DECOMPOSITION OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS INTO COPIES OF P_{n}^{3} OR $S_{2}\left(P_{n}^{3}\right)$ AND HARMONIOUS LABELING OF $K_{2}+P_{n}$

P. Selvaraju ${ }^{1}$ and G. Sethuraman ${ }^{2}$
${ }^{1}$ Department of Mathematics, VEL TECH, Avadi, Chennai-600062, India, pselvar@yahoo.com
${ }^{2}$ Department of Mathematics, Anna University, Chennai-600025, Chennai, India, sethu@annauniv.edu

Abstract

In this paper, the graphs P_{n}^{3} and $S_{2}\left(P_{n}^{3}\right)$ are shown to admit an α valuation, where P_{n}^{3} is the graph obtained from the path P_{n} by joining all the pairs of vertices u, v of P_{n} with $d(u, v)=3$ and $S_{2}\left(P_{n}^{3}\right)$ is the graph obtained from P_{n}^{3} by merging the centre of the star $S_{n_{1}}$ and that of the star $S_{n_{2}}$ respectively at the two unique 2-degree vertex of $P_{n_{3}}$ (the origin and terminus of the path P_{n} contained in $\left.P_{n}^{3}\right)$. It follows from the significant theorems due to Rosa [1967] and EI-Zanati and Vanden Eynden [1996] that the complete graphs $K_{2 c q+1}$ or the complete bipartite graphs $K_{m q, n q}$ can be cyclically decomposed into the copies of P_{n}^{3} or copies of $S_{2}\left(P_{n}^{3}\right)$, where c, m, n are arbitrary positive integer and q denotes either $\left|E\left(P_{n}^{3}\right)\right|$ or $\left|E\left(S_{2}\left(P_{n}^{3}\right)\right)\right|$. Further, it is shown that join of complete graph K_{2} and path P_{n}, denoted $K_{2}+P_{n}$, for $n \geq 1$ is harmonious graph.

Key words: α-labeling, harmonious labeling, P_{n}^{3} graphs, join, path.

[^0]
Abstract

Abstrak. Pada paper ini, graf-graf P_{n}^{3} dan $S_{2}\left(P_{n}^{3}\right)$ ditunjukkan mempunyai nilaiα, dengan P_{n}^{3} adalah graf yang diperoleh dari lintasan P_{n} dengan menghubungkan semua pasangan titik u, v dari P_{n} dengan $d(u, v)=3$ dan $S_{2}\left(P_{n}^{3}\right)$ adalah graf yang diperoleh dari P_{n}^{3} dengan menggabungkan secara berurutan pusat dari bintang $S_{n_{1}}$ dan dari bintang $S_{n_{2}}$ pada dua titik berderajat-2 tunggal dari $P_{n_{3}}$ (awal dan akhir dari lintasan P_{n} termuat di P_{n}^{3}). Dengan mengikuti teorema-teorema yang terkenal dari Rosa [1967] dan EI-Zanati dan Vanden Eynden [1996] bahwa graf-graf lengkap $K_{2 c q+1}$ atau graf-graf bipartit lengkap $K_{m q, n q}$ dapat didekomposisikan secara siklis menjadi kopi-kopi dari P_{n}^{3} atau kopi-kopi $S_{2}\left(P_{n}^{3}\right)$, dengan c, m, n adalah bilangan bulat positif tertentu dan q menyatakan $\left|E\left(P_{n}^{3}\right)\right|$ atau $\left|E\left(S_{2}\left(P_{n}^{3}\right)\right)\right|$. Lebih jauh, ditunjukkan juga bahwa join dari graf lengkap K_{2} dan lintasan P_{n}, dinotasikan dengan $K_{2}+P_{n}$, untuk $n \geq 1$ adalah graf harmonis.

Kata kunci: Pelabelan- α, pelabelan harmonis, graf-graf P_{n}^{3}, join, lintasan.

1. Introduction

In [1964], Ringel [9] conjectured that the complete graph $K_{2 m+1}$ can be decomposed into $2 m+1$ copies of any Tree with m edges. In an attempt to solve the Ringel conjecture, Rosa [1967] introduced hierarchy of labeling called ρ, σ, β and α-labeling. Later in [1972], Golomb [6] called β-labeling as Graceful and this term is widely used. A function f is called a graceful labeling of a graph G with q edges if f is an injection from the set of vertices of G to the set $\{0,1,2, \cdots, q\}$ such that when each edge $u v$ is assigned the label $|f(u)-f(v)|$, the resulting edge labels are distinct.

