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Abstract. Let G be a group and Z(G) be the center of G. In this paper, we discuss
a specific type of graph known as the non-commuting graph, denoted by I, whose
vertex set contains all group elements excluding central elements, G\Z(G). This
graph has to satisfy a condition in which vp,v, € G\Z(G) where v, # vq, are
adjacent whenever vpvgy # vqvp. This paper presents the spectrum and energy of
the non-commuting graph for Usy, 'y, associated with the adjacency, degree sum,

and degree sum adjacency matrices and their energy relationship.
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1. INTRODUCTION

Neumann [I] first proposed the idea of the non-commuting graph in 1976.
However, in 2006, Abdollahi et al. [2] began a thorough investigation of the char-
acteristics of the non-commuting graph. The non-commuting graph on a group G
is represented by I'c. The vertex set of T'¢ is G\ Z(G), with Z(G) being the center
of G. An edge connects two distinct vertices vy, vy € G\Z(G) when vyv, # v4Up.
Note that ' is a finite and simple directed graph with The number of vertices is
IG\Z(G)].

Graphs have been extensively studied for their spectral properties, including
their characteristic polynomials. The molecular orbital energies of the 7 electrons
in conjugated hydrocarbons have been demonstrated to correlate well with the
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eigenvalues of the spectral graph theory. Gutman first discovered the energy of a
finite graph. This concept involves the ordinary graph spectrum of the adjacency
matrix [3]. Ramane et al. [4] presented the polynomial of the Seidel Laplacian
matrix of graphs as well as the Seidel signless Laplacian matrix. Furthermore, Shi
et al. [5] identified the energy of fuzzy picture graphs, consistent with the signless
Laplacian energy [6]. The equienergetic properties of the graphs corresponding to
the Seidel matrix are discussed in [7].

In addition to the adjacency matrix (A), as defined by Ramane et al. [§],the
degree sum (DS) matrix for a graph is introduced, along with the DS-energy. In
the following, Jog and Kotambari [9] showed the DS-energy of six types of simple
graphs. In addition to discussing DS-energy, Hosamani and Ramane [10] also
established lower bounds for DS-energy in simple graphs. Recently, Shinde et al.
[11], who defined the degree sum adjacency matrix (DSA) of a graph, have given
a different approach to DS-matrix and formulated the characteristic polynomial.
These graph matrices are the property used in this paper. In addition, the reader
can also see the graph matrix extension in [12].

Over the years, algebraic graph theory has made significant progress in the
area of non-commuting graphs. It can be seen in [13| [I4, 15], which provides a
detailed discussion of the spectral and energy problems of non-commuting graphs
for dihedral groups involving several degree-based matrices. Rather et al. [16] also
presented the properties of the Sombor spectrum of threshold graphs. Zheng and
Zhou [17] investigated the spectral properties of closeness Laplacian and closeness
signless Laplacian. Furthermore, a spectral radius for I'g is defined as the highest
of absolute eigenvalues corresponding to the graph matrices [18].

This paper presents a complete formula of the adjacency, degree sum, and
degree sum adjacency energies of I'g in which G is the group Us,, or simply written
as I'y,, . We also analyze some spectral properties of I'y,, corresponding to the
adjacency, degree sum, and degree sum adjacency matrices.

2. PRELIMINARIES

In this part, we have an overview of the concepts that we need in this article.

Definition 2.1. [I9] The n x n adjacency matriz of T'¢ is A(Tq) = [ai;] in which
(i,4)-th entry is

g — 1, ifv; # v; and they are adjacent
Y1 0,  otherwise

Definition 2.2. [§] The n x n degree sum matriz of ' is DS(T'¢) = [dsi;] in
which (i, 7)-th entry is

o dvi —‘rdvj, if v; #Uj
dsl] a { O7 Zf Vi = Vj.
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Definition 2.3. [I1] The n x n degree sum adjacency matriz of T'¢ is DSA(T'g) =
[dsa;j] in which (i,7)-th entry is

dsass — dy, +dy;, if vi #v; and they are adjacent
5% = o, otherwise.

