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Abstract. Formal concept analysis is a method of exploratory data analysis that

aims at the extraction of natural cluster from object-attribute data tables. We
present a way to add user’s background knowledge to formal concept analysis. The

type of background knowledge we deal with relates to relative importance of at-
tributes in the input data.

We introduce EM operators which constrain in attributes of formal concept anal-

ysis. The main aim is to make extraction of concepts from the input data more

focused by taking into account the background knowledge. Particularly, only con-

cepts which are compatible with the constraint are extracted from data. Therefore,

the number of extracted concepts becomes smaller since we leave out non-interesting

concepts. We concentrate on foundational aspects such as mathematical feasibility

and computational tractability.

Key words and Phrases: Formal concept analysis, EM operator, implication, inter-

esting concept,interesting attribute.

Abstrak. Analisis konsep formal adalah suatu metode analisis data eksplorasi

yang bertujuan untuk pengekstraksian klaster alami dari tabel data beratribut ob-
jek. Kami menyajikan suatu cara untuk menambahkan latar belakang pengetahuan

pengguna untuk analisis konsep formal. Tipe latar belakang pengetahuan yang kami

perhatikan adalah tipe yang berkaitan untuk kepentingan relatif dari atribut di data
input.

Kami memperkenalkan operator EM yang membatasi atribut analisis konsep formal.

Tujuan utama adalah untuk membuat ekstrak konsep dari data input menjadi lebih

fokus dengan mengkaitkan ke latar belakang pengetahuan. Secara khusus, hanya

konsep yang sesuai dengan batsan yang diekstrak dari data. Sehingga banyaknya

konsep yang diekstrak menjadi semakin kecil karena kita mengabaikan konsep yang

tidak menarik. Kami memfokuskan pada aspek dasar seperti feasible secara matem-

atika dan dapat dilacak dengan perhitungan.
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Kata kunci: Analisis konsep formal, operator EM, implikasi, konsep yang menarik,

atribut yang menarik.

1. Introduction

Formal concept analysis (FCA) is a method of data analysis and visualiza-
tion which deals with input data in the form of a table describing objects, their
attributes, and their relationship (cf. [10] and [12]). As [8] points, FCA is proved
to be useful for knowledge extraction form and visualization of binary data-sets
in various application domains such as organization of Web search results into a
hierarchical structure of concepts based on common topics, information retrieval,
and so on (see [8-10, 12-17]). In addition, the ideas of hierarchy order and logic in
FCA are applied to engineer and some other fields (see [11, 18, 19]).

The authors [6] indicate that a distinguishing feature of FCA is an inherent
integration of three components: discovery of clusters (so-called formal concepts) in
data, discovery of data dependencies (so-called attribute implications) in data, and
visualization of formal concepts and attribute implications by a single hierarchical
diagram (so-called concept lattice). In the basic setting, people often suppose that
no further information is supplied at the input except for the data table. However,
it is often the case that there is an additional information available in the form of
a constraint (requirement) specified by a user. In such a case, one is not interested
in all the outputs but only in those which satisfy the constraint. The other outputs
may be left out as non-interesting. This way, the number of outputs is reduced by
focusing on the “interesting ones”.

We are well known that classification is a way of categorising the data (records)
for an attribute. The choice of classification system is critical to information dis-
played by a map. Classification can be used to enhance the information or to
deliberately mislead. Attributes can use different classifications for the same data
to change the nature of the display, this can be achieved in some different ways (see
[20]).

Therefore, combining the above indications with the ideas in [10, 12, 21, 22],
we will believe that roughly speaking, constrain attributes belong to the field of
attribute classification. A reader can find examples of using constraints in data
mining from all the references such as [1-5, 7, 9, 13, 23-25, 26].

