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Abstract. This article introduces a new two-parameter continuous probability dis-

tribution, namely, the Exponentiated of Modifying Hyperbolic Tangent (EMHT)

distribution. It is derived by modifying hyperbolic tangent function. Several proba-

bility functions and distributional quantities of the EMHT distribution are derived.

Maximum likelihood estimation is assigned to find estimators of the EMHT dis-

tribution’s parameters. Numerical experiments are then conducted to examine the

performance of the proposed estimator. The results show that the average estimate

for each parameter approaches its actual value as the sample size increases. The

final section of this article presents applications of the EMHT distribution to real

datasets and performs a comparative study with some existing distributions to ex-

hibit its potential as an alternative model for non-negative continuous data.

Key words and phrases: hazard rate, maximum likelihood estimation, Monte Carlo,

moment generating function.

1. INTRODUCTION

Recently, there have been numerous attempts to construct new continuous
distributions with the aim to provide various curves of hazard/failure rate functions.
Basically, there are two types of hazard curves, that is monotone and non-monotone
hazard curves. The monotone hazard rate functions could be in the form of cons-
tant or nonincreasing or nondecreasing hazard curves. However, the most recent
interest amongst researchers is to chase the non-monotone hazard functions which
will appear in the form of bathtub and unimodal (upside-down) curves. In practice,
the bathtub and the unimodal hazard rates which typically appear in the future
lifetime of human populations and insurance claims studies cannot be achieved
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by common continuous distributions, such as exponential, Weibull, and Pareto
distribution.

An approach has been used by several researchers to create new distributions,
that is by exponentiating the Cumulative Distribution Function (CDF) or Survival
Function (SF) of the common distributions. By this approach, the original dis-
tribution eventually will get an addition of one parameter and will provide more
variety of hazard rate forms. The exponentiated Gamma distribution by Gupta et
al. [1] has added the bathtub hazard rate curve while the original Gamma distribu-
tion only provides monotone hazard rate function. The Exponentiated Pareto (EP)
distribution by Gupta et al. [1] has added unimodal hazard rate while the original
Pareto distribution only provides decreasing hazard rate. The Exponentiated Ex-
ponential (EE) distribution by Gupta and Kundu [2] has added the increasing and
decreasing hazard rates while the original exponential distribution only provides
a constant hazard rate. The Exponentiated Weibull (EW) distribution by Mud-
holkar and Srivastava [3] has added the bathtub and unimodal hazard rates while
the original Weibull distribution only provides monotone hazard rate functions.
The Exponentiated Lindley (EL) distribution by Nadarajah et al. [4] has added
decreasing and bathtub hazard rates while the original Lindley distribution only
provides increasing hazard rate. The exponentiated Lomax distribution by Abdul-
Moniem and Abdel-Hameed [5] has added the unimodal and decreasing hazard rate
curves while the original Lomax distribution only provides increasing hazard rate.
The exponentiated Gompertz distribution by El-Gohary et al. [6] has added de-
creasing and bathtub hazard rate curves while the original Gompertz distribution
only provides increasing hazard rate. The exponentiated Bilal by Abd-Elrahman
[7] has added the decreasing and unimodal hazard rates while the original Bilal
distribution only provides an increasing hazard rate. The Exponentiated Rayleigh
(ER) distribution by Mahmoud and Ghazal [8] has added decreasing hazard rate
curves while the original Rayleigh distribution only provides an increasing hazard
rate. The Exponentiated Gumbel (EG) distribution by Khazaei and Nanvapishes
[9] has added an increasing hazard rate curve while the original Gumbel distribution
only provides decreasing hazard rate.

In this study, a new two-parameter distribution is introduced, called the Ex-
ponentiated of Modifying Hyperbolic Tangent (EMHT) distribution. This distri-
bution is established by inducing two parameters to the Hyperbolic Tangent (HT)
distribution. The term “hyperbolic tangent distribution” was first introduced by
Mohammad and Mendoza [10]. However, the HT distribution discussed in this
study has only positive support and does not contain any parameter which is very
different with HT mentioned in [10]. The basic foundation of the EMHT distri-
bution comes from the first quadrant of HT function, which eventually forms the
CDF of HT distribution. The main purpose for introducing the EMHT distribu-
tion is to enhance the flexibility of the baseline HT distribution while also holding
the parsimony principle. The HT distribution is only able to form monotonically
increasing hazard rate. With a smaller number of parameters, the EMHT distri-
bution is able to produce monotonically increasing and decreasing, bathtub, and
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unimodal hazard rates. Various statistical properties are explored, and real data
applications are provided to exhibit the performance of the EMHT distribution.