The DS—spectrum of I'g can be written as:
I APV R VS
ops(Te) = ( ki ke ..k )
where the eigenvalues of DS(T'g) are Ay > Aa > ... > ), (not necessarily distinct)
and their multiplicities are k1, ks, . . . , k,,. Afterward, the D.S—energy can be defined
as follows:
Eps(e) = XLy [Ail,
and the DS—spectral radius is defined as
st(Fg) = maac{|)\| A E O’Ds(Fg)},
The above notations also apply to matrices A and DSA. Now by Definition
2] 22| and 23] we can construct the A, DS, and DSA—matrix of I'¢ to de-

rive its characteristic polynomial. The following lemma helps ease the process of
formulating the characteristic formula of I's.

Lemma 2.4. [20] If a square matriz J, where all the entries of J, are equal to
one and e, f,g and h are real numbers, consequently the determinant of an (ny +
ng) X (ny + ng) matriz

(/\+e)I7l1 - €Jn1 _anlxnz
_h']TLQX'IL] (/\ + f)Ing - fJng

are able to be expressed more simply
A+e)" T A+ )" (A= (= 1) a) (A = (n2 — 1)b) — ninagh)

where 1 < ny,ne < n and ny + ng = n.

Furthermore, we can construct A, DS, and DSA matrices and compute the
eigenvalues from the solution of the characteristic polynomial in determinant form.
The following theorem is the guideline to simplify the determinant formula of a
matrix.

T U
vV w
four submatrices, T,U,V, W, where T is non-singular, then the determinant of M
18

Theorem 2.5. 2] If M = [ is a square matriz that can be divided into

T U

M"‘ 0 W-VT-u

‘ =|T||W -VT~'U]|.

Throughout this paper, the discussion focuses on the DS—matrix of I'g for
the group Us,. James and Liebeck [22] introduced the group Us, in their famous
book. The group of order 6n, for n > 1 is denoted as Ug,, and defined by

Usn = (a,b:a® =b* =e,a 'ba=0b"").



We define the sets G = {az’"‘H 0<r<n-— 1}, Gy = {aQ’"‘Hb 0<r<n-— 1},
Gy ={a®™?:0<r<n-1},Gs={a*b:0<r<n-1}, and
Gs = {a*b?: 0 <r <n—1}. It is clear that |G1| = |G2| = |G3| = |G4| = |G5| =
n. Clearly, the set of vertex of T'y,,, is G1 UG UG3 UGy UG5 = Ugn\Z(Usy ), and
the number of vertices is 5n.

Lemma 2.6. [23] For the group Us, and 0 < r <n — 1, we have the following:

(1) The center of Uy, is Z(Ugyn) = <a2>.
(2) The centralizer of element a® ™ is Cy,, (a*" ') = (e).
(3) The centralizer of element a®* *1b is
Cug, (a*10) = (e?) - ({a®*Th: 0 < s <n—1}).
(4) The centralizer of element a®>"T1b? is
Cug, (a®110%) = (e2) - ({a®* T2 : 0 < s <n—1}).
(5) The centralizer of element a®"b is
Cus, (a?7b) = (%) - ({a®b,a*b* : 0 < s <n—1}).
Corollary 2.7. [24] For n > 1 and T'y,,, then for0 <r <n—1,
(1) da2'r'+1 = 4’(7,,
(2) da2T+1b = 47”L,
(3) da2T+1b2 = 471,

(4) daz"‘b = 3”7
(5) da2Tb2 = 3n.

Therefore, the discussion of this paper is devoted to the non-commuting graph
for Usy,, denoted by I'y,,. Moreover, one interesting graph property is hyperener-
getic when the energy of a graph with n vertices is greater than that of a complete
graph on n vertices, K,,. Since Uy, has 5n vertices, we have the following definition.

Definition 2.8. [19] An 5Sn—wvertex graph T'y,, is hyperenergetic if the energy is
more than 2(bn — 1).

3. MAIN RESULTS

We determine spectral properties for I'y,, with respect to the A, DS and
DS A matrices in this section.

3.1. Adjacency Energy.

We initiate by presenting the adjacency matrix of I',, that will be employed
in establishing its characteristic polynomial.

Theorem 3.1. Let I'y;,, be the non-commuting graph for Usy, then the character-
istic polynomial of ATy, ) s

Pary, ) (A) = NN 4+ n2)% (A% 4 (2 — 4n)\ — 6n?).