For FCA, comparing the results from no constraints on input data (see [10]
and [12]) with ones from constraints by some relations on input data (e.g. [1, 2,
11, 23-25]), we may easily state that for FCA, the case with no constraints on
input data can be thought as a special one constrained by some relation such as
equivalence relations. Following our comparisons from the results in [1, 2, 24] and
[3], we may believe that every equivalence relation is a closure operator.

The discussion in [7] instructs that though some researchers, for example the
authors in [3], reveal some properties of FCA with constraints by closure operators,
it is still valuable to consider FCA with constraints by other operators. In other
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words, to find a simpler operator than a closure operator to constraint on input
data is always the pursue of researchers, since the pursued result will lead to a
wider application of FCA.

Since we can find “interesting objects” by dual way to constraint attributes,
this paper pay attention to explore constraint relations on attributes.

In this paper, we provide an EM operator which is simpler than closure
operator. Constrained with EM operator on attributes, we find some properties
of S-concepts (that is, “interesting formal concepts”). With the aid of Ganter’s
NextClosure Algorithm, we discover some relationships between EM operator and
“interesting intents”. After that, we present two algorithms (including NextEM
Algorithm) to search S-intents of a context. Using EM operator and “interesting
intents”, we describe “interesting” implications between attributes. Our approach
is theoretically and computationally tractable and covers several interesting forms
of constraints.

The rest of this paper is organized as follows. Section 2 provides preliminaries
for FCA. Section 3 presents our approach, theoretical foundations, and the idea of
algorithms. Section 4 concludes this paper.

2. Preliminaries

In this section, we summarize basic notions of FCA. For more detail, please,
refer to [8, 10, 12]. Additionally, the definition of a closure operator on a set, please,
see [3, 10, 12].

In what follows, A ⊆ B means that A is a subset of B; A ⊂ B means A ⊆ B
and A 6= B.

Definition 1 ([12, pp.17-20 & 10]) A formal context (X,Y, I) consists of two
sets X and Y and a relation I between X and Y . The elements of X are called
the objects and the elements of Y are called the attributes of (X,Y, I) . In order to
express that an object g is in a relation I with an attribute m, we write gIm. For
a set A ⊆ X and a set B ⊆ Y , we define A′ := {m ∈ Y | gIm for all g ∈ A} and
B′ := {g ∈ X | gIm for all m ∈ B}.

A formal concept of (X,Y, I) is a pair (A,B) with A ⊆ X,B ⊆ Y,A′ = B
and B′ = A. We call A the extent and B the intent of the concept (A,B).

In what follows, (X,Y, I) denotes a formal context, B(X,Y, I) is the concept
lattice of (X,Y, I).

Lemma 1 ([12, p.18 &10]) Let (X,Y, I) be a context. If B,B1, B2 are sets
of attributes, then,



16 Hua Mao et.al.

(1) B1 ⊆ B2 =⇒ B′2 ⊆ B′1; (2) B ⊆ B′′; (3) (B′, B′′) is a concept.

The ideas regarding relative importance of attributes, as described informally
before, can be approached in the framework of FCA as follows.

Definition 2 ([3 &12, pp.79-81; 10]) An attribute implication over a set Y of
attributes is an expression A⇒ B, where A,B ⊆ Y are sets of attributes. A⇒ B
is true in a set M ⊆ Y , written as M |= A ⇒ B, if the following condition is
satisfied: if A ⊆M , then B ⊆M .

A set M ⊆ Y is called a model of a set T of implications if, for each
A⇒ B ∈ T,M |= A⇒ B. Let Mod(T ) denote the set of all models of T .

In fact, from [3], we know that a formal concept (C,D) ∈ B(X,Y, I) satisfies
A⇒ B if and only if D |= A⇒ B.

Remark 1 The authors [4-6] provide AD-formulas between attributes re-
spectively. Their motivations provided AD-formulas are similar to that of implica-
tions between attributes.