2. EXPONENTIATED OF MODIFYING HYPERBOLIC TANGENT
DISTRIBUTION

Hyperbolic Tangent (HT) is one of the trigonometric functions defined on the
unit hyperbola and mathematically can be expressed by Equation (1).

tanh(x) =
ex − e−x

ex + e−x
, x ∈ R. (1)

The basic idea of constructing the proposed distribution came up with inves-
tigating the graph of the hyperbolic tangent function as given by Figure 1.

Figure 1. The hyperbolic tangent function on the interval [-5, 5].

According to Figure 1, the first quadrant of HT function resembles the shape of
a CDF. In this region, HT function is bounded below and above, respectively, by
zero and one. Hence, the HT itself can be a prospective CDF for a continuous
random variable. However, HT distribution produces no flexibility since there is
no parameter contained in this distribution.

Herein, the HT function is modified to derive the CDF of a distribution,
namely, the exponentiated of modifying hyperbolic tangent (EMHT) distribution
which has flexibility. The CDF of EMHT distribution is constructed in the following
way.

(1) Consider hyperbolic tangent function defined in Equation (1) under positive
real numbers. By adding parameter θ > 0, Equation (1) becomes

tanh(xθ) =
ex

θ − e−xθ

exθ + e−xθ , x ≥ 0; θ > 0. (2)

The value of θ must be positive in order to preserve the CDF curve as
already formed by the first quadrant of HT function.
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(2) By exponentiating the two-hand side of Equation (2) by a positive real
number λ, Equation (2) transforms into Equation (3)

(tanh(xθ))λ =

(
ex

θ − e−xθ

exθ + e−xθ

)λ

, x ≥ 0; θ > 0. (3)

The value of λ must be positive in order to preserve the CDF curve formed
by a function in Equation (2).

The Equation (3) represents the CDF of EMHT consisting of two parameters θ > 0
and λ > 0. A positive random variable X has the EMHT distribution, denoted by
EMHT(θ, λ), if its CDF takes the form

FX(x) =

{
0 if x ≤ 0

(tanh(xθ))λ if x > 0
, (4)

where θ and λ are both shape parameters.

Theorem 2.1. The function given in Equation (4) satisfies the CDF properties.

Proof. First, it will be shown that 0 ≤ FX(x) ≤ 1, for all x ≥ 0. By considering the
hyperbolic function given in Equation (1), the following inequality holds for x > 0

0 ≤ tanh(x) ≤ 1 ⇔ 0 ≤ (tanh(xθ))λ ≤ 1.

Thus, FX(x) ∈ [0, 1] for all x > 0; θ > 0;λ > 0.

Second, it will be shown that FX(x) is a non-decreasing function. Let x1 and
x2 be non-negative real numbers such that x1 < x2. Since hyperbolic tangent is
a non-decreasing function over the field of a non-negative real number, then the
following inequality holds

tanh(xθ
1) ≤ tanh(xθ

2) ⇔ (tanh(xθ
1))

λ ≤ (tanh(xθ
2))

λ ⇔ FX(x1) ≤ FX(x2).

Since FX(x1) ≤ FX(x2) for any x1 < x2, then FX(x) is a non-decreasing function.

Third, it will be shown that FX(x) is a right-continuous function. Consider
the limit from the right of FX(x) as x → a, that is

lim
x→a+

FX(x) = lim
x→a+

(tanh(xθ))λ =

(
lim

x→a+
tanh(xθ)

)λ

= (tanh(aθ))λ = FX(a).

Since limx→a+ FX(x) = FX(a), then FX(x) is a right-continuous function.

Fourth, it will be shown that limx→∞ FX(x) = 1 and limx→−∞ FX(x) = 0.

lim
x→∞

FX(x) = lim
x→∞

(tanh(xθ))λ =
(
lim
x→∞

tanh(xθ)
)λ

= (1)λ = 1,

lim
x→−∞

FX(x) = lim
x→−∞

0 = 0.

As the function given in Equation (4) meets four CDF properties, the finding FX(x)
is a valid CDF of X. □
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The following Figure 2 and Figure 3 present the CDF plots of EMHT distri-
bution.

Figure 2. The CDF plots of EMHT distribution with a fixed
value of θ and different values of λ.

Figure 3. The CDF plots of EMHT distribution with a fixed
value of λ and different values of θ.

Figure 2 shows that for a fixed value of θ, the CDF tends to one faster as the
value of λ gets smaller. On the other hand, Figure 3 shows that for a fixed value
of λ, the CDF tends to one faster as the value of θ gets larger. With a CDF of the
EMHT distribution given in Equation (4), the corresponding probability density
function (PDF) of the EMHT distribution is obtained as follows

fX(x) =
d

dx
[FX(x)] =

d

dx

[
(tanh(xθ))λ

]
= θ λ xθ−1 sech2(xθ) tanhλ−1(xθ)

= θ λ xθ−1 csch(xθ) sech(xθ) tanhλ(xθ), x > 0.

