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Abstract. A Fan graph Fn is defined as the graph Pn + K1, where Pn is the path

on n vertices. The notation F → (G,H) means that if all edges of F are arbitrarily

colored by red or blue, then either the subgraph of F induced by all red edges

contains a graph G or the subgraph of F induced by all blue edges contains a graph

H. Let R(G,H) denote the set of all graphs F satisfying F → (G,H) and for every

e ∈ E(F ), (F − e) ̸→ (G,H). In this paper, we propose some properties for a graph

G of minimum order that belongs to R(2K2, Fn), for n ≥ 3. We have also found all

members of R(2K2, Fn) with a minimum order for n ∈ [3, 7].

Key words and Phrases: dominating vertex, fan graph, matching, ramsey minimal
graph.

1. INTRODUCTION

Frank Plumpton Ramsey formulated Ramsey’s theory to assist in determining
the truth or falsehood of logical formulas [1]. Ramsey’s theory evolved into minimal
Ramsey graph theory, as defined by Burr et al. in 1976 [2]. This paper regards
all graphs as simple and utilizes the definition as referenced in [3]. The notation
F → (G,H) signifies that any red-blue edge coloring of the graph F leads to F
containing either a red subgraph isomorphic to G or a blue subgraph isomorphic
to H.
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In graph theory, a graph F serves as a Ramsey graph for a pair (G,H) if it
satisfies the condition F → (G,H). When F is the complete graph Kn, the problem
of identifying the smallest integer n such that Kn → (G,H) has been thoroughly
researched [4, 5, 6, 7]. This smallest n is referred to as the (graph) Ramsey number
for the pair (G,H), denoted by r(G,H). A graph F is referred to as a Ramsey
graph (G,H)-minimal if it holds that F → (G,H), but for any subgraph formed by
removing an edge, F − e 9 (G,H). All such (G,H)-minimal graphs are grouped
into a class called the Ramsey class (G,H)-minimal, represented as R(G,H).

The pair (G,H) is referred to as Ramsey-finite if the set R(G,H) is finite; oth-
erwise, it is termed Ramsey-infinite.  Luczak [8] demonstrated that the set R(G,H)
is infinite for any forest G other than a matching and for any graph H that contains
a cycle. Furthermore, Burr et al. [9] established that R(mK2, H) is Ramsey finite
for every graph H and any positive integer m. Borowiecki et al. [5] provided a
characterization of the graphs in R(K1;2,K1;m) where m ≥ 3. Numerous papers
have explored the characterization of infinite families of Ramsey (K1;2, C4)-minimal
graphs (refer to [10, 11, 12]). Yulianti et al. [13] constructed some infinite classes of
Ramsey (K1;2, P4)-minimal graphs. Subsequently, Borowiecki et al. [14] identified
the graphs in R(K1;2,K3). Borowiecka-Olszewska and Haluszczak [15] introduced a
method to generate an infinite family of Ramsey (K1;m, G)-minimal graphs, where
m ≥ 2 and G belongs to a family of 2-connected graphs.

In this paper, we focus on Ramsey-finite. Mangersen and Oeckermann [16]
proved that R(2K2,K1;2) = {2K1;2, C4, C5}, and presented the characterization of
graphs belonging to R(2K2,K1;n), for n ≥ 3. Furthermore, Muhshi and Baskoro
[17] proved that R(3K2, P3) = {3P3, C4∪P3, C5∪P3, C7, C8}. Baskoro and Yulianti
[18] characterized all graphs in R(2K2, Pn) for n = 4, 5, Tatanto and Baskoro [19]
characterized graphs in R(2K2, 2Pn), and Silaban et al. [20] characterized graphs
in R(mK2, P4). [21] characterized all graphs belonging to R(2K2,K4), and in [22],
Wijaya et al. characterized all unicyclic graphs belonging to R(mK2, P3).

Baskoro and Wijaya [23] derived the necessary and sufficient conditions for the
graphs to be in R(2K2, H) for any connected graph H. They proved the following
theorem.

Theorem 1.1. [23] Let H be any connected graph. F ∈ R(2K2, H) if and only if
the following conditions are satis�ed:

(i) for every v ∈ V (F ), F − v ⊇ H,
(ii) for every K3 in F, F − E(K3) ⊇ H,

(iii) for every e ∈ E(F ), there exists v ∈ V (F ) or K3 in F such that (F−e)−v +
H or (F − e) − E(K3) + H.