Implications and AD-formulas are introduced and studied between attributes
(cf. [3-6, 8, 10, 12]). Belohlavek and Vychodil [4] point out that for A,B,M ⊆ Y ,
we have M |= A v B if and only if M |= B ⇒ A, where M = Y −M , A v B
is an AD-formula. Hence, we only need to put our effort on implications between
attributes.

3. Constrained Attributes

We are well known from [3] that selecting “interesting” concepts from B(X,Y, I)
needs to be accompanied by a criterion of what is interesting. Such a criterion can
be seen as a constraint and depends on particular data and application. Therefore,
the constraint should be supplied by a user along with the input data (X,Y, I).
One way to specify “interesting concepts” is to focus on concepts whose sets of at-
tributes are “interesting”. This seems to be natural because “interesting concepts”
are determined by “interesting attributes”. In this section, we develop this idea
provided that the selected sets of attributes which are taken as “interesting” form
a system on Y determined by an EM operator.

3.1. Interesting Formal Concepts. We start by a definition of EM operator and
summarize some interesting sets of attributes using EM operators.

Definition 3 (1) Let Y be a set of attributes and S : 2Y → 2Y be an
operator on Y . S is called an EM operator if S satisfies the following conditions:
(s1) A ⊆ S(A). (extensive)
(s2) A ⊆ B implies S(A) ⊆ S(B). (monotony)
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(2) Let S be an EM operator. A set B ⊆ Y of attributes is called an S-
interesting set of attributes (shortly, a set of S-attributes) if B = S(B). Let
BS(X,Y, I) = {(A,B) ∈ 2X × 2Y |A′ = B,B′ = A,B = S(B)},
and IntS(X,Y, I) = {B ⊆ Y | there is A ⊆ X such that (A,B) ∈ BS(X,Y, I)}.

Each (A,B) ∈ BS(X,Y, I) is called an S-interesting concept (S-concept);
B ∈ IntS(X,Y, I) is called an S-interesting intent (S-intent).

The following example shows the existence of EM operators.

Example 1 Let Y = [0, 1]. Define S : 2Y → 2Y as x 7→ [0, sin(π2x)],
A 7→

⋃
x∈A

S(x) for any x ∈ Y and A ⊆ Y . It is easily seen that S is an EM operator.

Actually, in Example 1, if x = 1
2 , then S(x) = [0, sin(π2

1
2 )], S(S(x)) =⋃

x∈[0,
√

2
2 ]

[0, sin(π2x)] ⊃ S(x). Thus, S is not a closure operator. This fact illustrates

that not every EM operator is closure.

Comparing the definitions of a closure operator and an EM operator, we may
express that a closure operator is an EM operator.

Thus, we may state that it is valuable to consider the context which its at-
tributes are constrained by EM operators because user’s background knowledge
need the case to be happened sometimes. Therefore, we may confirm that our
discussions in this paper is different from the ones that are constrained attributes
by closure operators.

Remark 2 For a given set B ⊆ Y of attributes and an EM operator S,
S(B) can be seen as a set of S-attributes containing B. Thus, S is an operator de-
scribing which attributes must be added to a set of attributes to make it interesting.

We now focus on the computational aspects of generating all S-concepts. In
the sequel, we will show that BS(X,Y, I) can be computed with the assistance of
Ganter’s NextClosure algorithm (see [12, pp.66-68]). For this purpose, the first is
to combine together two operators: ′′ (operator induced by the Galois connection
given by a formal context (X,Y, I)) and S (operator specifying intersting sets of
attributes) in the following:

for any B ⊆ Y , we define sets Bi (i ∈ N0) and S(B) of attributes as:

Bi =

{
B, if i = 0
S(B′′i−1), if i ≥ 1

S(B) =

∞⋃
i=1

Bi. (∗)

The second is to show technical insight and crucial properties.

Theorem 1 Let (X,Y, I) be a formal context with |Y | < ∞, S : 2Y → 2Y

be an EM operator on Y , and S be defined by (∗). Then S is an EM operator such
that for any B ⊆ Y , B = S(B) if and only if B ∈ IntS(X,Y, I).
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Proof The first is to prove that S is an EM operator.