(5)

Figure 4 presents the plots of EMHT density function in Equation (5) and indicates
that the EMHT distribution is right skewed because it has a long right tail. In the
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EMHT distribution, the probabilities grow quickly and taper off slowly for larger
values.

Figure 4. The PDF plots of EMHT distribution.

The survival and hazard rate functions of EMHT distribution are given, re-
spectively, by Equations (6) and (7).

SX(x) = 1− FX(x) = 1− (tanh(xθ))λ, x > 0, (6)

hX(x) =
fX(x)

SX(x)
=

θ λ xθ−1 csch(xθ) sech(xθ) tanhλ(xθ)

1− tanhλ(xθ)
, x > 0. (7)

The hazard rate function (HRF) of the EMHT distribution, given in Equation (7),
can appear in many forms. The behavior of the EMHT hazard rate is shown case
by case.

Case 1: λ = 1 and θ = 1 (EMHT(1,1)). In this case, Equation (7) simplifies to

hX(x) =
csch(x) sech(x) tanh(x)

1− tanh(x)
= 1 + tanh(x). (8)

Since tanh(x) is a monotonically increasing function for x > 0, then 1 + tanh(x) is
also monotonically increasing function. Figure 5 presents the plot of hazard rate
function in Equation (8). The hazard rate function of EMHT(1,1) is bounded below
and above by one and two, respectively. In this case, the EMHT distribution can
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be called as the Hyperbolic Tangent (HT) distribution having no parameter and
with the CDF FX(x) = tanh(x), x ≥ 0. However, HT distribution does not have
flexibility since it only produces monotonically increasing HF.

Figure 5. The hazard rate of EMHT(1,1).

Case 2: λ = 1 and θ > 0 (EMHT(θ, 1)). In this case, Equation (7) simplifies to

hX(x) =
θxθ−1 csch(xθ) sech(xθ) tanh(xθ)

1− tanh(xθ)
= θxθ−1(1 + tanh(xθ)). (9)

Figures 6 and 7 present the plot of hazard rate function in Equation (9).

Figure 6. The hazard rate of EMHT(θ, 1) for θ < 1.
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Figure 7. The hazard rate of EMHT(θ, 1) for θ > 1.

Here is the behavior of hazard rate function (9)

hX(x; θ) =



∞ if x → ∞ and θ > 1

0 if x → ∞ and θ < 1

0 if x → 0 and θ > 1

∞ if x → 0 and θ < 1

∞ if θ → ∞
0 if θ → 0.

In this case, the EMHT distribution can be called as the Modified Hyperbolic
Tangent (MHT) distribution having parameter θ > 0. For θ < 1, the hazard
rate function can be in the shape of decreasing or decreasing-increasing-decreasing
(bathtub-decreasing) curves. Moreover, for large values of x, the hazard rates are
small. For θ > 1, as the value of x increases, the hazard rate increases without
bound.

Case 3: θ = 1 and λ > 0 (EMHT(1, λ)). In this case, Equation (7) simplifies to

hX(x) =
λ csch(x) sech(x) tanhλ(x)

1− tanhλ(x)
. (10)

Figures 8 and 9 present the plot of hazard rate function (10). In this case, the
EMHT distribution can be called as the Exponentiated Hyperbolic Tangent (EHT)
distribution having parameter λ > 0. The EHT distribution has a hazard rate
function with two different shapes:

• Monotonically increasing for λ ≥ 1.
• Bathtub for λ < 1.
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Figure 8. The hazard rate of EMHT(1, λ) for λ < 1.

Figure 9. The hazard rate of EMHT(1, λ) for λ ≥ 1.

Here is the behavior of hazard rate function (10)

hX(x;λ) =


2 if x → ∞ and λ > 1

0 if x → 0 and λ > 1

0 if λ → ∞
csch(x)sech(x)
− ln(tanh(x)) if λ → 0.

For λ > 1, the hazard rate increases and is bounded above by 2. For λ < 1, the
hazard rate function is in the shape of bathtub.

Case 4: θ > 0 and λ > 0 (EMHT(θ, λ)). In this case, Equation (7) remains the
same, and the hazard curves generated from this equation are given in Figures 10
and 11. This distribution has hazard rate functions with four different shapes:

• Increasing for θ > 1 and λ > 1.
• Decreasing for θ < 1 and λ < 1.
• Decreasing or unimodal for θ < 1 and λ > 1.
• Increasing or bathtub for θ > 1 and λ < 1.
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Figure 10. The hazard rate of EMHT(θ, λ) for θ, λ > 1 and θ, λ < 1.