A stronger version of the graceful labeling is the α-labeling. A graceful labeling f of a graph $G=(V, E)$ is said to be an α-valuation (interlaced or balanced) if there exists a λ such that $f(u) \leq \lambda<f(v)$ or $f(v) \leq \lambda<f(u)$ for every edge $u v \in E(G)$.

A graph which admits an α-labeling is necessarily a bipartite graph. In his classical paper Rosa [10] proved the significant theorem Theorem A: If a graph G with q edges admits α-labeling, then the complete graphs $K_{2 c q+1}$ can be cyclically decomposed into $2 c q+1$ copies of G, where c is an arbitrary positive number.

Later in 1996, EI-Zanati and Vanden Eynden [3] extended the cyclic decomposition for the complete bipartite graphs and proved the following significant theorem. Theorem B: If a graph G with q edges admits an α-valuation, then the complete bipartite graphs $K_{m q, n q}$ can be cyclically decomposed into copies of G where $q=|E(G)|$. These two results motivate to construct graphs which would admit an α-labeling. Many interesting families of graphs where proved to admit an α-labeling [5]. In this paper we show that P_{n}^{3} and $S_{2}\left(P_{n}^{3}\right)$ admit an α-valuation. Here P_{n}^{3} is the graph obtained from the path P_{n} by joining all the pairs of vertices u, v of P_{n} with $d(u, v)=3$ and $S_{2}\left(P_{n}^{3}\right)$ is the graph obtained from P_{n}^{3} by merging the center of the $S_{n_{1}}$ and that of star $S_{n_{2}}$ respectively at the two unique 2-degree vertex of P_{n}^{3} (the origin and terminus of the path P_{n} contained in P_{n}^{3}).

In [1980] Graham and Sloane [4] introduced harmonious labeling in connection with their study in error correcting codes. Recently, it is established that recognizing a graph is harmonious is a NP-complete problem [7]. Thus it motivates to construct graphs admitting harmonious labeling. Number of interesting results where proved in this direction $[1,2,4,5,6,8,11]$. Here we show that join of K_{2} and P_{n}, denoted $K_{2}+P_{n}$ is harmonious graph for all $n \geq 1$.

A function f is called a harmonious if f is an injection from the set of vertices of graph G to the group of integer modulo $q,\{0,1,2, \cdots, q-1\}$, such that when each edge $u v$ is assigned the label $(f(u)+f(v))(\bmod q)$ the resulting edges labels are distinct.

2. α-Valuation of the Graph P_{n}^{3} and the Graph $S_{2}\left(P_{n}^{3}\right)$

Here, in this section we show that P_{n}^{3} and $S_{2}\left(P_{n}^{3}\right)$ admit an α-valuation. Let $v_{1}, v_{2}, \cdots v_{n}$ be vertices of P_{n}^{3}. Observe that in P_{n}^{3}, each v_{i} is adjacent to v_{i+1} for $1 \leq i \leq n-1$ and it is also adjacent to v_{i+3} for $1 \leq i \leq n-3$. It is clear that P_{n}^{3} has n vertices and $2 n-4$ edges. The graph P_{n}^{3} is given in Figure 1.

Figure 1. The Graph P_{n}^{3}.

Theorem 2.1 For $n \geq 4$, the graph P_{n}^{3} admits an $\alpha-$ valuation.
Proof. $f: V(G) \rightarrow\{0,1,2, \cdots, M\}$ by

$$
f\left(v_{i}\right)=\left\{\begin{array}{l}
\frac{i-1}{2}, \text { for } 1 \leq i \leq n \text { and } i \text { odd } \tag{2.1}\\
M-3\left(\frac{i-2}{2}\right), \text { for } 1 \leq i \leq n-1 \text { and } i \text { even } \\
M-3\left(\frac{n-2}{2}\right)+1, \text { for } i=n \text { and even }
\end{array}\right.
$$

Observe that the sequence $f\left(v_{i}\right), 1 \leq i \leq n$ and i even, form a monotonically decreasing sequence.

Further, when n is odd,

$$
\begin{align*}
\max \left\{f\left(v_{i}\right) \mid 1 \leq i \leq n \text { with } i \text { odd }\right\} & =\frac{n-1}{2} \text { and } \tag{2}\\
\min \left\{f\left(v_{i}\right) \mid 1 \leq i \leq n \text { with } i \text { even }\right\} & =M-3\left(\frac{n-1-2}{2}\right) \\
& =2 n-4-\left(\frac{3 n-9}{2}\right) \\
& =\frac{4 n-8-3 n+9}{2} \\
& =\frac{n+1}{2} \tag{3}
\end{align*}
$$