In view of (s1) and Lemma 1, we may easily obtain B0 = B,B1 = S(B′′0 ) ⊇
B′′0 ⊇ B0. Repeat this argumentation, we receive B = B0 ⊆ B′′0 ⊆ S(B′′0 ) = B1 ⊆
B′′1 ⊆ S(B′′1 ) = B2 ⊆ . . . ⊆ Bi−1 ⊆ B′′i−1 ⊆ S(B′′i−1) = Bi ⊆ . . . for each i ∈ N0.

Thus, considering with |Y | < ∞, we may obtain B ⊆ S(B). Hence, S is
extensive.

Let A ⊆ B ⊆ Y . Then, there are A0 ⊆ B0 and A1 = S(A′′0) ⊆ S(B′′0 ) = B1

since Lemma 1 and S satisfies (s2). Repeat this argumentation, in view of the finite
of Y , after finite steps, we may obtain S(A) ⊆ S(B). That is, S is monotony.

The second is to prove: B = S(B) if and only if B ∈ IntS(X,Y, I).

We will fulfill by the following (⇒) part and (⇐) part.

(⇒) Let B = S(B).

Then, we obtain B ⊆ B′′ ⊆ S(B′′) ⊆ S(B) = B. So, it follows B = B′′ =
S(B). Thereby, in virtue of Lemma 1, Definition 1 and Definition 3, we decide
B ∈ IntS(X,Y, I).

(⇐) Let B ∈ IntS(X,Y, I).

Then, we obtain B = B′′ = S(B) in light of Definition 1 and Definition 3.
This reveals B0 = B,B1 = S(B′′) = S(B) = B,B2 = S(B′′1 ) = S(B), . . . , Bi =
S(B′′i−1) = S(B), . . .. Finally, by the finite of Y , it follows S(B) = B = S(B) = B′′.

Indeed, combining Theorem 1 with the famous NextClosure operator (see [12,
p.66]), we provide the following viewpoints.

(1) We can use NextClosure algorithm to compute all the intents of (X,Y, I),
that is, Int(X,Y, I) = {B = B+ | B ⊆ Y } where B+ denotes the lectically smallest
fixed point of closure operator ′′ which is a successor of B.

(2) Considering (1) with Theorem 1, we believe:

B = S(B) if and only if B = B+ = S(B+).
Thereby, we may attain Int(X,Y, I).

(3) No matter to suppose Int(X,Y, I) = {B#
1 , B#

2 , . . . , B#
n }. Actually, for a

given EM operator S, S(B#
j ) is well defined (j = 1, . . . , n). Hence, we may easily

determine the true or false of B#
j = S(B#

j ).

If it is true, then IntS(X,Y, I) = IntS(X,Y, I) ∪ {B#
j }.

Otherwise, if j < n, consider j + 1 and repeat the above examination. After
n steps, we obtain IntS(X,Y, I).

Let Y = {1, 2, . . . , n} with n < ∞ and g : 2Y → 2Y be an EM operator.
We define an lectically smaller relation < and the relation <i as [12, p.66]. Define
A⊕i = g(((A∩{1, 2, . . . , i−1})∪{i})′′) (i ∈ Y ) for any A ⊆ Y . We may attain that
the lectically smallest g-interesting intent is g(∅′′). Sometimes, we can suppose ∅
as g(∅′′) since this will not infect any discussion for searching g-interesting intents.
Thus, the above definition is well defined.

We may easily verify the following statements: for A,B ⊆ Y ,
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(1) A < B if and only if A <i B for one i ∈ Y .

(2) A <i B and A <j C with i < j implies C <i B.

(3) i 6∈ A implies A < A⊕ i.

(4) A <i B and B an g-interesting intent (i.e. B = g(B) = B′′) implies
A⊕ i ⊆ B.

