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Abstract. By virtue of Pick’s formula, the generalized Ehrhart quasi-polynomial

of the triangulation P(n) ⊂ R2 with the vertices (0, 0), (u(n), 0), (0, v(n)), where

u(x) and v(x) belong to Z[x] and where n = 1, 2, . . . , will be computed.
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Abstrak. Dengan menggunakan formulasi Pick, disajikan perhitungan dari poli-

nomial quasi Ehrhart yang diperumum dari triangulasi P(n) ⊂ R2 dengan verteks

(0, 0), (u(n), 0), (0, v(n)) dimana u(x), v(x) ∈ Z[x] dan n = 1, 2, . . . .

Kata kunci: Generalized Ehrhart quasi-polynomial, Pick’s formula.
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1. Introduction

The enumeration of the integer points belonging to a rational convex polytope
is one of the most traditional topics in combinatorics.

Let Z≥0 denote the set of nonnegative integers. Recall that a numerical
function f : Z≥0 → Z≥0 is a quasi-polynomial if there exist an integer s ≥ 1,
called a period of f , and polynomials f0(x), . . . , fs−1(x) belonging to Q[x] such
that f(n) = fi(n) when n ≡ i (mod s). Furthermore, the quasi-period of f is
the smallest integer r ≥ 1 such that there exist subsets A1, . . . , Ar of Z≥0 with
Z≥0 = A1 ∪ · · · ∪ Ar and polynomials g1(x), . . . , gr(x) belonging to Q[x] for which
f(n) = gi(n) when n ∈ Ai.

A typical example of a quasi-polynomial is the function ](nP∩Zd), called the
Ehrhart quasi-polynomial ([1], [3]), arising from a rational convex polytope P ⊂ Rd.

More generally, given polynomials w
(j)
i (x) ∈ Z[x], 1 ≤ i ≤ q and 1 ≤ j ≤ d, we

introduce vi(n) ∈ Zd, n = 1, 2, . . . , by setting vi(n) = (w
(1)
i (n), . . . , w

(d)
i (n)). Write

P{w(j)
i }

(n) ⊂ Rd for the convex polytope which is the convex hull of {v1(n), . . . , vq(n)}.
It follows from [2] that the numerical function ](P{w(j)

i }
(n)∩Zd) is a quasi-polynomial,

which is called the generalized Ehrhart quasi-polynomial of {P{w(j)
i }

(n)}n=1,2,....

We now come to a basic problem which we are interested in. Let 0 be the
origin of Rd and e1, . . . , ed the canonical unit coordinate vectors of Rd.

Problem 1. Given arbitrary integers r ≥ 1, e ≥ 1 and d ≥ 2, find polynomials
v1(x), . . . , vd(x) belonging to Z[x] with each deg(vi(x)) = e such that the quasi-
period of the generalized Ehrhart quasi-polynomial ](P(n) ∩ Zd) of {P(n)}n=1,2,...

is r, where P(n) ⊂ Rd is the simplex with the vertices 0, v1(n)e1, . . . , vd(n)ed.

In the present paper, by virtue of Pick’s formula, an answer to Problem 1 for
d = 2 can be given.

2. main result

The following theorem is the main result in this paper.

Theorem 2. Given arbitrary integers r ≥ 1, e ≥ 1 and s ≥ 1, there exist polyno-
mials u(x) and v(x) belonging to Z[x] with deg(u(x)) = deg(v(x)) = e for which the
quasi-period of the generalized Ehrhart quasi-polynomial ](P(n) ∩ Z2) is r, where
P(n) ⊂ R2 is a triangle with the vertices (0, 0), (u(n), 0), (0, v(n)), and the smallest
period of ](P(n) ∩ Z2) is bigger than s.

Proof. Fix a prime number p > 1. Let u(x) = xe and v(x) = xe + pe(r−1). Write
A(P(n)) for the area of P(n). Let I(P(n)) and B(P(n)) denote the number of
integer points belonging to the interior of P(n) and the number of integer points
belonging to the boundary of P(n), respectively. Pick’s formula guarantees that

A(P(n)) = I(P(n)) +
1

2
B(P(n))− 1.
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Moreover, one has A(P(n)) = u(n)v(n)/2. Let f(n) = ](P(n) ∩ Z2). Since f(n) =
I(P(n)) + B(P(n)), it follows that

f(n) =
1

2
u(n)v(n) +

1

2
B(P(n)) + 1.

Let H(n) ⊂ R2 denote the segment which is the convex hull of {(u(n), 0), (0, v(n))}
and g(n) = ](H(n) ∩ Z2). Since B(P(n)) = g(n) + u(n) + v(n)− 1, it follows that

f(n) =
1

2
(u(n)v(n) + u(n) + v(n) + 1) +

1

2
g(n).