Therefore, from equation (2.2) and (2.3), we have

$$
\begin{equation*}
\min \left\{f\left(v_{i}\right) \mid 1 \leq i \leq n \text { with } i \text { even }\right\}>\max \left\{f\left(v_{i}\right) \mid 1 \leq i \leq n \text { with } i \text { odd }\right\} \tag{2.4}
\end{equation*}
$$

Also, when n is even,

$$
\begin{align*}
\max \left\{f\left(v_{i}\right) \mid 1 \leq i \leq n \text { with } i \text { odd }\right\} & =\frac{n-2}{2} \\
& =\frac{n}{2}-1 \tag{5}
\end{align*}
$$

and

$$
\begin{align*}
\min \left\{f\left(v_{i}\right) \mid 1 \leq i \leq n \text { with } i \text { even }\right\} & =M-3\left(\frac{n-2}{2}\right)+1 \\
& =2 n-4-\frac{(3 n-6)}{2}+1 \\
& =\frac{4 n-8-3 n+6+2}{2} \\
& =\frac{n}{2} \tag{6}
\end{align*}
$$

Therefore, from equations (2.5) and (2.6), it follows

$$
\begin{equation*}
\min \left\{f\left(v_{i}\right) \mid 1 \leq i \leq n \text { with } i \text { even }\right\}=\max \left\{f\left(v_{i}\right) \mid 1 \leq i \leq n \text { with } i \text { odd }\right\}+1 \tag{2.7}
\end{equation*}
$$

Since $f\left(v_{i}\right), 1 \leq i \leq n$, with i odd, is a monotonically increasing sequence and $f\left(v_{i}\right), 1 \leq i \leq n$ with i even, is a monotonically decreasing sequence and from equations (2.4) and (2.7), it follows $f\left(v_{i}\right), 1 \leq i \leq n$ are all distinct.

Let A be the set of edges $v_{i} v_{i+1}, 1 \leq i \leq n-1$ along the path and B be the set of edges $v_{i} v_{i+3}, 1 \leq i \leq n-3$ of G.

Observe from the definition of f that when n is even, the member of A get the values $\{M, M-1, M-4, M-5, M-8, M-9, \cdots, 4,3,1\}$ and when n is odd, the members of A get the values $\{M, M-1, M-4, M-5, M-8, M-9, \cdots, 6,5,2,1\}$.

Similarly, when n is even, the members of B get the values $\{M-3, M-2$, $M-7, M-6, \cdots, 5,6,2\}$ and when n is odd, the number of B get the values $\{M-3, M-2, M-7, M-6, \cdots, 7,8,3,4\}$.

Thus, it is clear that the edge values of all the edges of P_{n}^{3} are distinct and range from 1 and M. Hence P_{n}^{3} is graceful.

From the definition of f, observe that in the above labeling, when n is even, if we consider $\lambda=\frac{n}{2}-1$ then $f(u) \leq \lambda<f(v)$ for every edge $u v$ of P_{n}^{3} and when n is odd, if we consider $\lambda=\frac{n-1}{2}$ then $f(u) \leq \lambda<f(v)$ for every edge $u v$ of P_{n}^{3}.

Thus P_{n}^{3} admits an α-valuation.
Hence the theorem.
The following two corollaries are immediate consequence of Rosa's theorem (1967) and the theorem of El-Zanati and Vanden Eynden (1996) respectively.

Corollary 1. If a graph P_{n}^{3} with q edges has an α-valuation, then there exists a cyclic decomposition of the edges of the complete graphs $K_{2 c q+1}$ into sub-graphs isomorphic to P_{n}^{3}, where c is an arbitrary positive integer.
Corollary 2. If a graph P_{n}^{3} with q edges has an α-valuation, then there exists a decomposition of the edges of the complete bipartite graphs $K_{m q, n q}$ into subgraphs isomorphic to P_{n}^{3}, where m and n are arbitrary positive integers.

Illustrative example of labeling given in the proof of Theorem 1 are given in Figures 2,3.

Figure 2. α-valuation of P_{8}^{3}.

Figure 3. α-valuation of P_{9}^{3}.
Let $S_{2}\left(P_{n}^{3}\right)$ denote the graph obtained from P_{n}^{3} by attaching the centre of the stars $S_{n_{1}}$ and $S_{n_{2}}$ at end the vertices v_{1} and v_{n} of P_{n}^{3}.

