M − 1

f(vi) = 3(i− 1) + 1, 1 ≤ i ≤ 2k,

f(vi) = 3(2(i− k)− 1) + 1, 2k + 1 ≤ i ≤ 3k + 1,

f(v3k+2 = 3(n− 2) + 1,

f(vi) = (3(2(k − i)) + 1)(mod M), 3k + 3 ≤ i ≤ 4k + 2.

It is clear that the vertex labeling f(vi) are distinct for 1 ≤ i ≤ n.

Further, observe that

f(u1u2) = M − 1

f(u1vi) = 3(i− 1) + 1, 1 ≤ i ≤ 2k,

f(u1vi) = 3(2(i− k)− 1) + 1, 2k + 1 ≤ i ≤ 3k + 1,

f(u1v3k+2) = 3(n− 2) + 1,

f(u1vi) = (3(2k − i) + 1)(mod M), 3k + 3 ≤ i ≤ 4k + 2

f(u2vi) = M − 1 + 3(i− 1) + 1,

= 3(i− 1), 1 ≤ i ≤ 2k,

f(u2vi) = 3(2(i− k)− 1), 2k + 1 ≤ i ≤ 3k + 1

f(u2v3k+2) = 3(n− 2),

f(u2vi) = 3(2(k − i))(mod M), 3k + 3 ≤ i ≤ 4k + 2

and
f(vivi+1) = (3(i− 1) + (3i+ 1)),

= 6i− 1,

= 3(2i− 1) + 2, 1 ≤ i ≤ 2k − 1,

f(v2kv2k+1) = 3(2k − 1) + 1 + 3(2(k + 1)− 1) + 1 = 3(4k) + 2

f(vivi+1) = 6(i− k)− 2 + 6(i+ 1− k)− 2,

= (3(4(i− k) + 2)(mod M), 2k + 1 ≤ i ≤ 3k,

f(v3k+1v3k+2) = (3(2(3k + 1− k) + 1) + 3n− 5)(mod M),

= 12k − 1,

f(v3k+2v3k+3) = (3n− 5 + 6(k − i) + 1)(mod M)

= (3n− 16)(mod M),

f(vivi+1) = 6k − 6i+ 1 + 6k − 6i− 6 + 1(mod M)

= 12k − 12i− 4(mod M)

= 12k + 6− 12i− 4− 6(mod M),

= −12i− 10(mod M),

= −(12i+ 10)(mod M), 3k + 3 ≤ i ≤ 4k + 1.
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Figure 7. Harmonious labeling of K2 + P9.

Figure 8. Harmonious labeling of K2 + P8.

It follows that edge labelings are distinct and edge values ranges from 0 to
M − 1. When n = 2, G is K4, which is harmonious.

Hence G is harmonious.

Illustrative example of labeling given in the proof of Theorem 3 are given in
Figures 7,8,9.



Decomposition of Complete Graphs 121

Figure 9. Harmonious labeling of K2 + P10.

4. Discussion

In our paper we have shown that P 3
n and S2(P 3

n) admit an α-valuation. We
believe that it is possible to prove that P t

n and S2(P t
n), for t, 2 ≤ t ≤ n− 2 admit

an α-valuation. Thus, we end this paper with the following conjecture.

Conjecture: P t
n and S2(P t

n) admit an α-valuation for t, 2 ≤ t ≤ n− 2.

Acknowledgement: The authors would like to thank the referee for their valuable
comments and suggestions for improving the presentation of this paper.
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