(5) A <i B and B an g-interesting intent implies A <i A⊕ i.

Analogously to [12, p.67, Theorem 5], we obtain that for a given set A ⊂ Y , if
((A∩{1, 2, . . . , i−1})∪{i})′′ is a g-interesting intent, then the smallest g-interesting
intent larger than A (with respect to the lectic order) is A⊕ i, i being the largest
element of Y with A <i A⊕ i.

With the assistance of an EM operator g, we may compute all the g-interesting
concepts Bg(X,Y, I) = {(P,Q) ∈ B(X,Y, I) | Q = g(Q) = Q′′}.

Let S be an EM operator on Y = {1, 2, . . . , n} with n < ∞. From Theorem
1 and the above discussion for lectical order, we understand how to search out the
S-intents which we are looking for. We summarize this searching process as the
following algorithm.

Algorithm 1 For generating all the S-intents of a given context (X,Y, I):

Step 1. For A ⊂ Y , we find the lectically next intent by checking all the
elements i of Y \A with NextClosure algorithm. It is ((A∩{1, 2, . . . , i−1})∪{i})′′
as the “next” intent.

Step 2. If ((A∩{1, 2, . . . , i−1})∪{i})′′ is an S-intent, then A⊕ i is the intent
that we have been looking for.

Otherwise, let A := ((A ∩ {1, 2, . . . , i− 1}) ∪ {i})′′ and go to Step 1.

Since Y is an S-intent and finite, the above algorithm must stop after finite
steps. In addition, by NextClosure algorithm, every intent is found by the idea of
Step 1. Therefore, all the S-intents may be checked by Step 2. In other words, all
the S-intents of (X,Y, I) will be looked for by the above algorithm. For simplicity,
we call Algorithm 1 as NextEM algorithm.

Remark 3 Using NextEM algorithm to compute the fixed points of S, works
with polynomial time delay provided that S(B) (B ⊆ Y ) can be computed with
a polynomial time complexity. Indeed, for each B ⊆ Y , B′′ can be computed
with a polynomial time delay (well-known fact). Thus, if S(B) can be computed
in a polynomial time, NextEM can use S with a polynomial time delay. Still,
the number of S-concepts is usually much smaller than the number of all concepts,
thus, NextEM with S is in most situations considerably faster than NextEM with ′′.

In fact, analyzing with Ganter’s NextClosure algorithm, we may be assured
that to search all the S-intents with the above lectic order, the important is to find
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the smallest S-intent in lectic order. Thus, we analyze with S-intents and obtain
the following viewpoints.

(3.1.1) Let S be an EM operator defined on Y . We define an operator f :
2Y → 2Y as: for any A ⊆ E,

if ∅′′ ⊂ A, then f(A) = S(A);

if A = ∅′′, then f(A) = ∅′′;
if A ⊂ ∅′′, then f(A) = A.

We may easily decide that f is an EM operator. Additionally, in virtue of
Definition 1 and Lemma 1, ∅′′ is the smallest element in Intf (X,Y, I). Thereby,

if A ⊂ ∅′′, then A is not an intent;

if ∅′′ ⊂ A holds and A is an S-intent, then A is an f -intent and f(A) =
S(A) = A = A′′.

Furthermore, if A ⊂ E holds and A is an f -intent, then there is f(A) = A =
A′′. So, we obtain ∅′′ ⊆ A′′ = A. Hence, A is also an S-intent.

Considered the definition of f , we may determine that:

if ∅′′ 6= S(∅′′), then IntS(X,Y, I) = Intf (X,Y, I) \ ∅′′;
if ∅′′ = S(∅′′), then IntS(X,Y, I) = Intf (X,Y, I).

Summing up, A 6= ∅′′ is an S-intent if and only if A is an f -intent.