If a graph F conforms to both Theorem 1.1(i) and (ii), it follows that F → (2K2, H).
Moreover, should a graph F fulfill Theorem 1.1(iii), it implies that F possesses the
minimality property of F , meaning for every edge e in F , F − e 9 (2K2, H). In
addition, Wijaya and Baskoro [24] identified the necessary and sufficient conditions
for graphs within R(mK2, H). In addition, Rafif et al. [25] discovered several results
concerning Ramsey (2K2, G)-minimal graphs of the smallest order, where the graph
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G possesses a dominating vertex (a vertex adjacent to all other vertices) and has
an independence number of at least 2, and they also proved the complete list of
R̂(2K2,Wn) for n ∈ [3, 7], where Wn = K1 +Cn. In the same year, Rafif et al. [26]

also proved the complete list of R̂(2K2,Frn) for n ≥ 2, where Frn = K1 + nK2.

A fan graph Fn is defined as the graph Pn + K1, where Pn is the path on
n vertices. In this paper, we propose some properties that are sufficient or/and
necessary conditions for membership of R(2K2, Fn) with minimum order, for n ≥
3. We also determine all non-isomorphic Ramsey (2K2, Fn)-minimal graphs, for
n ∈ [3, 7].

2. MAIN RESULTS

We will introduce some definitions and notations. A union of m disjoint
copies of K2, denoted by mK2, is called a matching. A complete multipartite
graph composed of j partite sets with k vertices within each set is designated by
Kj� k. The notation [i, t] represents the set of all integers that lie between i and t
(including i and t themselves). Given a graph G, Ei denotes the set of i arbitrary
edges of E(G). The notation G − Ei denotes the removal of any i edges from
the graph G. The degree of a vertex v in a graph G is denoted by degG(v). The
maximum and minimum degrees of the graph G are represented by ∆(G) and δ(G),
respectively. The complement of a graph G, denoted by Ḡ, is a graph that has the
same vertices as G, but uv ∈ E(G) if and only if uv /∈ E(Ḡ).

2.1. Some Properties of R(2K2, Fn) with Minimum Order.

In this subsection, we discuss some properties of the graph F that satisfy
F ∈ R̂(2K2, Fn) for n ≥ 3. From Theorem 1.1, we obtain some properties of graph
F ∈ R(aK2, Fn) in the following Lemma 2.1.

Lemma 2.1. If F ∈ R(2K2, Fn), where n ≥ 3, then following conditions are
satis�ed:

(i). |V (F )| ≥ n + 2
(ii). ∆(F ) ≥ n

Proof. Let v ∈ V (F ).

(i). Suppose |V (F )| < n + 2. Since |V (F )| < n + 2, then |V (F − v)| < n + 1 =
|V (Fn)|, thus, F−v ̸⊇ Fn, for n ≥ 3. By Theorem 1.1 (i), F ̸∈ R(2K2, Fn),
a contradiction. Therefore, V (F ) ≥ n + 2.

(ii). Suppose ∆(F ) < n. Since ∆(F ) < n, then ∆(F − v) < n = ∆(Fn).
Thus, F − v ̸⊇ Fn. By Theorem 1.1 (i), F ̸∈ R(2K2, Fn), a contradiction.
Therefore, ∆(F ) ≥ n.

�

From Lemma 2.1, we know that the maximum degree of a member of R(2K2, Fn)
with minimum order is either n or n+1. In the following Proposition 2.2, we obtain
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a characterization of graphs that are members of R(2K2, Fn) with minimum order
and maximum degree n, for odd n ≥ 3.

Proposition 2.2. For odd n ≥ 3, there are no graphs belong to R(2K2, Fn) with
minimum order n + 2 and maximum degree n.

Proof. Let vi ∈ E(Kn+2), for i ∈ [1, n + 2]. Let H be any graph with order n + 2
and maximum degree n. For odd n ≥ 3, define a graph F = Kn+2 − E ⊇ H,
where E = {v2j� 1v2j |j ∈ [1, n+1

2 ]} ∪ {v1vn+2}. Consider the graph F − vn+2,
∆(F − vn+2) = n− 1. Thus, F − vn+2 ̸⊇ Fn. By Theorem 1.1, F ̸→ (2K2, Fn), for
odd n ≥ 3. Since F ⊇ H, then H ̸→ (2K2, Fn). Therefore, H ̸∈ R(2K2, Fn). �

In the following Theorem 2.3, we obtain a characterization of graphs that
are members of R(2K2, Fn) with minimum order and maximum degree n, for even
n ≥ 4.