Figure 11. The hazard rate of EMHT(θ, λ) for θ < 1 and λ > 1,
and θ > 1 and λ < 1.
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Thefore, based on all cases, the hazard rate function of the EMHT dis-
tribution can be in the shapes of increasing, decreasing, bathtub, unimodal, or
decreasing-increasing-decreasing.

3. MEAN AND VARIANCE OF EMHT DISTRIBUTION

Let X ∼ EMHT(θ, λ), then mean and variance of EMHT distribution can be
obtained as follows

E(X) =

∫ ∞

0

xθλxθ−1 csch(xθ) sech(xθ) tanhλ(xθ)dx = θλ

∫ ∞

0

xθ sinh
λ−1(xθ)

coshλ+1(xθ)
dx

(11)

Var(X) = E
(
[X − µ]2

)
=

∫ ∞

0

(x−µ)2θλxθ−1 csch(xθ) sech(xθ) tanhλ(xθ)dx (12)

where µ is the mean (first moment) of the EMHT distribution. However, the nu-
merical approach is needed to calculate the mean in Equation (11) and the variance
in Equation (12), using the mathematical software, such as WolframAlpha, Math-
ematica or Matlab. Nevertheless, this study provides the mean and variance of the
EMHT distribution for selected values of θ and λ as presented in Table 1.

Table 1. The mean, variance, and MGF of the EMHT distribu-
tion for some combinations of θ and λ.

t θ λ Mean Variance MX(t)
-50 0.5 5 2.48913 5.870031843 0.000167988
-10 5 0.5 0.734836 0.0564280531 0.499771
-5 5 5 1.06006 0.0086627964 0.00556042
-5 0.5 0.5 0.458893 1.250277215 0.583864
-1 0.85 1.3 0.815946 0.5141221251 0.84738
-0.5 3 0.08 0.199689 0.07937330328 0.91333

4. MOMENT GENERATING FUNCTION OF EMHT DISTRIBUTION

Let X ∼ EMHT(θ, λ), then the Moment Generating Function (MGF) of
EMHT distribution can be obtained as follows

MX(t) = E(etX) =

∫ ∞

0

etx θλxθ−1 csch(xθ) sech(xθ) tanhλ(xθ)dx. (13)

The integral in Equation (13) does not have a closed-form solution, but it can be
evaluated numerically using mathematical software, such as WolframAlpha, Math-
ematica and Matlab. Based on simulation, for any combinations of θ and λ, the
MGF of EMHT distribution is only defined on t < 0, and some possible values of
MX(t) are given in Table 1.



12

5. QUANTILES OF EMHT DISTRIBUTION

As a CDF of the EMHT distribution has a closed-form solution, the quantile
of this distribution can be obtained by direct calculation. Theorem 5.1 presents
the p quantile of the EMHT distribution.

Theorem 5.1. Let X ∼ EMHT(θ, λ), then the p quantile of X is

xp =
(
arctanh

(
p

1
λ

)) 1
θ

,

where 0 < p < 1.

Proof. The p quantile of X can be obtained as follows:

FX(xp) = p ⇔ (tanh(xθ
p))

λ = p

⇔ tanh(xθ
p) = p

1
λ

⇔ xθ
p = arctanh

(
p

1
λ

)
,

Hence, the p quantile (100p-th percentile) of X is

xp =
(
arctanh

(
p

1
λ

)) 1
θ

.

By Theorem 5.1, the median (50-th percentile) of the EMHT distribution is x0.5 =(
arctanh

(
0.5

1
λ

)) 1
θ

. This quantile function can be used to generate data from the

EMHT distribution by setting the values of parameters θ and λ. □

6. MODE OF EMHT DISTRIBUTION

The following Theorem 6.1 presents the mode of the EMHT distribution.

Theorem 6.1. Let X ∼ EMHT(θ, λ), then the mode of X is the value of x satis-
fying the following equation

(θ − 1) tanh(xθ)− (1 + λ)θxθ tanh2(xθ)− θxθ(1− λ) = 0.

In particular, if θ = 1, the mode of X is

xmode = arctanh

(√
λ− 1

λ+ 1

)
,

and only valid for λ > 1.

Proof. The mode of EMHT distribution is the value x that satisfies the following
equation

argmax
x>0

fX(x). (14)
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The value of x that maximizes Equation (14) can be obtained by solving the fol-
lowing equation.

d

dx
fX(x) = 0,

or equivalent to

θλxθ−2 csch(xθ) sech(xθ) tanhλ−1(xθ)×

[(θ − 1) tanh(xθ)− θxθ coth(xθ) tanh(xθ)− θxθ tanh2(xθ) + θλxθ sech2(xθ)] = 0.