As in the last theorem we assume that $v_{1}, v_{2}, \cdots, v_{n}$ be the vertices of P_{n}^{3}. Let $v_{1,1}, v_{1,2}, \cdots, v_{1, n_{1}}$ be the n_{1} pendant vertices of the star $S_{n_{1}}$ attached at v_{1} of $\left(P_{n}^{3}\right)$ and let $v_{n, 1}, v_{n, 2}, \cdots, v_{n, n_{2}}$ be the n_{2} pendent vertices of star $S_{n_{2}}$ attached at
v_{n} of $\left(P_{n}^{3}\right)$. It is clear that $S_{2}\left(P_{n}^{3}\right)$ has $n+n_{1}+n_{2}$ vertices and $2 n+n_{1}+n_{2}-4$ edges.
Theorem 2.2. For $n \geq 4$, the graph $S_{2}\left(P_{n}^{3}\right)$, admits an $\alpha-$ valuation.
Proof. For $n \geq 4$, let G be the graph $S_{2}\left(P_{n}^{3}\right)$. Let $M=|E(G)|=2 n+n_{1}+n_{2}-4$.
Define $f: V(G) \rightarrow\{0,1,2, \cdots, M\}$ by

$$
\begin{gather*}
f\left(v_{1, j}\right)=M-(j-1), \text { for } 1 \leq j \leq n_{1} \tag{2.8}\\
f\left(v_{i}\right)=\left\{\begin{array}{l}
\frac{i-1}{2}, \text { if } 1 \leq i \leq n \text { with } i \text { odd } \\
\left(M-n_{1}\right)-3\left(\frac{i-2}{2}\right), \text { If } 1 \leq i \leq n-1 \text { with } i \text { even } \\
\left(M-n_{1}\right)-3\left(\frac{n-2}{2}\right)+1, \text { if } i=n \text { and even }
\end{array}\right. \tag{2.9}\\
f\left(v_{n, j}\right)=\left\{\begin{array}{l}
\frac{n-1}{n \frac{2}{2}+j, \text { for } 1 \leq j \leq n_{2} \text { when } n \text { is odd }} \begin{array}{l}
\frac{n}{2}+j, \text { for } 1 \leq j \leq n_{2} \text { when } n \text { is even. }
\end{array}
\end{array} . \begin{array}{l}
(M)
\end{array}\right. \tag{2.10}
\end{gather*}
$$

From the above definition of f, observe that the sequence $f\left(v_{1, j}\right), 1 \leq j \leq n_{1}$ and $f\left(v_{i}\right), 1 \leq i \leq n$ when i is even, form monotonically decreasing sequence and the sequence $f\left(v_{i}\right), 1 \leq i \leq n$ when i is odd and $f\left(v_{n, j}\right), 1 \leq j \leq n_{2}$, form monotonically increasing sequence.
Further, when n is odd

$$
\begin{align*}
& \max \left(\left\{f\left(v_{i}\right) \mid 1 \leq i \leq n \text { and } i \text { odd }\right\} \cup\left\{f\left(v_{n, j}\right) \mid 1 \leq j \leq n_{2}\right\}\right)=n_{2}+\frac{n-1}{2} \tag{2.11}\\
& \min \left(\left\{f\left(v_{1, j}\right) \mid 1 \leq j \leq n_{1}\right\} \cup\left\{f\left(v_{i}\right) \mid 1 \leq i \leq n \text { and } i \text { even }\right\}\right)=n_{2}+\frac{n+1}{2} \tag{2.12}
\end{align*}
$$

Therefore, from equations (2.11) and (2.12), it follows

$$
\begin{align*}
& \min \left(\left\{f\left(v_{1, j}\right) \mid 1 \leq j \leq n_{1}\right\} \cup\left\{f\left(v_{i}\right) \mid 1 \leq i \leq n \text { and } i \text { even }\right\}\right) \\
& =\max \left(\left\{f\left(v_{i}\right) \mid 1 \leq i \leq n \text { and } i \text { odd }\right\} \cup\left\{f\left(v_{n, j}\right) \mid 1 \leq j \leq n_{2}\right\}\right)+1 \tag{13}
\end{align*}
$$

When n is even,

$$
\begin{gather*}
\max \left(\left\{f\left(v_{i}\right) \mid 1 \leq j \leq n \text { and } i \text { odd }\right\} \cup\left\{f\left(v_{n, j}\right) \mid 1 \leq j \leq n_{2}\right\}\right)=n_{2}+\frac{n}{2}-1 \tag{2.14}\\
\min \left(\left\{f\left(v_{1, j}\right) \mid 1 \leq j \leq n_{1}\right\} \cup\left\{f\left(v_{i}\right) \mid 1 \leq i \leq n \text { and } i \text { even }\right\}\right)=n_{2}+\frac{n}{2} \tag{2.15}
\end{gather*}
$$