Theorem 2.3. For even n ≥ 4, K( n
2 +1)� 2 is the unique graph in R(2K2, Fn) with

minimum order and maximum degree n.

Proof. Let vi ∈ V (Kn+2) for i ∈ [1, n + 2]. For even n ≥ 4, define the graph
K( n

2 +1)� 2 = Kn+2 − E, where E = {v2j� 1v2j | j ∈ [1, n + 1]}. First, we will show

that K( n
2 +1)� 2 ∈ R(2K2, Fn).

(1) We will show that K( n
2 +1)� 2 → (2K2, Fn). Assume that there is no red

2K2, then the subgraph induced by the red edges is either a K1;n or a C3.
(i) Red subgraph K1;n.

Without loss of generality, color every edge incident to vertex v1 with
red. Next, color every edge incident to vertex v2 with blue, making v2
the dominating vertex in the graph Fn. Consider the uncolored edges
in the graph K( n

2 +1)� 2 are K( n
2 +1)� 2 − E(K1;n) − v2 = K n

2 � 2 (see

Figure 1 (i)). Since K n
2 � 2 contains a Pn, there exists a blue subgraph

Fn in K n
2 +1� 2.

(ii) Red subgraph C3.
Without loss of generality, color every edge of the triangle formed by
vertices v1, v3, and v5 with red. Next, color every edge incident to
vertex v2 with blue, making v2 the dominating vertex in the graph
Fn. Since v1 and v2 are not adjacent, vertex v1 can be disregarded.
Consider the uncolored edges in the graph K( n

2 +1)� 2 are K( n
2 +1)� 2 −

E(C3) − v2 − v1 = K n
2 � 2 − e (see Figure 1 (ii)). Since K n

2 � 2 − e
contains a Pn, there exists a blue subgraph Fn in K n

2 +1� 2.
In both cases above, we always obtain a blue subgraph Fn in K n

2 +1� 2.
Therefore, K( n

2 +1)� 2 → (2K2, Fn).

(2) Next, we will show that K( n
2 +1)� 2−e ̸→ (2K2, Fn). Without loss of general-

ity, let e = v1v3. Color every edge incident to vertex v2 with red. Consider
the uncolored edges in the graph K( n

2 +1)� 2 − e have a maximum degree

n − 1 (see Figure 1 (iii)). Thus, there does not exist a blue subgraph Fn

in K( n
2 +1)� 2 − e. Therefore, K( n

2 +1)� 2 − e ̸→ (2K2, Fn).
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Figure 1. Red-Blue Coloring of K( n
2 +1)� 2 and K( n

2 +1)� 2 − e

From (1) and (2), we have proven that K( n
2 +1)� 2 ∈ R(2K2, Fn).

Next, we will show that K( n
2 +1)� 2 is the only graph in R(2K2, Fn) with

minimum order and maximum degree n. Suppose F ̸= K( n
2 +1)� 2. Since ∆(F ) = n,

|V (F )| = n + 2, and F ̸= K( n
2 +1)� 2, then F ⊂ K( n

2 +1)� 2. Since K( n
2 +1)� 2 ∈

R(2K2, Fn) and F ⊂ K( n
2 +1)� 2, then F /∈ R(2K2, Fn). Hence, we have proven

that K( n
2 +1)� 2 is the only graph in R(2K2, Fn) with minimum order and maximum

degree n. �

In the following Lemma 2.4, we obtain a property of graphs that are members
of R(2K2, Fn) with minimum order and maximum degree n + 1.

Lemma 2.4. Let F ∈ R(2K2, Fn), where n ≥ 3. If |V (F )| = n + 2, and ∆(F ) =
n+ 1 then there are at least four vertices with degrees of at least n, and at least two
of them are of degrees n + 1.

Proof. Suppose there is at most one vertex with degree n + 1. Let v ∈ V (F ),
deg(v) = ∆(F ) = n + 1. Since ∆(F − v) ≤ n − 1 < n = ∆(Fn), thus Fn ̸⊆ F − v.
By Theorem 1.1 (i), F ̸∈ R(2K2, Fn), a contradiction. Therefore, there are at least
two vertices with degree n+ 1. Next, suppose there are at most three vertices with
a degree of at least n, we know that at least two of them have a degree of n + 1.
Let v1, v2, v3 ∈ V (F ), with deg(v1) = deg(v2) = n + 1 and deg(v3) = n. Observe
a K3, with V (K3) = {v1, v2, v3}. Consider ∆(F − E(K3)) = n − 1 < n = ∆(Fn),
thus Fn ̸⊆ F − E(K3). By Theorem 1.1 (ii), F ̸∈ R(2K2, Fn), a contradiction.
Therefore, there are at least four vertices with a degree of at least n. �

From Lemma 2.1, we obtain some necessary conditions for graphs that are
members of R(2K2, Fn) with minimum order and maximum degree n + 1 in the
following Theorem 2.5.