(15)

Since the expression θλxθ−2 csch(xθ) sech(xθ) tanhλ−1(xθ) is non-zero, then Equa-
tion (15) can be rewritten as follows

(θ − 1) tanh(xθ)− θxθ coth(xθ)tanh(xθ)− θxθtanh2(xθ) + θλxθsech2(xθ) = 0

⇔ (θ − 1)tanh(xθ)− θxθ − θxθtanh2(xθ) + θλxθ[1− tanh2(xθ)] = 0

⇔ (θ − 1)tanh(xθ)− (1 + λ)θxθtanh2(xθ)− θxθ(1− λ) = 0.

The last equation cannot be solved analytically and thereby requires a numerical
approach such as Newton-Raphson. However, for a specified value of θ, the mode
of the EMHT can be obtained analytically. If θ = 1, the last expression can be
rewritten as follows

(1 + λ)x tanh2(x) + x(1− λ) = 0

⇔ (1 + λ)tanh2(x) = λ− 1

tanh(x) = ±
√

λ− 1

λ+ 1
.

Since x > 0, the negative root can be neglected, as tanh(x) is a positive function
with respect to x.Thus,

tanh(x) =

√
λ− 1

λ+ 1
. (16)

Now, take the inverse hyperbolic tangent (i.e., arctanh) of both sides of Equation
(16), yields

x = arctanh

(√
λ− 1

λ+ 1

)
,

and it exists only for λ > 1. Therefore, for θ = 1, the mode of EMHT distribution

is arctanh
(√

λ−1
λ+1

)
. □

7. MAXIMUM LIKELIHOOD ESTIMATION

In this research, the maximum likelihood estimation (MLE) is applied to
estimate the parameters of EMHT distribution as the MLE will result in unbiased
estimator for large sample size. The estimation process is conducted case by case.
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The following is the process to construct the likelihood and log-likelihood functions
of the EMHT distribution.

L(λ, θ;x1, x2, . . . , xn) =

n∏
i=1

fX(xi;λ, θ)

=

n∏
i=1

θλxθ−1
i csch(xθ

i ) sech(x
θ
i ) tanh

λ(xθ
i )

= (θλ)n
n∏

i=1

xθ−1
i csch(xθ

i ) sech(x
θ
i ) tanh

λ(xθ
i ).

Hence, its log-likelihood function is given as follows:

l(λ, θ;x1, x2, . . . , xn) = n ln(θλ) +

n∑
i=1

ln
[
xθ−1
i csch(xθ

i ) sech(x
θ
i ) tanh

λ(xθ
i )
]

= n ln(θλ) + (θ − 1)

n∑
i=1

ln(xi) +

n∑
i=1

ln[csch(xθ
i )]

+

n∑
i=1

ln[sech(xθ
i )] + λ

n∑
i=1

ln[tanh(xθ
i )]

(17)

Case 1: Both λ and θ are not given. The value of λ and θ that maximize Equation
(17) can be obtained by taking the first partial derivative of Equation (17) with
respect to λ and θ, and equating to zero respectively, so that the following equations
are obtained.

∂l(λ, θ)

∂λ
=

n

λ
+

n∑
i=1

ln
[
tanh(xθ

i )
]
= 0

∂l(λ, θ)

∂θ
=

n

θ
+

n∑
i=1

ln(xi)−
n∑

i=1

xθ
i ln(xi)coth(x

θ
i )

−
n∑

i=1

xθ
i ln(xi)tanh(x

θ
i ) + 2λ

n∑
i=1

xθ
i ln(xi)csch(2x

θ
i ) = 0.

(18)

The solution of system of nonlinear equations (18) does not have a closed-form.
Hence, a numerical approach is required to find the MLE of λ and θ. This study
uses the Newton-Raphson method to find estimated value of both parameters.

Case 2: Estimate θ when λ is given. The value of θ that maximizes Equation (17)
can be obtained by taking the first derivative of Equation (17) with respect to θ,
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and equating to zero, so that the following equation is obtained.

dl(λ, θ)

dθ
=

n

θ
+

n∑
i=1

ln(xi)−
n∑

i=1

xθ
i ln(xi)coth(x

θ
i )

−
n∑

i=1

xθ
i ln(xi)tanh(x

θ
i ) + 2λ

n∑
i=1

xθ
i ln(xi)csch(2x

θ
i ) = 0.

(19)

As in the first case, the Newton-Raphson method is necessary aim to support the
MLE for solving nonlinear Equation (19).

Case 3: Estimate λ when θ is given. The value of λ that maximizes Equation (17)
can be obtained by taking the first partial derivative of Equation (17) with respect
to λ, and equating to zero, so that the following equation is obtained.

dl(λ, θ)

dλ
=

n

λ
+

n∑
i=1

ln
[
tanh(xθ

i )
]
= 0. (20)

The solution of nonlinear Equation (20) is

λ̂ = − n∑n
i=1 ln[tanh(x

θ
i )]

.