Therefore, from the equations (2.14) and (2.15), it follows:

$$
\begin{align*}
& \min \left(\left\{f\left(v_{1, j}\right) \mid 1 \leq j \leq n_{1}\right\} \cup\left\{f\left(v_{i}\right) \mid 1 \leq i \leq n \text { and } i \text { even }\right\}\right) \\
& =\max \left(\left\{f\left(v_{i}\right) \mid 1 \leq i \leq n \text { and } i \text { odd and } f\left(v_{n, j}\right) \mid 1 \leq j \leq n_{2}\right\}\right)+1 . \tag{16}
\end{align*}
$$

Since the sequences $f\left(v_{1, j}\right), 1 \leq j \leq n_{1}$ and $f\left(v_{i}\right), 1 \leq i \leq n$ with i even, form a monotonically decreasing sequence and the sequences $f\left(v_{i}\right), 1 \leq i \leq n$ with i odd and $f\left(v_{n, j}\right), 1 \leq j \leq n_{2}$, form a monotonically increasing sequence and from the equations (2.13) and (2.16), it follows $f\left(v_{1, j}\right), 1 \leq j \leq n_{1}, f\left(v_{i}\right), 1 \leq i \leq n, f\left(v_{n, j}\right)$, $1 \leq j \leq n_{2}$, are all distinct.

Let A be the set of edges in $S_{n_{1}}$ and B be the set of edges $v_{i} v_{i+1}, 1 \leq i \leq n-1$ along the path C be the set of edges $v_{i} v_{i+3}, 1 \leq i \leq n-3$ and D be the set of edges in $S_{n_{2}}$.

Observe from the definition of f that the members of A get the value $\{M, M-$ $\left.1, M-2, \cdots, M-\left(n_{1}-1\right)\right\}$. The members of B get the value $\left\{M-n_{1}, M-n_{1}-\right.$ $\left.1, M-n_{1}-4, M-n_{1}-5, M-n_{1}-8, M-n_{1}-9, \cdots, n_{2}+4, n_{2}+3, n_{2}+1\right\}$ when n is even and when n is odd, the members of B get the value $\left\{M-n_{1}, M-n_{1}-\right.$ $\left.1, M-n_{1}-4, M-n_{1}-5, \cdots, n_{2}+2, n_{2}+1\right\}$.

The members of C get the value $\left\{M-n_{1}-3, M-n_{1}-2, M-n_{1}-7\right.$, $\left.M-n_{1}-6, \cdots, n_{2}+5, n_{2}+6, n_{2}+2\right\}$ when n is even and when n is odd, the members of C get the value $\left\{M-n_{3}, M-n_{1}-2, M-n_{1}-7, M-n_{1}-6, \cdots, n_{2}+3, n_{2}+4\right\}$. The members of D get the value $\left\{\frac{n+1}{2}, \frac{n+3}{2}, \cdots, \frac{n+n_{2}-1}{2}\right\}$ when n is odd and when n is even, the members of D get the value $\left\{\frac{n+2}{2}, \frac{n+4}{2}, \cdots, \frac{n+2 n_{2}}{2}\right\}$. Thus it is clear that the edge values of all the edges of P_{n}^{3} are distinct and range from 1 to M.

Hence $S_{2}\left(P_{n}^{3}\right)$ is graceful.
We consider $\lambda=n$ or $\frac{n-1}{2}$ according as n is even or odd. Then by the definition of f, it is clear that $f(u) \leq \lambda<f(v)$ for every edge $u v$ of $S_{2}\left(P_{n}^{3}\right)$.

Thus, the graph $S_{2}\left(P_{n}^{3}\right)$ is graceful and admits an α-valuation. Hence, the theorem.

The following corollary is an immediate consequence of Rosa's theorem.
Corollary 3. There exists a cyclic decomposition of the complete graphs $K_{2 c q+1}$ into subgraphs isomorphic to $S_{2}\left(P_{n}^{3}\right)$, where c is an arbitrary positive integer.

Due to the theorem if El-Zanati and Vanden Eynden (1996) we have the following corollary.
Corollary 4. There exists a partition of the complete bipartite graphs $K_{m q, n q}$ into subgraphs isomorphic to $S_{2}\left(P_{n}^{3}\right)$, where m and n are arbitrary positive integers.

Illustrative example of labeling given in the Proof of Theorem 2 are shown in Figures 4,5,6.

Figure 4. The Graph $S_{2}\left(P_{n}^{3}\right)$.

Figure 5. α-valuation of $S_{2}\left(P_{8}^{3}\right)$.