Theorem 2.5. Let F ∈ R(2K2, Fn), with n ≥ 5. If |V (F )| = n + 2 and ∆(F ) =
n + 1, then all the following conditions are necessary for the graph F.

(1) The minimum degree of F, δ(F ) ≥ 3.
(2) The maximum number of vertices of degree three is two.
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(3) If there are exactly two vertices of degreen + 1 , exactly two vertices of
degreen, and there is a vertex of degree four, then the vertices of degreen
are adjacent.

(4) For n � 6, if there are exactly two vertices of degreen + 1 and exactly two
vertices of degreen, then there are at most two vertices of maximum degree
four.

(5) F + �K n
2 +1 .

Proof. Given that F 2 R (2K 2; Fn ); with n � 5 and jV (F )j = n + 2 : Without loss
of generality, let v1; v2; v3; v4 2 V(F ): By Lemma 2.1, �( F ) = deg(v1) = deg(v2) =
n + 1 and deg(v3) = deg(v4) � n:

(1) Let v5 2 V(F ): Suppose deg(v5) = � (F ) = 2 : Consider � (F � v1) =
deg(v5) � 1 = 1 and � (Fn ) = 2, hence v5 62V(Fn ): SincejV (F � v1)j = n +1
and v5 62V(Fn ); then Fn 6� F � v1: By Theorem 1.1 (i ), F 62 R(2K 2; Fn );
a contradiction. Therefore, deg(v5) = � (F ) � 3:

(2) Let vi 2 V(F ), for i 2 [5; 7] where deg(v5) = deg(v6) = 3. Suppose
deg(v6) = 3 for i 2 [5; 7]. Consider � (F � v1) = deg(vi ) � 1 = 2 and
�( F ) = deg(v2) = n. Without loss of generality, v2 is a dominating vertex
in graph Fn . Next, observe that � ((F � v1) � v2) = deg(vi ) � 2 = 1.
Since jV ((F � v1) � v2)j = n and deg(vi ) = 1 in ( F � v1) � v2, thus
Pn 6� (F � v1) � v2. By Theorem 1.1 (i), F 62 R(2K 2; Fn ), a contradiction.
Therefore, deg(v7) � 4.

(3) Let deg(v3) = deg(v4) = n. Let v5 2 V(F ) with deg(v5) = 4. Suppose
v3 and v4 are adjacent. Consider a complete graphK 3 with V (K 3) =
[v1; v2; v5], � (F � E (K 3)) = deg( v5) = 2, and �( F ) = deg(v3) = n. Without
loss of generality,v3 is a dominating vertex in graph Fn . Next, observe that
� ((F � E (K 3)) � v3) = deg(v5) = 1. Since v3 and v4 are not adjacent andv3

is a dominating vertex of the wheel graphFn , thus v4 62Fn , hence deg(v5) =
0 in (F � E (K 3)) � v3 � v4. Since deg(v5) = 0 in ( F � E (K 3)) � v3 � v4 and
jV (F � E(K 3)) � v3j = n, thus Pn 6� V (F � E(K 3)) � v3. By Theorem 1.1 (ii),
F 62 R(2K 2; Fn ), a contradiction. Therefore, v3 and v4 are adjacent.

(4) Let deg(v3) = deg(v4) = n. Let vi 2 V(F ) for i 2 [5; 6; 7] where deg(v5) =
deg(v6) = 4. Suppose deg(v5) = 4. Consider � (F � v1) = deg(vi ) � 1 = 3
for i 2 [5; 6; 7] and �( F ) = deg(v2) = n, then v2 is a dominating vertex in
graph Fn . Next, observe that � ((F � v1) � v2) = deg(vi ) � 2 = 1. Since
each vertexvi is adjacent only to v3 and v4 and jV ((F � v1) � v2)j = n, thus
Pn 6� V ((F � v1) � v2) for n � 6. By Theorem 1.1 (i), F 62 R(2K 2; Fn ), a
contradiction. Therefore, deg(v5) � 5