Proof. Based on the number of vertices of I'y,, , then A(T'y,,) is a matrix of size
5n x 5n. By Lemma then the (¢, j)—entries of A(T'y,,) are:



(1) aj; =0, for 3n+1 < i,j <b6n, 1 <i,j <n,n+1<14,5 < 2n, and
2n+1<14,7 < 3n;
(2) a;; =1, otherwise.

Then A(T'y,,) is

a g2n—1 ab a2 1y a2 a2n—1p2 b a2(n=1) b2 a2(n=1)p2
a 0o ... 0 1. 1 1 1 1 ... 1 1 ... 1
a?m 1 0 ... 0 1 ... 1 1 1 1 ... 1 1 ... 1
ab 1 1 0 0 1 1 1 1 1 1
a?m " 1p 1 ... 1 0o ... 0 1 1 1 ... 1 1 ... 1
ab? 1 ... 1 T ... 1 0 0 1 ... 1 1 ... 1
a?"1p2 1 ... 1 1 ... 1 0 0 1 ... 1 1 ... 1
b 1 ... 1 1 ... 1 1 1 0o ... 0 0 ... 0
a2=Dp 1 . 1 1 ... 1 1 1 0o ... 0 0o ... 0
b2 T ... 1 1T ... 1 1 1 0o ... 0 0 ... 0
a2(n=1p2 \1 | 1 1. 1 1 1 0o ... 0 0o ... 0

I Jn In Iy

£
=~
=~
S

A(FUGn) =

o
S SSS
S
S
S
o O
3

The characteristic formula of A(I'y,, ) is as given below:
M, —Jn =Jn —Jdn —Jn
—Jn A, —Jdn —Jdn —Jy
PA(FUS,,L)(A) =| =Jp —Jn A, —Jn —Jn|. (1)
—Jn —Jdn —Jdn A, 0O,
_Jn _Jn _Jn On )\In

In order to get the formula of PA(FUGTJ()‘)’ row and column operations need to be
performed. Let R; and C; be the i—th row and column of PA(FUM)()‘)v respectively.
We apply the following steps:
(1) R3n+i — R3n+i — Rgm7 for i = ].7 gy 2n.
) Rj,i — Rj,i — Ry, for i = 1,2,....,n andj =n,2n.
) R3y—i — R3p—j — R3p, fori=1,2,... , n—1.
) OQn—i—i — CQn-‘ri + Cj+i7 for i = 1,2, ..., n andj = O,TL.
) Rjyi — Rj1; — Rpyj,fori=1,2,...,n—1and j =0,n.
) C3ny1 — C3nq1 + C3pg2 + Cangz + oo+ Can + Capgr + ...+ Csy.
) Cj — Cj + Cj,1 + Cj,Q + ...+ Cj,(nfl), j =mn,2n,3n.
) R3p — Rap + xRany2 + yRanys + ...+ 1 Ran + $Rapg1 + ... + 5 Ron,
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then Equation can be written as the following determinant

Ap_q O(n—1)x1 On—1 Otn—1)x1 On—1 Otn—1)x1  Om—1)x1 On—1 Otn—1)xn
Jix(n—1) Atn 01x (n—1) 0 01x(n—1) 0 0 01x(n—1) O1xn
On—1 O(n—1)x1 A1 O(n—1)x1 On—1 Otn—1)x1 Om—1)x1 On—1 Otn—1)xn
O1x(n—1) 0 J1x(n—1) A+n Op—1 On—1)x1  Om-1)x1 Op—1 On—1)xn
Opn—1 Otn—1)x1 On—1 On—1)x1 Ap_q On—1)x1  Om-1)x1 On—1 On—1)xn
—Jix(n-1) -n —J1x(n-1) -n —2J1x (n—1) A—2n —2n 01x(n—1) O1xn
—J1x(n-1) —-n —J1x(n-1) -n —=3J1x(n-1) —3n A 01x(n—1) O1xn
O0p—1 On—1)x1 On—1 O(n—1)x1 On—1 On—1)x1  Om-1)x1 Ay O(n—1)xn
0n><(n—1) Onx1 Onx(n—l) Onx1 Onx(n—l) Onx1 Onx(n—l) Onx1 AMpxn

Hence, according to Theorem [2.5, we can state Equation as follows:
Pary, )(A) = A" A+ n)2 (A = 20 + 6n°).