Figure 6. α-valuation of $S_{2}\left(P_{9}^{3}\right)$.
3. Harmonious Labeling of $K_{2}+P_{n}$ for $n \geq 1$

In this section it is shown that join of complete graph K_{2} and path P_{n}, denoted $K_{2}+P_{n}$ is harmonious for all n.
Theorem 3.1 Join of $K_{2}+P_{n}$ is harmonious, for $n \geq 1$.
Proof: For $n \geq 1$, let G be a graph $K_{2}+P_{n}$. Let u_{1} and u_{2} be the vertices of K_{2} and $v_{1}, v_{2}, \cdots, v_{n}$ be the vertices of P_{n}. Then G has $|E(G)|=M=3 n$ edges. We define vertex labeling f in two cases depends on n is odd or even.
Case (i) n is odd

$$
\text { Define } \begin{aligned}
f\left(u_{1}\right) & =0 \\
f\left(u_{2}\right) & =M-1 \\
f\left(v_{i}\right) & =3 i-2,1 \leq i \leq n
\end{aligned}
$$

Then, it is clear that the vertex labeling $f\left(u_{i}\right), i=1,2$ and $f\left(v_{i}\right), 1 \leq i \leq n$ are distinct.

Further,

$$
\begin{aligned}
f\left(u_{1} u_{2}\right) & =3 n-1 \\
f\left(u_{1} v_{i}\right) & =3 i-2, \quad 1 \leq i \leq n \\
f\left(u_{2} u_{i}\right) & =3 i-3, \quad 1 \leq i \leq n \\
f\left(v_{i} v_{i+1}\right) & =6 i-1(\bmod M), 1 \leq i \leq n-1
\end{aligned}
$$

That is

$$
\begin{aligned}
f\left(v_{i} v_{i+1}\right) & =6 i-1,1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor \\
f\left(v_{i} v_{i+1}\right) & =(6 i-1)(\bmod M),\left\lfloor\frac{n}{2}\right\rfloor+1 \leq i \leq n-1, \\
& =(6 i-1), i=\left\lfloor\frac{(n-1)}{2}\right\rfloor+j, 1 \leq j \leq\left\lfloor\frac{(n-1)}{2}\right\rfloor \\
& =6\left(\left\lfloor\frac{(n-1)}{2}\right\rfloor+j\right)-1,1 \leq j \leq\left\lfloor\frac{(n-1)}{2}\right\rfloor \\
& =3 n-6 j-4(\bmod M), \quad 1 \leq j \leq\left\lfloor\frac{(n-1)}{2}\right\rfloor \\
& =6 j-4,1 \leq j \leq\left\lfloor\frac{(n-1)}{2}\right\rfloor
\end{aligned}
$$

Observe that,

$$
\begin{aligned}
f\left(u_{1} u_{2}\right) & =\{3 n-1\} \\
\left\{f\left(u_{1} v_{i}\right) \mid 1 \leq i \leq n\right\} & =\{1,4,7,10, \cdots, 3 n-2\}, \\
\left\{f\left(u_{2} v_{i}\right) \mid 1 \leq i \leq n\right\} & =\{0,3,6,9, \cdots, 3 n-3\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\{f\left(v_{i} v_{i+1}\right) \mid 1 \leq i \leq n-1\right\}=\{(6 i-1) \mid 1 \leq i \leq n-1\}, \\
& \quad=\{(6 i-1) \mid 1 \leq i \leq(n-1) / 2\} \cup\{(6 i-1) \mid 1 \leq i \leq(n-1) / 2\} \\
& \quad=\{(6 i-1) \mid 1 \leq i \leq(n-1) / 2\} \cup\{6(((n-1) / 2)+j)-1 \mid 1 \leq j \leq(n-1) / 2\} \\
& \quad=\{(6 i-1) \mid 1 \leq i \leq(n-1) / 2\} \cup\{3 n+6 j-4 \mid 1+j \leq(n-1) / 2\} \\
& \\
& =\{(6 i-1) \mid 1 \leq i \leq(n-1) / 2\} \cup\{(6 j-4) \mid 1 \leq j \leq(n-1) / 2\} \\
& \\
& =\{5,11,17, \cdots, 3 n-4\} \cup\{2,8,14, \cdots, 3 n-7\} \\
& \\
& =\{2,5,8,11,14, \cdots, 3 n-7,3 n-4\} .
\end{aligned}
$$

From the above sets of the edge values, it follows that edge labeling of each edge is distinct and edge values ranges from 0 to $M-1$.
Case (ii), n is even
Case(ii)(a) n is even and $n=4 k, n \geq 1$

Define

$$
\begin{aligned}
f\left(u_{1}\right) & =0 \\
f\left(u_{2}\right) & =M-1, \\
f\left(v_{i}\right) & =3(i-1)+1, \quad 1 \leq i \leq 2 k-1, \\
f\left(v_{i}\right) & =6(i-k)+1, \quad 2 k \leq i \leq 3 k-1, \\
f\left(v_{3 k}\right) & =3(n-1)+1, \\
f\left(v_{i}\right) & =3(n-2(i-3 k)-1)+1, \quad 3 k+1 \leq i \leq 4 k .
\end{aligned}
$$