(3.1.2) Considered the lectic order <i, we may assert S(∅′′) <i S(A′′) (A ⊆
Y ). Moreover, if S(∅′′) is an S-intent, then S(∅′′) will be the smallest S-intent in
lectic order. Therefore, we receive f(∅′′) <i f(A′′) = S(A′′) for any A ⊆ E.

Let S be an EM-operator on Y = {1, 2, . . . , n} with n <∞. Let f be defined
from S by means of (3.1.1). According to the discussion in (3.1.1) and (3.1.2), we
may search out IntS(X,Y, I) with the following Algorithm 2.

Before introducing Algorithm 2, we provide an assistant algorithm.

Algorithm 2.1 For generating all f -intents of a given context (X,Y, I):

The lectically smallest f -intent is ∅′′.
For a given set B ⊂ Y , we find out the lectically next f -intent by checking all

elements i of Y \ B, starting from the largest one and continuing in a descending
order until for the first time B <i B ⊕ i.

Then, B ⊕ i is the “next” f -intent we have been looking for, where B ⊕ i :=
f(((B ∩ {1, 2, . . . , i− 1}) ∪ {i})′′).

Algorithm 2 For generating all the S-intents of a given context (X,Y, I):

Step 1. Using Algorithm 2.1, generate all f -intents of (X,Y, I).

Step 2. Output Intf (X,Y, I) in lectic order.

Step 3. To determine ∅′′ = S(∅′′) is yes or no.

If yes, then IntS(X,Y, I) = Intf (X,Y, I).

If no, then IntS(X,Y, I) = Intf (X,Y, I) \ ∅′′.
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Remark 4 Comparing Algorithm 2.1 with NextClosure algorithm in [12,
pp.67-68], we may point out that Algorithm 2.1 is a little similar to NextClosure
algorithm. We are well known that NextClosure algorithm completes with polyno-
mial time delay. Hence, we may believe that the two steps of Algorithm 2.1 and
Step 2 in Algorithm 2 completes in polynomial time delay if S(A′′) is for A ⊆ Y .
Evidently, Step 3 in Algorithm 2 will be completed with polynomial time delay if
S(∅′′) is. In one word, Algorithm 2 completes with polynomial time complexity if
S(A′′) is for any A ⊆ Y .

3.2. Bases of Interesting Attribute Implications. Let (X,Y, I) be a context.
In this section, we may state that all S-concepts can be described by particular
sets of “interesting” implications between attributes. We present a way to compute
minimal sets of such implications. We suppose that Y is finite.

If we focus only on “interesting models” of sets of attribute implications (or
sets of “interesting attribute implications”), we naturally come to the following
notions of an S-implication and an S-model.

Definition 4 Let Y be a set of attributes, S : 2Y → 2Y be an EM operator,
and T be a set of attribute implications in Y . M ⊆ Y is called an S-model of T if
M is a set of S-attributes and M ∈Mod(T ) holds. The system of all S-models of
T is denoted by ModS(T ) .

A set T of implications is called S-complete in (X,Y, I) if ModS(T ) =
IntS(X,Y, I). A set T of implications is called an S-basis of (X,Y, I) if T is
S-complete in (X,Y, I) and no proper subset of T is S-complete in (X,Y, I).

Before finding particular S-bases, we introduce a definition.

Definition 5 Let (X,Y, I) be a formal context, S : 2Y → 2Y be an EM
operator, and S be defined as (∗). A set P of S-attributes is called an S-pseudo-
intent of (X,Y, I) if P ⊂ S(P ), and for each S-pseudo-intent Q of (X,Y, I) such
that Q ⊂ P , we have S(Q) ⊆ P .

In fact, the notion of S-pseudo-intent is the generalization of the notion of a
pseudo-intent in [12, p.83] and also the generalization of the notion of a C-pseudo-
intent in [3]. The following result will illustrate the role of Definition 5.

