J. Indones. Math. Soc. Vol. 21, No. 1 (2015), pp. 71–72.

CORRIGENDUM TO NEW INEQUALITIES ON HOMOGENEOUS FUNCTIONS, J. INDONES. MATH. SOC. 15 (2009), NO. 1, 49-59

V. Lokesha¹, K.M. Nagaraja², and Y. Simsek ³

¹ Department of Mathematics, Acharya Institute of Technology, Soldevana- halli, Bangolore-90, India lokiv@yahoo.com

²Department of Mathematics, Sri Krishna Institute of Technology, Chikkabanavara, Hesaraghata Main Road, Karnataka, Bangolore-90, India 2406@yahoo.co.in ³ University of Akdeniz, Faculty of Arts and Science, Department of Mathematics, 07058, Antalya, Turkey

ysimsek@akdeniz.edu.tr

The paper contains typing errors.

Theorem 2 Let $\mu_1, \mu_2 \in (-2, \infty), r < 1$. If $\mu_1 \le \frac{4}{1-r} \le \mu_2$, then

$$m_{\mu_2,r}(a,b) \le L(a,b) \le Gn_{\mu_1,r}(a,b).$$
 (12)

Furthermore $\mu_1 = \mu_2 = \frac{4}{1-r}$ is the best possibility for inequality (12). Also for r = 0,

$$gn_{\mu_2,0}(a,b) \le L(a,b) \le Gn_{\mu_1,0}(a,b).$$
 (13)

Furthermore $\mu_1 = \mu_2 = 4$ is the best possibility for inequality (13).

Theorem 3 For $\mu_1, \mu_2 \in (-2, \infty), r \neq \frac{2}{3}, r < 1$ and if $\mu_1 \leq \frac{2}{2-3r} \leq \mu_2$, then

$$n_{\mu_2,r}(a,b) \le I(a,b) \le Gn_{\mu_1,r}(a,b).$$
 (15)

Furthermore $\mu_1 = \mu_2 = \frac{2}{2-3r}$ is the best possibility for inequality (15). Also for r = 0,

$$gn_{\mu_2,0}(a,b) \le I(a,b) \le Gn_{\mu_1,0}(a,b).$$
(16)

Furthermore $\mu_1 = \mu_2 = 1$ is the best possibility for inequality (16).

Theorem 4 For
$$\mu_1, \mu_2 \in (-2, \infty), r \neq 0$$
 and if $\mu_2 \leq \frac{2}{r} - 2 \leq \mu_1$, then
 $gn_{\mu_2,0}(a,b) \leq M_r(a,b) \leq Gn_{\mu_1,0}(a,b).$ (17)

Furthermore $\mu_1 = \mu_2 = \frac{2}{r} - 2$ is the best possibility for inequality (17)

71

The above Theorems should be corrected to as follows:

Theorem 2 For $r \neq \frac{1}{3}$ and $\mu_1, \mu_2 \in (-2, \infty)$ such that $\mu_1 \leq \frac{4}{1-3r} \leq \mu_2$, then $gn_{\mu_2,r}(a,b) \leq L(a,b) \leq Gn_{\mu_1,r}(a,b).$ (12)

Furthermore $\mu_1 = \mu_2 = \frac{4}{1-3r}$ is the best possibility for inequality (12). Also for r = 0,

$$gn_{\mu_2,0}(a,b) \le L(a,b) \le Gn_{\mu_1,0}(a,b).$$
 (13)

Furthermore $\mu_1 = \mu_2 = 4$ is the best possibility for inequality (13).

Theorem 3 For $r \neq \frac{2}{3}$ and $\mu_1, \mu_2 \in (-2, \infty)$ such that $\mu_1 \leq \frac{2}{2-3r} \leq \mu_2$, then $gn_{\mu_2,r}(a,b) \leq I(a,b) \leq Gn_{\mu_1,r}(a,b).$ (15)

Furthermore
$$\mu_1 = \mu_2 = \frac{2}{2-3r}$$
 is the best possibility for inequality (15). Also for

$$gn_{\mu_2,0}(a,b) \le I(a,b) \le Gn_{\mu_1,0}(a,b).$$
 (16)

Furthermore $\mu_1 = \mu_2 = 1$ is the best possibility for inequality (16).

Theorem 4 For
$$r \neq 1$$
 and $\mu_1, \mu_2 \in (-2, \infty)$ such that $\mu_2 \leq \frac{r}{1-r} \leq \mu_1$, then
 $gn_{\mu_2,0}(a,b) \leq M_r(a,b) \leq Gn_{\mu_1,0}(a,b).$ (17)

Furthermore $\mu_1 = \mu_2 = \frac{r}{1-r}$ is the best possibility for inequality (17).

Remark. Carlson [1] and Lin [2] gave some inequalities on mean and logarithmic mean.

References

[1] Carlson, B.C., "The logarithmic mean", Amer. Math. Monthly, 79 (1972), 615-618.

[2] Lin, T.P., "Mean and logarithmic mean", Amer. Math. Monthly, 81 (1974), 879-883.

r = 0,