It is clear that the vertex labeling $f\left(v_{i}\right)$ are distinct, for $1 \leq i \leq n$.
Further,

$$
\begin{aligned}
f\left(u_{1} u_{2}\right) & =M-1, \\
f\left(u_{1} v_{i}\right) & =3(i-1)+1,1 \leq i \leq 2 k-1 \\
f\left(u_{1} v_{i}\right) & =3(2(i-k))+1,2 k \leq i \leq 3 k+1 \\
f\left(u_{1} v_{3 k}\right) & =3(n-1)+1, \\
f\left(u_{1} v_{3 k+i}\right) & =3(n-2 i-1)+1,1 \leq i \leq k \\
f\left(u_{2} v_{i}\right) & =3(i-1), 1 \leq i \leq 2 k-1, \\
f\left(u_{2} v_{i}\right) & =3(2(i-k)), 2 k \leq i \leq 3 k-1, \\
f\left(u_{2} v_{3 k}\right) & =3(n-1) \\
f\left(u_{2} v_{i}\right) & =3(n-2(i-3 k)-1), 3 k+1 \leq i \leq 4 k
\end{aligned}
$$

and

$$
\begin{aligned}
f\left(v_{i} v_{i+1}\right) & =(3(i-1)+1)+(3 i+1), 1 \leq i \leq 2 k-2, \\
& =3(2 i-1)+2,1 \leq i \leq 2 k-2 \\
f\left(v_{2 k-1} v_{2 k}\right) & =3(4 k-2)+2 \\
f\left(v_{i} v_{i+1}\right) & =(3(2 i-k))+1+3(2(i+1)-k))+1)(\bmod M), 2 k \leq i \leq 3 k-2, \\
& =(3(2(2 i-2 k+1)+2))(\bmod M), 2 k \leq i \leq 3 k-2, \\
f\left(v_{3 k-1}, v_{3 k}\right) & =(3(2(3 k+1-k))+1+3 n-2)(\bmod M), \\
& =(12 k-6+1-2+3 n)(\bmod M), \\
& =(3(n-3)+2)(\bmod M), \\
f\left(v_{3 k}, v_{3 k+1}\right) & =(3 n-2+3 n-6-2)(\bmod M), \\
& =(3 n-2+3 n-8)(\bmod M) \\
& =(6 n-10)(\bmod M), \\
& =(3 n-10) \\
& =3(n-4)+2 \\
f\left(v_{i} v_{i+1}\right) & =(3(n-4(i-3 k)-4)+2)(\bmod M), 3 k+1 \leq i \leq 4 k-1 .
\end{aligned}
$$

Similarly it follows that edge labeling are distinct and edge value ranges from 0 to M-1.
Case (ii) (b) n is even and $n=4 k+2, k \geq 1$.

Define

$$
\begin{aligned}
f\left(u_{1}\right) & =0 \\
f\left(u_{2}\right) & =M-1 \\
f\left(v_{i}\right) & =3(i-1)+1,1 \leq i \leq 2 k \\
f\left(v_{i}\right) & =3(2(i-k)-1)+1,2 k+1 \leq i \leq 3 k+1, \\
f\left(v_{3 k+2}\right. & =3(n-2)+1, \\
f\left(v_{i}\right) & =(3(2(k-i))+1)(\bmod M), 3 k+3 \leq i \leq 4 k+2 .
\end{aligned}
$$

It is clear that the vertex labeling $f\left(v_{i}\right)$ are distinct for $1 \leq i \leq n$.
Further, observe that

$$
\begin{aligned}
f\left(u_{1} u_{2}\right) & =M-1 \\
f\left(u_{1} v_{i}\right) & =3(i-1)+1,1 \leq i \leq 2 k, \\
f\left(u_{1} v_{i}\right) & =3(2(i-k)-1)+1,2 k+1 \leq i \leq 3 k+1, \\
f\left(u_{1} v_{3 k+2}\right) & =3(n-2)+1, \\
f\left(u_{1} v_{i}\right) & =(3(2 k-i)+1)(\bmod M), 3 k+3 \leq i \leq 4 k+2 \\
f\left(u_{2} v_{i}\right) & =M-1+3(i-1)+1, \\
& =3(i-1), 1 \leq i \leq 2 k, \\
f\left(u_{2} v_{i}\right) & =3(2(i-k)-1), 2 k+1 \leq i \leq 3 k+1 \\
f\left(u_{2} v_{3 k+2}\right) & =3(n-2), \\
f\left(u_{2} v_{i}\right) & =3(2(k-i))(\bmod M), 3 k+3 \leq i \leq 4 k+2
\end{aligned}
$$