8. SIMULATION STUDIES

As the parameters of the EMHT distribution cannot be derived analytically,
this section presents a series of numerical simulations to evaluate the performance
of the proposed estimators for selected parameter values across various sample sizes.
The Monte Carlo simulation is performed with 10,000 replications for each specified
parameter configuration. Parameter estimation is carried out using the maximum
likelihood estimation (MLE) method, as outlined in the preceding section. The
performance of the MLE is assessed using two metrics: the average estimate and
the mean squared error (MSE), which are computed as follows:

Average estimate =

∑10,000
j=1 τ̂j

10, 000
; MSE =

∑10,000
j=1 (τ̂j − τ)2

10, 000

where τ̂j is the estimated value for the considered parameter on the j-th experiment
and τ is the actual value of the considered parameter.

The Monte Carlo algorithm for generating data of size n from the EMHT

distribution using its quantile xp =
(
arctanh

(
p

1
λ

)) 1
θ

is presented as follows:

Step 1: Set the value of parameters θ and λ.
Step 2: Generate the value of p from the uniform distribution defined on (0, 1) for
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n times and assign it as pi, where i = 1, 2, . . . , n.
Step 3: Calculate xpi

using pi alongside θ and λ set on Step 1 through an Equation

xpi =
(
arctanh

(
p

1
λ

)) 1
θ

.

The Monte Carlo algorithm will produce the values of xp1
, xp2

, . . . , xpn
gene-

rated from the EMHT distribution. In this study, we generate the data of size 100,
500, and 1000 from the EMHT distribution for cases of θ < λ, θ > λ and θ = λ.
The selected values of θ and λ produce data with increasing, decreasing, bathtub,
unimodal, and decreasing-increasing-decreasing HRF. The numerical results are
presented in Table 2.

Table 2. Numerical results of EMHT distribution parameter es-
timation for generated data of size n.

Parameter Average Estimate MSE
n = 100 n = 500 n = 1000 n = 100 n = 500 n = 1000

θ = 0.5 0.5044 0.5008 0.5012 0.0010 0.0002 0.0001
λ = 5 5.0790 5.0268 4.9993 0.2983 0.0558 0.0251
θ = 5 5.2789 5.0497 5.0404 1.0019 0.1227 0.0706
λ = 0.5 0.4952 0.4971 0.4977 0.0091 0.0016 0.0008
θ = 5 5.0675 5.0112 5.0084 0.1052 0.0187 0.0098
λ = 5 5.0416 5.0304 5.0096 0.2425 0.0572 0.0252
θ = 0.5 0.5301 0.5050 0.5049 0.0090 0.0013 0.0007
λ = 0.5 0.4903 0.4985 0.4963 0.0080 0.0016 0.0008
θ = 0.85 0.8786 0.8545 0.8515 0.0126 0.0021 0.0010
λ = 1 0.9897 1.0026 1.0012 0.0219 0.0040 0.0021

θ = 1.25 2.8059 1.5386 1.3699 6.4406 0.5804 0.1565
λ = 0.03 0.0232 0.0281 0.0290 0.0003 0.0001 0.0000

Based on Table 2, the average estimates of the parameters are generally close
to their actual values, with the distance never exceeding 0.5. Moreover, the average
estimates have a closer gap with the actual parameters as the sample size increases.
It is also confirmed by its MSE, as the sample size gets larger, the MSE gets smaller.
Therefore, it is reasonable to conclude that the finding estimators are relevant to
be used as the point estimation of each parameter.

9. APPLICATIONS TO REAL-WORLD DATA

This section provides the application of the EMHT distribution to four datasets
to show the usefulness of the EMHT distribution and to be compared with some
common non-negative continuous distributions alongside the ExponentiatedWeibull
(EW) distribution. The choice of the competing distributions is in accordance to
the similarity in hazard rates characteristics and the number of parameters in each
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competing distribution that is not more or less far with the parameters contained
in the EMHT distribution. These competing models are:

Exponentiated Weibull(α, β, θ) with PDF

fX(x) = αβθβxβ−1e−(θx)β
(
1− e−(θx)β

)α−1

, where α > 0; β > 0; θ > 0.

Gamma(α, β) with PDF

fX(x) =
1

βαΓ(α)
xα−1 exp

(
−x

β

)
, where α > 0; β > 0.

Weibull(α, β) with PDF

fX(x) = αβ−αxα−1 exp

(
−
(
x

β

)α)
, where α > 0; β > 0.

Rayleigh(θ) with PDF

fX(x) = 2θ2xe−(θx)2 , where θ > 0.

Lindley(l) with PDF

fX(x) =
l2(1 + x)e−lx

l + 1
, where l > 0.

Bilal(b) with PDF

fX(x) =
6e−

2x
b

(
1− e−

x
b

)
b

, where b > 0.