(5) SupposeF � �K d n
2 e+1 . Consider �( F � v1) = deg(v2) = n, thus v2 is the

dominating vertex of the wheel graph Fn . SinceF � �K d n
2 e+1 , there exists

a partition with dn
2 +1e vertices in the graph F . SincejV (F � v1 � v2)j = n

and there is a partition with dn
2 +1e vertices in F � v1 � v2, then dn

2 e+1 >
n � d n

2 e � 1. Consequently, Pn 6� F � v1 � v2. By Theorem 1.1 (i ),
F 62 R(2K 2; Fn ); a contradiction. Therefore, F + �K n

2 +1 .
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�

To facilitate the application of the su�cient condition in Theorem 2.5 above,
we can de�ne several graph sets in Remark 2.6 as follows.

Remark 2.6. De�ne GN
i as a collection of all graphs of ordern + 2 satisfying

Theorem 2.5 (i ); for i 2 [1; 5]:

2.2. The Complete List of R(2K 2; Fn ) with Minimum Order, for n 2 [3; 7].

In this subsection, we give the complete list ofR̂ (2K 2; Fn ) for n 2 [3; 7]
in Theorems 2.7-2.11. We characterize of the memberR(2K 2; F3) with minimum
order in the following Theorem 2.7.

Theorem 2.7. The graph K 5 is the unique graph with �ve vertices inR(2K 2; F3).

Proof. We will show that K 5 ! (2K 2; F3). Suppose that there is no red 2K 2, then
the subgraph induced by red edges is eitherK 1;4 or C3. For both possibilities,
a blue F3 always appears in the coloring (see Figure 2K 5 ! (2K 2; F3)). Thus,
K 5 ! (2K 2; F3). Next, we will show that K 5 � e 9 (2K 2; F3). Let the red edges

Figure 2. Red-Blue Coloring of GraphsK 5 and K 5 � e

induce a K 3 with vertices of degree 4. Consider that the subgraph with blue edges
is K 3;2 (see Figure 2K 5 � e 6! (2K 2; F3)). Since K 3;2 6� F3, this blue subgraph
does not containF3. Thus, K 5 � e 9 (2K 2; F3). It is proven that K 5 2 R (2K 2; F3).
Furthermore, sinceK 5 � E i � K 5, for i � 1, then K 5 � E i 62 R(2K 2; F3): Therefore,
K 5 is the unique graph with �ve vertices in R(2K 2; F3):

�

Henceforth, we will only provide a red-blue coloring �gure on graph F to
demonstrate that F 2 R (2K 2; Wn ), for n � 4. In the following Theorem 2.8, we
obtain the characterization of the member R(2K 2; F4) with minimum order.

Theorem 2.8. The graphK 3� 2 is the unique graph with six vertices inR(2K 2; F4).

Proof. By Theorem 2.3, K 3� 2 is the unique graph in R(2K 2; F4) with maximum
degree 4. Thus, we only need to show that there is no graph with maximum degree
5 as a member ofR(2K 2; F4). Let F y

R = f K 6 � Ey j K 6 � Ey 2 R (2K 2; F4)g: Since
there is no graphK 6 � Ey for y > 3 that satis�es Lemma 2.4, then y � 3.
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Case 1. K 6 � E3.
The graphs that satisfy Lemma 2.4 are onlyK 6 � E (P4) and K 6 � E (K 1;3).
SinceK 6 � E (P4) 62 GN

3 and K 6 � E (K 1;3) 62 GN
1, then F 3

R = ; : Therefore,
there are no graphs obtained by removing any three edges fromK 6 that
belong to R(2K 2; F4):

Case 2. K 6 � E2.
The graphs that satisfy Lemma 2.4 are onlyK 6 � E (P3) and K 6 � E (2K 2).
By Figure 3, K 6 � E (P3) 6! (2K 2; F4) and since K 3� 2 � K 6 � E (2K 2),
then F 2

R = ; : Therefore, there are no graphs obtained by removing any two
edges fromK 6 that belong to R(2K 2; F4):

Figure 3. K 6 � E (P3) 6! (2K 2; F4)

Case 3. K 6 � Ek , for k � 1.
Since K 3� 2 � K 6 � e, then F k

R = ; , for k � 1. Therefore, there are no
graphs obtained by removing at most one edge fromK 6 that belong to
R(2K 2; F4):

Based on Case 1� 3, there is no graph inR(2K 2; F4) with six vertices and maximum
degree �ve. �

The graphs F R
5 is shown in Figure 4.