Theorem 2 Let (X,Y, I) be a formal context with |Y | < ∞, S : 2Y → 2Y

be an EM operator and S be defined as (∗). Let

T = {P ⇒ S(P ) | P is an S-pseudo-intent of (X,Y, I)}. (∗∗)
Then, T is an S-basis of (X,Y, I).

Proof First, we check that T is S-complete. That is, we may check ModS(T ) =
IntS(X,Y, I) by showing both inclusions.

“⊆” Let M ∈ModS(T ).

This means M ∈Mod(T ) and M = S(M). Hence, M is a set of S-attributes.
By contradiction, suppose M /∈ IntS(X,Y, I), i.e. M ⊂ S(M), since Theorem 1 and
S satisfies (s1). Now, for each S-pseudo-intent Q, we may obtain M |= Q⇒ S(Q)
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in view of M ∈ ModS(T ). Thus, if Q ⊂ M , then S(Q) ⊆ M . Therefor, M is
an S-pseudo-intent of (X,Y, I). So, we obtain M ⇒ S(M) ∈ T . On the other
hand, M 6|= M ⇒ S(M) in virtue of S(M) * M . This is a contradiction to
M ∈ModS(T ). Moreover, we attain M ∈ IntS(X,Y, I).

“⊇” Let M ∈ IntS(X,Y, I).

Certainly, M is a set of S-attributes in light of M ∈ IntS(X,Y, I). Using
Theorem 1, we receive M = S(M). Let P be an S-pseudo-intent of (X,Y, I) and
P ⊆M . We easily obtain S(P ) ⊆ S(M) = M since S satisfies (s2). Therefore, we
receive M |= P ⇒ S(P ). Moreover, we attain M ∈ModS(T ).

Second, we check that T is an S-basis.

T is obviously a set of implications. For each S-pseudo-intent P and any S-
pseudo-intent Q with Q 6= P , if Q ⊂ P , then S(Q) ⊆ P according to Definition 5.
Moreover, P |= Q⇒ S(Q) holds. Thus, P is an S-model of TP = T −{P ⇒ S(P )}
which gives ModS(TP ) ⊇ IntS(X,Y, I). Thereby, TP is not an S-complete.

With Theorem 2, we may reveal that in order to search out an S-basis of
(X,Y, I), it suffices to compute all S-pseudo-intents. Therefor, we now turn our
attention to the computation of S-pseudo-intents. Given a set T of AD-formulas
define sets BTi ,ST (B) (i ∈ N0):

BTi =

{
B, if i = 0
S(BTi−1 ∪

⋃
{D | A⇒ D ∈ T and A ⊂ BTi−1}), if i ≥ 1

ST (B) =

∞⋃
i=0

BTi . (∗ ∗ ∗)

The operator ST : 2Y → 2Y has the following property.

Theorem 3 Let (X,Y, I) be a formal context with |Y | <∞, T be defined as
(∗∗), and PS be the system of all S-pseudo-intents of (X,Y, I). Then, ST defined
by (∗ ∗ ∗) is an operator such that {B ⊆ Y | ST (B) = B} = PS ∪ IntS(X,Y, I).

Proof We check {B ⊆ Y | ST (B) = B} = PS ∪ IntS(X,Y, I) by showing
both inclusions.

“⊆”: let B = ST (B).

If B /∈ IntS(X,Y, I), then it suffices to check that B is an S-pseudo-intent.
With |Y | < ∞, we obtain B = ST (B) = BTi0 for some i0 ∈ N0. That is, B is of
the form S(· · · ) and following that B is a set of S-attributes. Moreover, for each
S-pseudo-intent Q, if Q ⊂ B, then S(Q) ⊆ B according to B = ST (B) = BTi0 =
BTi0+1 = S(B ∪

⋃
{S(A) | A ⇒ S(A) ∈ T,A ⊂ B}) = S(B). Therefore, B is an

S-pseudo-intent.