The datasets used in this study are:

• Dataset 1: The average net wage/salary (in million Rupiahs) per month re-
ceived by the employee from the main job on 17 sectors in Indonesia (source:
https://www.bps.go.id/en/statistics-table/2/MTUyMSMy/rata-rata-upah-
gaji.html).

• Dataset 2: 264 observations of the maximum monthly wind speed (in mph)
recorded in Palm Beach, Florida, from January 1984 to December 2005
(source: http://www.ncdc.noaa.gov./).

• Dataset 3: 251 motor insurance claims collected from a survey conducted
by an insurance company in Thailand in 2013 [11].

• Dataset 4: The snow accumulation data in inches in the Raleigh-Durham
airport, North Carolina, from 1948 to 2000 [9].

• Dataset 5: The time between failures (thousands of hours) of secondary
reactor pumps [12].

The results for fitting respective dataset to all considered distributions are
evaluated by considering the score-based approaches such as the log-likelihood
value, Akaike’s information criterion (AIC), Bayesian information criterion (BIC),
and Kolmogorov-Smirnov (KS) goodness of fit statistic with its p-values, as pre-
sented in Tables 3, 4, 5, 6, and 7, respectively.
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Table 3. Fitting result for dataset 1.

Distribution KS statistic Log- AIC BIC Fitted
(p-value) likelihood parameters

EMHT 0.10981 -24.66248 53.32496 54.99139 θ̂ = 0.7516

(0.9723) λ̂ = 43.6301
Exponentiated 0.12562 -24.2335 54.467 56.9666 α̂ = 2.75706

Weibull (0.9211) β̂ = 2.22897

θ̂ = 0.35511
Weibull 0.13219 -24.34364 52.6873 54.3537 α̂ = 3.75801

(0.8907) β̂ = 3.82859
Gamma 0.12229 -24.21907 52.4381 54.1046 α̂ = 11.06635

(0.9344) β̂ = 0.31179

Rayleigh 0.26149 -28.47745 58.9549 59.7881 θ̂ = 0.2779
(0.163)

Lindley 0.35619 -34.84812 71.6962 72.5295 l̂ = 0.48499
(0.0195)

Bilal 0.3132 -32.45683 66.9137 67.7469 b̂ = 4.1861
(0.0558)

Table 4. Fitting result for dataset 2.

Distribution KS statistic Log- AIC BIC Fitted
(p-value) likelihood parameters

EMHT 0.07887 -896.4984 1796.997 1804.149 θ̂ = 0.50251

(0.07492) λ̂ = 93822.92
Exponentiated 0.077144 -898.3182 1802.636 1813.364 α̂ = 631.5777

Weibull (0.0864) β̂ = 0.91762

θ̂ = 0.20841
Weibull 0.17042 -983.8561 1971.712 1978.864 α̂ = 3.87469

(0.0000) β̂ = 43.68567
Gamma 0.11958 -923.1104 1850.221 1857.373 α̂ = 24.54758

(0.00105) β̂ = 1.63412

Rayleigh 0.37324 -1073.859 2149.718 2153.294 θ̂ = 0.02433
(0.0000)

Lindley 0.40944 -1147.995 2297.989 2301.565 l̂ = 0.04870
(0.0000)

Bilal 0.4042 -1145.274 2292.548 2296.124 b̂ = 48.719
(0.0000)
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Table 5. Fitting result for dataset 3.

Distribution KS statistic Log- AIC BIC Fitted
(p-value) likelihood parameters

EMHT 0.057048 -2633.721 5271.442 5278.493 θ̂ = 0.14427

(0.3875) λ̂ = 474.284
Exponentiated 0.061919 -2631.394 5268.788 5279.364 α̂ = 20.1156

Weibull (0.291) β̂ = 0.31379

θ̂ = 0.00613
Weibull 0.12528 -2661.247 5326.494 5333.545 α̂ = 0.88828

(0.00076) β̂ = 13987.7
Gamma 0.15147 -2664.617 5333.234 5340.285 α̂ = 0.93130

(0.0000) β̂ = 16137

Rayleigh 0.51076 -2934.364 5870.728 5874.253 θ̂ = 0.00004
(0.0000)

Lindley 0.26246 -2724.981 5451.962 5455.487 l̂ = 0.00013
(0.0000)

Bilal 0.24793 -2715.97 5433.94 5437.465 b̂ = 17516.1
(0.0000)

Table 6. Fitting result for dataset 4.