O

The subsequent theorems provide insight into the spectrum and energy of
Ty, associated with A(Ty,,).

Theorem 3.2. The A—spectral radius of 'y, is

pa(Tug,) = n+nVT.

Proof. As a result of Theorem when we find the roots of Par,, )(A) = 0,
we arrive at the four eigenvalues. There are three of these, with multiplicity 2,
A1 = —n, A2 = 0 with multiplicity 5n — 4, and the other two are A3 4 = n &+ nV7
with multiplicity 1 respectively. These eigenvalues are the adjacency spectrum of
FUema

[ n+ n\ﬁ 0 -n n-— n\ﬁ
UA(FUG")_( 1 Sn—4 2 1 )
By taking the largest of |);|, i = 1,2, 3,4 then the adjacency spectral radius of I'y,,
isn+ n\ﬁ O

Theorem 3.3. The A—energy of I'y,,, is

E (Ty,,) =2n+ 2nV7.

Proof. On computing the absolute eigenvalues in the proof of Theorem then
the adjacency energy of I'y,,, is

Ea(Tu,,) =|n & nvVT| + (5n = )]0] + (2)|-n]
=2n + 2nV/7.



3.2. Degree Sum Energy.
We begin with the formulation of the characteristic polynomial of I'ys,,, .

Theorem 3.4. Let I'y,, be the non-commuting graph for Usy,, then the character-
istic polynomial of DS(Ty,, ) is

Pps(ry, )(A) = (A+8n)*" 1 (A+6n)*" "1 (A = 8n (3n — 1)) (A — 6n.(2n — 1)) — 294n*) .

Proof. Since the set of vertex of T'y,, is Ugn\Z(Usy ), then we have 5n vertices in
DS(T'y,, ) which are the members of Gy, G2, G3, G4 and G5. By using the infor-
mation of the degree of every vertex in Corollary we can construct DS(T'y,, )
of the size bn x 5Hn whose entries are:

) ds;j =4n+4n =8n, for i # j and 1 < 4,5 < 3n;
(2) ds;j=4n+3n="Tn,for 1 <i<3nand 3n+1<j <bn;
(3) dsij =3n+4n="Tn,for 3n+1<i<bn,and 1 < j < 3n;
(4) dsij =3n+3n="06n, for 3n+1 <1i,j < bn;
(5) dsi; =0, for ¢ = j.

D

Then DS(Ty,,) is
a a1 ab .. &Pl a2 L @21 b o a2y 2
a 0 8n 8n B 8n 8n . 8n n c ™ n
a?n 1 8n ... 0 8n ... 8n 8n L. 8n ™m ... ™ ™
ab 8n ... 8n 0 8n 8n 8n ™ ™ n
2" 1p 8n 8n 8n 0 8n 8n ™ n ™
ab? 8n . 8n 8n . 8n 0 . 8n n L ™ ™
a?n =152 8n ... 8n 8n ... 8n 8n 0 ™ ... ™ n
b n ™ n n ™ n 0 6n 6n
a2(n=1)p n ™ n n n n 6n 0 6n
b2 oo n oo n ™o n 6n ... 6n 0
a2(n=1p2 \7 . ™ ™ ... ™ ™ S n 6n ... 6n 6n

In other words, the following is the way in which DS(T'y,, ) can be divided into
four submatrices:
— 8”(‘]71)377. 777'*]3n><2n
DS(Tus,) = [ TnJomxsn  60(J —Dan |

The characteristic polynomial of DS(I'y,,) is

()\ + 81’L) I3, — 8nJs, —TnJd3nxon (3)
—Tndonxan ()\ + 6n) I, — 6nJs,

By Lemma 2.4 with a = 8n, b = 6b, ¢ = d = Tn, ny = 3n and ny = 2n, we can

express Equation [3] as

Ppsry,, )(A) =

Pps(ry,,)(A) = (A4+8n)*" 1 (A+60)*" "1 (A = 8n (3n — 1)) (A — 60 (2n — 1)) — 294n") .

a2(n—=1)p2
™

n
™
™
™
™
6n

6n
6n
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The following Theorem gives the DS—spectrum and DS—spectral radius of
Tus,, -

Theorem 3.5. LetI'y,, be the non-commuting graph for U, , then the D.S—spectral
radius of I'y,,, is

pps(Tug, ) = n(18n — 7) + n\/330n2 — 492n + 97.