Now, what we must show is that the quasi-period of the quasi-polynomial g(n) is
equal to r. One has

g(n) = ]

{
(x, y) ∈ Z2

≥0 :
x

u(n)
+

y

v(n)
= 1

}
.

Let h(n) denote the greatest common divisor of u(n) = ne and v(n) = ne +pe(r−1).
In other words, h(n) is the greatest common divisor of ne and pe(r−1). Writing
u(n) = h(n)u0(n) and v(n) = h(n)v0(n), it follows that

g(n) = ]

{
(x, y) ∈ Z2

≥0 :
x

u0(n)
+

y

v0(n)
= h(n)

}
.

Since u0(n) and v0(n) are relatively prime, one has g(n) = h(n) + 1. We claim
that the quasi-period of the quasi-polynomial h(n) is equal to r. Let k denote the
biggest integer for which n is divided by pk. Then

• if k = 0, then ne and pe(r−1) are relatively prime and h(n) = 1;
• if 1 ≤ k ≤ r − 2, then h(n) = pek;
• if k ≥ r − 1, then h(n) = pe(r−1).

Thus the quasi-period of h(n) is equal to r, as desired.

We claim that the smallest period of h(n) is pr−1. Let n ≡ b (mod pr−1),
where 0 ≤ b < pr−1. When b = 0, one has h(n) = pe(r−1). Let 1 ≤ b < pr−1 and `
the biggest integer for which n is divided by p`, where 0 ≤ ` ≤ r − 2. When ` = 0,
one has h(n) = 1. When 1 ≤ ` ≤ r − 2, one has h(n) = pek. Hence the smallest
period of h(n) is pr−1. Finally, if p is large enough, then the smallest period of
h(n) is bigger than s, as required. �

3. Examples

As the end of this paper, we give some examples.

In Theorem 2, when s ≥ r, it would, of course, be of interest to find u(x)
and v(x) belonging to Z[x] for which the quasi-period of the generalized Ehrhart
quasi-polynomial ](P(n) ∩ Z2) is r and the smallest period of ](P(n) ∩ Z2) is s.
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Example 3. Let e = 3, r = 4 and p = 2 in the proof of Theorem 2. Thus u(x) = x3

and v(x) = x3 + 29. Then

](P(n) ∩ Z2) =



n6

2
+ 28(n3 + 1) + n3 +

3

2
, n : odd,

n6

2
+ 28(n3 + 1) + n3 +

1

2
+ 22, n = 2 · a,

n6

2
+ 28(n3 + 1) + n3 +

1

2
+ 25, n = 22 · a,

n6

2
+ 28(n3 + 1) + n3 +

1

2
+ 28, n = 2k · a, k ≥ 3,

where a ≥ 1 is an odd integer. Furthermore,

](P(n) ∩ Z2) =



n6

2
+ 28(n3 + 1) + n3 +

3

2
, n ≡ 1, 3, 5, 7 (mod 8),

n6

2
+ 28(n3 + 1) + n3 +

1

2
+ 22, n ≡ 2, 6 (mod 8),

n6

2
+ 28(n3 + 1) + n3 +

1

2
+ 25, n ≡ 4 (mod 8),

n6

2
+ 28(n3 + 1) + n3 +

1

2
+ 28, n ≡ 0 (mod 8).

Thus the quasi-period of the quasi-polynomial ](P(n) ∩ Z2) is equal to 4, while its
smallest period is 8.

Example 4. Let u(x) = x2 + 3x + 2 and v(x) = x2 + 4x + 1. Write h(n) for
the greatest common divisor of u(n) and v(n). Let u(n) = h(n)u0(n) and v(n) =
h(n)v0(n). Then n = h(n)(v0(n)− u0(n)) + 1. Thus

h(n)(u0(n)− h(n)(v0(n)− u0(n))2 − 5(v0(n)− u0(n))) = 6.

Hence h(n) ∈ {1, 2, 3, 6}. A routine computation shows that

h(n) =


1, n = 6k − 4 or 6k,

2, n = 6k − 3 or 6k − 1,

3, n = 6k − 2,

6, n = 6k − 5.

Following the proof of Theorem 2, one has

](P(n) ∩ Z2) =



n4

2
+

7n3

2
+

17n2

2
+ 9n + 4, n = 6k − 4 or 6k,

n4

2
+

7n3

2
+

17n2

2
+ 9n +

9

2
, n = 6k − 3 or 6k − 1,

n4

2
+

7n3

2
+

17n2

2
+ 9n + 5, n = 6k − 2,

n4

2
+

7n3

2
+

17n2

2
+ 9n +

13

2
, n = 6k − 5.
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Thus the quasi-period of the quasi-polynomial ](P(n) ∩ Z2) is equal to 4, while its
smallest period is 6.
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