Distribution KS statistic Log- AIC BIC Fitted
(p-value) likelihood parameters

EMHT 0.10909 -107.4513 218.903 223.189 θ̂ = 0.45287

(0.4415) λ̂ = 3.12852
Exponentiated 0.11805 -107.4566 220.913 227.343 α̂ = 4.04895

Weibull (0.3437) β̂ = 0.48777

θ̂ = 2.91166
Weibull 0.099341 -109.8276 223.655 227.942 α̂ = 0.90257

(0.563) β̂ = 2.00786
Gamma 0.11383 -110.3484 224.697 228.983 α̂ = 0.91892

(0.3879) β̂ = 2.31294

Rayleigh 0.4707 -174.9177 351.8355 353.9786 θ̂ = 0.27403
(0.0000)

Lindley 0.15087 -114.5881 231.1761 233.3193 l̂ = 0.7408
(0.1136)

Bilal 0.19728 -124.2624 250.5248 252.668 b̂ = 2.492
(0.01483)
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Table 7. Fitting result for dataset 5.

Distribution KS statistic Log- AIC BIC Fitted
(p-value) likelihood parameters

EMHT 0.11097 -32.32359 68.64717 70.91816 θ̂ = 0.44981

(0.9101) λ̂ = 2.18660
Exponentiated 0.096743 -31.83198 69.66397 73.07045 α̂ = 10.3097

Weibull (0.9682) β̂ = 0.29985

θ̂ = 40.0950
Weibull 0.11839 -32.51392 69.02784 71.29883 α̂ = 0.80774

(0.8667) β̂ = 1.39150
Gamma 0.1379 -32.75918 69.51835 71.78934 α̂ = 0.74588

(0.7237) β̂ = 2.11544

Rayleigh 0.48281 -56.46189 114.9238 116.0593 θ̂ = 0.40639
(0.0000)

Lindley 0.24406 -35.30539 72.6108 73.7463 l̂ = 0.9575
(0.1084)

Bilal 0.32757 -42.51443 87.0289 88.1644 b̂ = 1.8505
(0.01066)

According to Tables 3, 4, 5, 6, and 7, the p-values of the KS goodness-of-fit
test for the EMHT distribution are greater than the significance level of 0.05 for
all datasets. This indicates that all datasets are convenient with the EMHT distri-
bution. Furthermore, the EMHT distribution is the most suitable, as it produces
the highest value of the log-likelihood function at its maximum and also the lowest
AIC and BIC values, particularly for datasets 2, 3, 4 and 5. Although the EMHT
distribution is not the most appropriate model for dataset 1, its performance is
able to compete with Gamma and Weibull distributions as the differences between
these three distributions in all measures are very small.

Figure 12. The fitted CDF and PDF of the EMHT distribution
and empirical CDF for dataset 1.
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Figures 12, 13, 14, 15, and 16 display the fitted CDF curves of the EMHT
distribution alongside the empirical CDFs, as well as the corresponding fitted PDFs
for each dataset. For all datasets, the theoretical CDFs closely align with the
empirical CDFs. Additionally, the fitted PDFs closely resemble the histograms of
the datasets. These results strongly support the goodness-of-fit results, indicating
that the EMHT distribution provides an appropriate model for all five datasets.
This confirms the EMHT distribution as a viable and legit option for modeling
datasets 1 through 5.

Figure 13. The fitted CDF and PDF of the EMHT distribution
and empirical CDF for dataset 2.

Figure 14. The fitted CDF and PDF of the EMHT distribution
and empirical CDF for dataset 3.
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Figure 15. The fitted CDF and PDF of the EMHT distribution
and empirical CDF for dataset 4.

Figure 16. The fitted CDF and PDF of the EMHT distribution
and empirical CDF for dataset 5.

10. CONCLUSION

This research proposes the novel EMHT distribution, constructed by power-
ing a positive real number to the CDF of the MHT distribution. As confirmed by
its hazard rate function, the EMHT distribution offers flexibility, as it can generate
data with monotone and non-monotone hazard rates. This study also derived es-
sential probability properties of the proposed distribution, including its CDF and
PDF. The mean, variance, and some other statistical measures can be calculated
using mathematical software despite their closed-form is not being available.

Parameter estimation for the EMHT distribution is performed using MLE
with a numerical method in some cases because the fitted parameter cannot be
obtained analytically. The performance of the MLE is examined by conducting
Monte Carlo simulations with various parameter values and sample sizes. The
simulation results show that the estimated parameters are very close to the actual
parameter values, particularly for large sample sizes.
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Furthermore, the EMHT distribution compares favorably with some clas-
sic non-negative continuous distributions, and exponentiated Weibull distribution.
The compatibility of the EMHT distribution with datasets 1, 2, 3, 4, and 5 is
confirmed by the p-values of the Kolmogorov-Smirnov goodness-of-fit test. The
EMHT distribution also provides the smallest AIC and BIC values for datasets 2,
3, 4, and 5. Therefore, the EMHT distribution can be a promising alternative to
other existing distributions for modeling non-negative continuous data.
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