Proof. The result according to Theorem is that the formula of Pp S(Iy,,) 8lves
four eigenvalues. They are Ay = —8n of multiplicity 3n—1, Ao = —6n of multiplicity
2n—1, and the quadratic formula give us A3 4 = n(18n—7)£n/330n2 — 492n + 97.
Thus, the list of these eigenvalues is the spectrum of I'y,,, associated with DS —matrix,

( n(18n — 7) +nv/330n2 — 492n + 97  —6n —8n  n(18n — 7) — nv/330n2 — 492n + 97 )

1 2n—1 3n-—-1 1

By taking the maximum of absolute eigenvalues of opg(I'y,, ), we then obtain the
required result. O

The following theorem gives the D.S—energy of I'y,,, .

Theorem 3.6. Let 'y, be the non-commuting graph for Usy,, then the DS—energy
of 'y, s

Eps(Tu,,) = 2n(18n — 7) + 2n1/330n2 — 492n + 97.

Proof. By Theorem [3.5| and calculating the absolute eigenvalues of ops(I'ys, ), the
D S-energy of I'y,, is the given by

Eps(Ty,,) =Bn—1)] —8n|+ (2n — 1)| — 6n| + ‘n(18n —7) + n\/330n2 — 492n + 97

=2n(18n — 7) + 2n/330n2 — 492n + 97.
O

3.3. Degree Sum Adjacency Energy.

The primary outcome of this subsection is the presentation of the degree sum
adjacency energy of I'y,, .

Theorem 3.7. Let I'y,, be the non-commuting graph for Usy,, then the character-
istic polynomial of DSA(Ty,, ) is

Ppsary,,)(A) = X" 1A+ 8n%)2 (A + (16 — 32n) A — 294n*).

Proof. We know that |Us,\Z (Usy)| = 5n which implies DS A(T'y,,, ) has 5n vertices,
and they are the members of Gy, G2, G3, G4 and G5. By Lemma[2.6]and Corollary
we can provide an 5n x 5n matrix DSA(T'y,,) whose entries are:

(1) dsa;j =4n+4n=8n,for 1 <i<nand n+1 < j < 3n;
(2) dsa;j =4n+4n=8n,forn+1<i<3nand 1<i<n;
(3) dsa;j =4n+4n=8n,forn+1<i<2nand 2n+1 <i < 3n;
(4) dsa;j =4n+4n=28n, for 2n+1<i<3nandn+1<i < 2n;



(5) dsa;j =4n+3n="Tn,for 1 <i<3nand 3n+1<j < bn;

(6) dsa;; =3n+4n="Tn, for 3n+1<i <b5n,and 1 <j < 3n;

7) dsa;; =0, for3n+1<1¢7<bn 1<4j<n n+1<ij<2n,and
J J J J

o +1<i,j<3n.
Now DSA(T'y,,) can be performed as follows:

a

Q2(n—1)p
b2

L2(n=1)p2

o e

8n
8n
8n
n
n
n

8n
8n
8n
™
n
™

™

ab
8n

8n
n

n
n

n

a2n—1b
8n

8n
n

n
n

n

ab?
8n

8n
8n

™
™

™

a2n—132

8n

8n
8n

™
n

n

b

™
™
n
™

Q2(n=1)p
™

n
™

™
™

™
n
n

n
™

In other words, the matrix DSA(T'y,,) can be partitioned into 25 blocks as
given below:

DSA(Ty,,) =

&nJ,
&nJ,
™md,
™md,

The characteristic formula of DSA(Ty,, ) is

Ppsary, )(A) =

—8nJ,
—8nd,
—Tnd,
—Tnd,

&nJ, 8nd, TnJ, Tnd,
0y, &nJ, Tnd, Tnd,
&, 0, mJd, Tnd,
™mJ, T™d, 0, 0p
™mJ, ™md, 0, 0p
—8nJ, —-8nJ, —-"J, —Tnd,
A, -8nd,, —Tnd, —Tnd,
—8nd, M, —md, —Tnd,
—mJ, —TnJ, M, 0.,
—mJ, —TnJ, 0., M,

(4)

By applying the similar row and column operations as the proofing part of Theorem
with the following steps:

(1) Rspyi —> Ranqi — Rap, fori=1,2,...,2n.