and

$$
\begin{aligned}
f\left(v_{i} v_{i+1}\right) & =(3(i-1)+(3 i+1)), \\
& =6 i-1, \\
& =3(2 i-1)+2,1 \leq i \leq 2 k-1, \\
f\left(v_{2 k} v_{2 k+1}\right) & =3(2 k-1)+1+3(2(k+1)-1)+1=3(4 k)+2 \\
f\left(v_{i} v_{i+1}\right) & =6(i-k)-2+6(i+1-k)-2, \\
& =(3(4(i-k)+2)(\bmod M), 2 k+1 \leq i \leq 3 k, \\
f\left(v_{3 k+1} v_{3 k+2}\right) & =(3(2(3 k+1-k)+1)+3 n-5)(\bmod M), \\
& =12 k-1, \\
f\left(v_{3 k+2} v_{3 k+3}\right) & =(3 n-5+6(k-i)+1)(\bmod M) \\
& =(3 n-16)(\bmod M), \\
f\left(v_{i} v_{i+1}\right) & =6 k-6 i+1+6 k-6 i-6+1(\bmod M) \\
& =12 k-12 i-4(\bmod M) \\
& =12 k+6-12 i-4-6(\bmod M), \\
& =-12 i-10(\bmod M), \\
& =-(12 i+10)(\bmod M), 3 k+3 \leq i \leq 4 k+1 .
\end{aligned}
$$

Figure 7. Harmonious labeling of $K_{2}+P_{9}$.

Figure 8. Harmonious labeling of $K_{2}+P_{8}$.

It follows that edge labelings are distinct and edge values ranges from 0 to $M-1$. When $n=2, G$ is K_{4}, which is harmonious.

Hence G is harmonious.
Illustrative example of labeling given in the proof of Theorem 3 are given in Figures 7,8,9.

Figure 9. Harmonious labeling of $K_{2}+P_{10}$.

4. Discussion

In our paper we have shown that P_{n}^{3} and $S_{2}\left(P_{n}^{3}\right)$ admit an α-valuation. We believe that it is possible to prove that P_{n}^{t} and $S_{2}\left(P_{n}^{t}\right)$, for $t, 2 \leq t \leq n-2$ admit an α-valuation. Thus, we end this paper with the following conjecture.
Conjecture: P_{n}^{t} and $S_{2}\left(P_{n}^{t}\right)$ admit an α-valuation for $t, 2 \leq t \leq n-2$.

Acknowledgement: The authors would like to thank the referee for their valuable comments and suggestions for improving the presentation of this paper.

References

[1] Balakrishnan R. and Kumar R., (1994) Exercise and non-existence of certain labeling for the graph $K_{n}^{c} V 2 k_{2}$, Utilitas Math., 46 97-02.
[2] Deng Y.X., (1995) Harmoniousness of the graph $C_{n}+\bar{K}_{t}$ J.Math. Res. Exposition, 15 Suppl., 79-81.
[3] EI-Zanati and Vanden Eynden C., (1996) Decomposition of $K_{m, n}$ into cubes, J. Combin. Designs, 4 51-67.
[4] Graham R.L. and Sloane N.J.A., (1980) On additive bases and harmonious graphs, SIAM J. Alg. Discrete Math., 1 382-404.
[5] Gallian J.A., (1998) A Dynamic Survey of Graph Labeling, The Electronic J. of Combinatorics, 5 \# DS6.
[6] Golomb S.W., (1972) How to number a graph, in Graph Theory and Computing, R.C.Read, ed., Academic Press, New York 23-27.
[7] Krishnaa A.K., Dulawat M.S. and Rathore G.S., (2001) Computational complexity in decision problems, presented in Conf. of Raj. Parishad, Dec. 14-15, Udaipur, India.
[8] Liu B. and Zhang X., (1993) On harmonious labeling of graphs, Ars Combin., 36 315-326.
[9] Ringel G., (1964) Theory of Graphs and its Applications, Proc.Symposium Smolenice 1963, 162.
[10] Rosa A., (1967) On certain valuations of the vertices of a graph, 'Theory of Graphs' (Internat. Symposium, Rome, July 1966), Gordon and Breach, N.Y. and Dunod Paris 349-355.
[11] Yuan J. and Zhu W., (1998) Some results on harmonious labelings of graphs, J.Zhengzhou Univ.Nat.Sci. Ed., 30 7-12.

[^0]: 2000 Mathematics Subject Classification: 05C78.
 Received: 09-08-2011, revised: 09-09-2011, accepted: 04-12-2011.