Figure 4. Graph F R
5

In the following Theorem 2.9, we obtain the characterization of the member
R(2K 2; F5) with minimum order.

Theorem 2.9. The graphF R
5 is the unique graph with seven vertices inR(2K 2; F5):

Proof. Consider the red-blue coloring onF R
5 and F R

5 � eas shown in Figure 5. Thus,
F R

5 2 R (2K 2; F5): By Proposition 2.2 there is no graph with maximum degree 5 in
R(2K 2; F5). Thus, we only need to show thatF R

5 is the only graph with maximum
degree 6 inR(2K 2; F5). Let F y

R = f K 7 � Ey jK 7 � Ey 2 R (2K 2; F5)g: Since there
is no graph K 7 � Ey for y > 5 that satis�es Lemma 2.4, then y � 5.
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Figure 5. Red-Blue Coloring of GraphsF R
5 and F R

5 � e

Case 1. K 7 � E5.
A graph that satis�es Lemma 2.4 other than F R

5 is only K 7 � E 1
5 ; for a

particular set of �ve edges E 1
5 (see Figure 6). SinceK 7 � E 1

5 62 GN
1, by

Theorem 2.5, K 7 � E 1
5 62 R(2K 2; F5). Thus, F 5

R = f F R
5 g. Therefore,

removing any �ve edges from the graphK 7 only produces the graphsF R
5

as members ofR(2K 2; F7):

Figure 6. Graphs K 7 � E 1
5

Case 2. K 7 � E4.
Figure 7 shows all possible graphs that satisfy Lemma 2.4, for particular
sets of four edgesE i

4; for i 2 [1; 5]: SinceK 7 � E 1
4 62 GN

3 and K 7 � E 2
4 62 GN

1

by Theorem 2.5, K 7 � E 1
4 ; K 7 � E 2

4 62 R(2K 2; F5). Since K 7 � E j
4 � F R

5 ,
for j 2 [3; 5], then K 7 � E j

4 62 R(2K 2; F5). Thus, F 4
R = ; . Therefore, there

are no graphs obtained by removing any four edges fromK 7 that belong
to R(2K 2; F4):

Figure 7. Graphs K 7 � E i
4, for i 2 [1; 5]

Case 3. K 7 � E3.
In this case we explore the graphsK 7 � E j

4 + e; for j = [1 ; 2] and any edgee:
We obtain three non-isomorphic graphsK 7 � E i

3, for i 2 [1; 3]; as depicted
in Figure 8. SinceK 7 � E i

3 � F R
5 , for i 2 [1; 3], then K 7 � E i

3 62 R(2K 2; F5).
Thus, F 3

R = ; . Therefore, there are no graphs obtained by removing any
three edges fromK 7 that belong to R(2K 2; F5):
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Figure 8. Graphs K 7 � E i
3, for i 2 [1; 3]

Case 4. K 7 � E t , for t � 2.
SinceK 7 � E s

3 + Ek � F R
5 , for k � 3, then K 7 � Ek 62 R(2K 2; F5). Thus,

F k
R = ; , for k � 2. Therefore, there are no graphs obtained by removing

at most any two edges fromK 6 that belong to R(2K 2; F5):

Based on Case 1� 4, F R
5 is the unique graph with six vertices and maximum degree

6 in R(2K 2; F5): �

The graphs F R
6;i for i 2 [1; 5] are shown in Figure 9.

Figure 9. F R
6;i for i 2 [1; 5]

In the following Theorem 2.10, we obtain the characterization of the member
R(2K 2; F6) with minimum order.

Theorem 2.10. The graphs with eight vertices inR(2K 2; F6) are precisely K 4� 2

and F R
6;i for i 2 [1; 5]:

Proof. By Theorem 2.3, K 4� 2 is the unique graph in R(2K 2; F6) with maximum
degree 4. Next, the red-blue colorings ofF R

6;i and F R
6;i � e for i 2 [1; 5] as shown in

Figure 10. Therefore, we obtainK 4� 2; F R
6;i 2 R (2K 2; F6): Thus, we only need to

show that F R
6;i for i 2 [1; 5] is the only graphs with maximum degree 8 inR(2K 2; F6).

Let F y
R = f K 9 � Ey jK 9 � Ey 2 R (2K 2; F6)g: Since there is no graphK 8 � Ey for

y > 7 that satis�es Lemma 2.4 and Theorem 2.5, theny � 7.
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