RjJri — Rj+7; —

2) Rj,i — Rj,i — Ry, for i = 1,2,..
R3p_y — R3p_; — R3p, for i =1,
Conti — Conyi + Cjyy, for i =1,

3) 2, ..
4)
5) Cant1 — Capy1 + Cspq2 + Capgz3 + ... 4+ Can + Capg1 + ... + Csp.
6)
7)

9

2,..

7

.,n—1.

.,nand j =0,n.

.,nand j =n,2n.

Ryyj,fori=1,2,...,n—1and j=0,n.
Cj — Cj —I-Cj,l +Cj,2 +---+Cj7(n71)> j =mn,2n,3n.

o2(n—1)p2
™

™
™

n
™
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(8) R3p — Rsn+ T Rapio+ P Rapis+...+ 2 Ran+ LRy +. ..+ 2 Rsp,
then Equation can be written as the following determinant

Ay 1 On—1)x1 0p—1 On—1)x1 On—1 On—1)x1  O(n—-1)x1 On—1
8nJ1x (n—1) A+ 8n? O1x(n—1) 0 O1x(n—1) 0 0 01x(n—1)
Op—1 On—1)x1 A1 O(n—1)x1 Op—1 Otn—1)x1  Omn-1)x1 Op—1
01x(n—1) 0 8nJ1x (n—1) A+ 8n? Op—1 Otn—1)x1  Omn-1)x1 Op—1
On—1 On—1)x1 0p—1 O(n—1)x1 Ay 1 On—1)x1  O(n-1)x1 0n—1
—8nJ1x (n—1) —8n —8nJ1 5 (n—1) —8n —16nJ1 % (n—1) A — 1602 —1l4n 015 (n—1)
—TnJ1x (n—1) —7n? —TnJ1 5 (n—1) —7n? —21nJ1  (n—1) —21n? A 015 (n—1)
Op—1 Otn—1)x1 On—1 O(n—1)x1 Op—1 On—1)x1  O(n—1)x1 Ap_q
Opx(n—1) Onx1 Onx(n—1) Onx1 Onx(n-1) Onx1 Opx(n—1) Onx1

(5)
By Theorem Equation can be stated as
Ppsa(ry, )(A) = X" 1A 4 8n7)3(A* + 160X — 294n*).
O

By applying Theorem 3.7} we can analyze the spectrum of I'y;,, with devoted
to DSA(T'y,, ) to calculate the spectral radius and energy of 'y, .

Theorem 3.8. LetI'y,, be the non-commuting graph for Ug,,, then the DS A—spectral
radius of I'y,,, is
ppsa(Tu,, ) = (84 V/358)n2.

Proof. The three eigenvalues of I'ys,, are determined by the roots of equation
PDSA(FUGH)(A) = 0, this is shown in Theorem The eigenvalues are Ao =
8n2 4+ n%/358 of multiplicity 1 respectively, A3 = 0 of multiplicity 5n — 4, and

Ay = —8n? with multiplicity 2. Therefore, we get the spectrum of T'y,, associated
with DS A—matrix,
8n? + n?1/358 0 —8n? 8n? —n2y/358
1 5n —4 2 1 '
It is clear that the largest absolute \; for i = 1,2,3,4 is 8n? 4+ n21/358. O

Theorem 3.9. LetT'y,, be the non-commuting graph for Ug,,, then the DS A—energy
Of FU5n 18
Epsa(Tu,,) =2(8+ \/ﬁ)n2

Proof. Using the result of Theorem then the DS A-energy of I'y, as follows:
Epsa(Tu,, ) = ‘8n2 + n2\/358‘ + (5n — 4)0] + (2) |—8n?|

=16n2 + 2n2v/358
=2(8 + V/358)n.

O(nfl)xn
O1xn
Otn—1)xn
O(n—1)xn
O(nfl)xn
O1xn
O1xn
Otn—1)xn
AMnxn
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3.4. Example.