“⊇”: Clearly, for each S-intent B, there is B = S(B) by Theorem 1. Hence,
we obtain BT0 = S(B ∪

⋃
{S(A) | A ⇒ S(A) ∈ T,A ⊂ B}) = S(BT0) = S(B).

Furthermore, we receive BTi = B, (i ∈ N0). So, B is a fixed point of ST .
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Theorem 3 informs us that the set of all S-pseudo-intents and all S-intents is
the set of all fixed points of EM operator ST (obviously, ST is an EM operator).
This provides us with a way to determine an S-basis: we may compute all fixed
points of ST , and this follows that {P | P = ST (P ) and P 6= S(P )} is the system
of all S-pseudo-intents. Thus, we may express that T = {P ⇒ S(P ) | P = ST (P )
and P 6= S(P )} is an S-basis since Theorem 3. For different, the idea of algorithm
is depicted in the following.

Let g be an EM operator on the set Y = {1, 2, . . . , n} of attributes for a
context (X,Y, I) with |Y | < ∞ and A � i = g((A ∩ {1, 2, . . . , i − 1}) ∪ {i}). Sim-
ilarly to the discussion for NextEM algorithm, we may express that the following
statements are true: for A,B ⊆ Y ,

(1) A < B iff A <i B for one i ∈ Y .

(2) A <i B and A <j C with i < j implies C <i B.

(3) i 6∈ A implies A < A� i.

(4) A <i B and B a g-fixed point (i.e. B = g(B)) implies A� i ⊆ B.

(5) A <i B and B a g-fixed point implies A <i A� i.

Analogously to the proof of [12, p.67, Theorem 5], we obtain that for A ⊂ Y ,
if (A ∩ {1, 2, . . . , i − 1}) ∪ {i} is a g-fixed point, then the smallest fixed point of
g larger than A (with respect to the lectic order) is A � i, where i is the largest
element of Y with A <i A� i.

Algorithm 3 For generating all the ST -fixed points of a given context
(X,Y, I):

Step 0. Let {B ⊆ Y | B = ST (B)} = ∅.
Step 1. For a given set A ⊂ Y = {1, 2, . . . , n}, we find the lectically next

ST -fixed point by checking all elements i of Y \ A, starting from the largest one
and continuing in a descending order until for the first time A <i A� i.

Step 2. If A � i = (A ∩ {1, 2, . . . , i − 1}) ∪ i, then {B ⊆ Y | B = ST (B)} =
{B ⊆ Y | B = ST (B)} ∪ (A� i). Otherwise, A := (A∩ {1, 2, . . . , i− 1})∪ i and go
to Step 1.

According to |Y | <∞, we may point that after finite steps, we may find out
the next ST -fixed point containing A with respect to lectic order, and further, all
the ST -fixed points.

Algorithm 3 is completed with the assistance of Ganter’s NextClosure algo-
rithm. We may state that Algorithm 3 completes with polynomial complexity if
S(A) (A ⊆ Y ) is.

Remark 5 Owing to Definition 3, we may indicate that each closure operator
C : 2Y → 2Y is an EM operator on Y . Considering with [3], we may believe that
all the results in this subsection are the generalization of that in [3]. Furthermore,
the results here have much more universal and significant.
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4. Conclusions

The main goal of this paper is to emphasize the need for taking into account
background knowledge in FCA. A background knowledge represents an additional
information regarding the input data that a user may have. Such information can be
used in the process of FCA to define what is interesting for the user. In particular,
we presented an approach to representation and treatment of background knowledge
that concerns user’s priorities regarding attributes with an EM operator and their
relative importance. This may significantly reduce the number of formal concepts
extracted from the input data. We focused on the main notions and presented
theoretical foundations, and the ideas of relative algorithms.
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[24] Belohlávek, R., and Vychodil, V., “Closure-based constraints in formal concept analysis”,
Discrete Applied Mathematics, 161:13-14(2013), 1894-1911.
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