The major contribution of this research lies in its exploration of the spectrum
and energy of I'y,,, corresponding to adjacency, degree sum, and degree sum adja-
cency matrices. As an illustration of this, we provide an example when n = 1 as
given below:

Example 3.10. Let Us = {e,a,b,ab,b?, ab®} and Z(Us) = {e}, where Cy,(a) =
{e}, Cy,(b) = {e,b,b*} = Cu,(v?), Cy,(ab) = {e,ab}, Cy,(ab®) = {e,ab®}. For

G = Us\Z(Us), by using the centralizer of every element in Us, then T'y, is as in
Figure[dl It can be seen that dg = dop = dap2 = 4, and dp = dyp2 = 3. Consequently,

a — b
abmlﬂ

S

Ficure 1. Non-commuting graph on Ug

we can construct the adjacency, degree sum, and degree sum adjacency matrices of
order 5 x 5 for I'y, as follows:

a ab ab? b b2
a 0 1 1 1 1
ab (1 0 1 1 1
ATys) = ab?|l1 1 0 1 1
bl1 1 1 0 0
A\l 1 1 0 0
a ab ab®> b b2
a /0 8 8 7 7
ab (8 0 8 7 7
DSTy,)= ab?|8 8 0 7 7
b \7 7 7 0 6
¥\7T 7 7 6 0
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a ab ab® b b?

a (/0 8 8 7 7

ab [ 8 0 8 7 7

DSA(Ty,) = ab®|8 8 0 7 7
b |7 7 7 0 0

B2 \7 7 7 0 O

Therefore, the characteristic polynomial of A(L'y,), DS(T'y,) and DSA(Ty,) are
as follows:

Pary)(A) =AA+1)2(A* =21 - 6).
Pps(ryg)(A) =(A+ 6)(A+ 8)2(A? — (22 + 2V/319)A + 440).
Ppsa(ry,)(A) =AA+8)%(A* — 16A — 294)

By using Maple, we have confirmed that the spectrum and spectral radius of respec-
tive matrices are given by

1 7T 0 —1 1—+/7
UA(FUG):< +1\[ 1 9 1\[) and pa(Tye) = 14 V7,

11++v/319 -6 -8 11 —+319
ops(Tug) = < +1 1 9 1 ) and pps(Ty,) = 11 + V319,
8++v358 0 —8 8—+/358
opsa(Tug) = < * 1 1 9 1 ) and ppsa(Tu,) = 8 + V/358.

Therefore, the DS—energy of 'y, is as follows:
Ea(Ty,) =)0+ (2)] = 1|+ [1 £ V7| =2+ 2VT =2 pa(Tys,),
Eps(Tu,) =(1)] = 6] + (2)] — 8] + |11 £ V319 = 22+ 2v/319 = 2. pps(T',),
Epsa(Tu,) =(1)[0] + (2)| — 8] 4 |8 + v/358| = 16 4+ 2v/358 = 2 - ppsa(Tw,)-

3.5. Further Discussions.

Moreover, from Theorem and Definition we derive the state-
ment as given below:

Corollary 3.11. The graph I'y,, is a hyperenergetic associated with the adjacency,
degree sum, and degree sum adjacency energies.

Corollary 3.12. In Ty, , Ea(Tv,,), Eps(Tu,,), and Epsa(Tu,,) are never an
odd integer.

The result in Corollary aligns with the well-known facts from [25] and
[26]. Moreover, the energies obtained in this paper are always twice as large as
their spectral radius.

Corollary 3.13. For the non-commuting graph I'y,, , then
(1) EA(FUen) =2 pA(FUGn)'



13

(2) Eps(Tu,,) =2 pps(Tug,)-
(3) Epsa(Tus,) =2 ppsa(lu,,)-

In addition, by comparing the results from Theorem [3.3] and [3.6] we may
quickly conclude the following:

Corollary 3.14. InT'y,,, Eps(Tv,,) > Epsa(lv,,) > Ea(Ty,,,)-

4. CONCLUDING REMARKS

The energy formula of I',,, based on the adjacency, degree sum, and degree
sum adjacency matrices has been presented. It is found that the energy formulas
from the results of this study are hyperenergetic, associated with degree sum and
degree sum adjacency matrices. Moreover, the three energies of I'y,,, are never an
odd integer. All results are aligned with previous literature which states that the
energy of a graph is never an odd integer.

Acknowledgement. We wish to express our gratitude to The Indonesian Mathe-
matical Society /IndoMS, Under Grant of IndoMS Research Visit 2023 (No: 017/Pres/
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