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Abstract. A Latin square of order n is a square matrix with n different numbers

such that numbers in each column and each row are distinct. Max-plus Algebra is

algebra that uses two operations, ⊕ and ⊗. In this paper, we solve the eigenproblem

for Latin squares in Max-plus Algebra by considering the permutations determined

by the numbers in the Latin squares.
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Abstrak. Latin square order n merupakan matriks persegi dengan n angka berbeda

sehingga angka-angka pada tiap baris dan kolom semuanya berbeda. Aljabar max-

plus merupakan aljabar yang menggunakan dua operasi, ⊕ dan ⊗. Pada paper ini,

diselesaikan permasalahan eigen dari Latin square pada aljabar max-plus dengan

memperhatikan permutasi dari angka-angka pada Latin square tersebut.

Kata kunci: Latin square, Aljabar max-plus, Permasalahan eigen, Permutasi.

1. Introduction

In this paper we consider eigenproblems. From a square matrix A, eigenprob-
lems are the problems of finding a scalar λ and corresponding vector v that satisfy
Av = λv and we apply this problems into max-plus algebra. The problems can be
solved by algorithm in [6]. The purpose of this paper is to solve eigenproblems in
max-plus algebra for Latin squares by considering the permutations of symbol (or
numbers) in Latin squares.

A reason for studying eigenproblems of Latin square in max-plus algebra is
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that such problems have been studied for other matrices, for example Monge ma-
trix [2], inverse Monge matrix [4] and circulant matrix [10, 11]. Eigenproblems are
more simple to solve for that special matrices. For instance, eigenvalue of circulant
matrices is equal to maximal number of that ones [10, 11].

The outline of this paper is as follows. In Section 2, we introduce Latin
squares and permutations in the context of Latin squares. In Section 3, we intro-
duce max-plus algebra and some theories about graph representation in max-plus
algebra. Next in Section 4 we give theory of eigenproblems in max-plus algebra and
some conditions to solve it. In Section 5 we give analyses to solve eigenproblems
in max-plus algebra. In Section 6 we give an illustration of our problems. We give
some remarks and conclusion in Section 7.

2. Latin Square and Permutation

A Latin square of order n is a matrix of size n× n with n different numbers
such that in each row and each column filled by the permutation of those numbers
[3], in other words the entries in each row and in each column are distinct [5]. Latin
squares were firstly studied by Swiss mathematician, Leonhard Euler. The study of
Latin square has long tradition in combinatorics [1], for example the enumeration
of Latin squares. The method or formula to enumerate the number of Latin squares
can be found in [3, 12, 13]. An example of Latin square of order 4 is shown in below
Example 1

L =







2 3 1 4
1 4 2 3
4 1 3 2
3 2 4 1






.

The notion of permutation is related to the act of rearranging objects or val-
ues. A permutation of n objects is an arrangement of this objects into a particular
order. For example there are six permutations of numbers 1, 2, 3, that is (1,2,3),
(1,3,2), (2,1,3), (2,3,1), (3,1,2) and (3,2,1). For simplicity, we write a permutation
without parentheses and commas. So we will write 123 rather than (1, 2, 3). In
this paper, we define n = {1, 2, . . . , n} as set of the n first natural numbers.

In algebra, especially group theory, permutation is a bijective mapping on
set X. A family of all permutations on X is called the symmetric group SX [9], we
write Sn rather than SX for X = n. From rearrangement i1i2 . . . in of n we can
define a function α : n → n as α(1) = i1, α(2) = i2, . . . , α(n) = in. If α(i) = i for
i ∈ n, then i is fixed by α. For example, the rearrangement 321 determines the
function α with α(1) = 3, α(2) = 2, α(3) = 1 and 2 fixed by α.

We can write permutation in cycle form i.e. (a1 a2 . . . ar) if α(a1) =
a2, α(a2) = a3, . . . , α(ar−1) = ar, α(ar) = a1 and called by r-cycle (cycle of length
r). A complete factorization of a permutation α is a factorization of α into disjoint
cycles that contains exactly one 1-cycle of i for every i fixed by α [9]. For example,
the complete factorization of the 3-cycle α = (1 3 5) ∈ S5 is α = (1 3 5)(2)(4).

Suppose Latin square L = (li,j) has order n. We can get n permutations
that represent of each number of L. Let s ∈ n, we define permutation symbol of
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number s by σs such that σs(i) equal to j for which li,j = s [12]. For example, from
Latin square L in Example 1, we get σ1, σ2, σ2, σ4 ∈ S4 as permutation symbol of
number 1, 2, 3, 4 in L respectively where σ1 = (1 3 2)(4), σ2 = (1)(2 3 4), σ3 =
(1 2 4)(3), σ4 = (1 4 3)(2).

3. Max-Plus Algebra

In max-plus algebra we define algebraic structure (Rε,⊗,⊕), where Rε is the
set of all real numbers R extended by an infinite element ε = −∞ and operation
⊗,⊕ defined by

x⊕ y = max{x, y} and x⊗ y = x+ y (1)

respectively. It is easy to show that both operation ⊕ and ⊗ are associative and
commutative. Because x⊕ ε = ε⊕ x = x and x⊗ 0 = 0⊗ x = x for all x ∈ Rε then
the null and unit element in max-plus algebra is ε and 0 respectively.

For all x ∈ Rε and non-negative integer n, we define

x⊗n =







0, for n = 0
x⊗ x⊗ x⊗ . . .⊗ x
︸ ︷︷ ︸

n

, for n > 0 (2)

We can write x⊗n in conventional algebra

x⊗n = x⊗ x⊗ x⊗ . . .⊗ x
︸ ︷︷ ︸

n

= n× x

or generally for all β ∈ R

x⊗β = β × x

The set of all square matrices of order n in max-plus algebra are defined by
R

n×n
ε . Let A ∈ R

n×n
ε , the entry of A at ith row and jth column is defined by ai,j

and sometime we write [A]i,j . For A,B ∈ R
n×n
ε , addition of matrix, A ⊕ B, is

defined by
[A⊕B]i,j = ai,j ⊕ bi,j

= max{ai,j , bi,j}
(3)

and multiplication of matrix, A⊗B, is defined by

[A⊗B]i,j =

n⊕

k=1

ai,k ⊗ bk,j

= max
k∈n

{ai,k + bk,j}
(4)

For square matrix A, similar to scalar in max-plus algebra, we denote

A⊗k = A⊗A⊗A⊗ . . .⊗A
︸ ︷︷ ︸

k

as kth power of A.
From L ∈ R

n×n
ε , we can get directed graph (digraph) G(L) = G(V,E), where

V is set of vertices and E is set of edges. In G(L), there are n vertices labelled
by 1, 2, . . . , n respectively. There is an edge from vertex i to vertex j if aj,i 6= ε
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denoted by (i, j). The weight of (i, j)-edge is denoted by w(j, i) and equal to aj,i, if
aji = ε then there is no (i, j)-edge. Graph representation of matrix L in Example
1 is shown in Fig. 1.

1 2

4 3

1

3

1234

4

2

2

3

4

1

4

2

31

Figure 1. Graph representation of matrix L

A sequence of edges (j1, j2), (j2, j3), . . . , (jk−1, jk) is called path and if all
vertices j1, j2, . . . , jk−1 are different then called elementary path. Circuit is an
elementary closed path, i.e. (j1, j2), (j2, j3), . . . , (jk−1, j1). A circuit consists of
a single edge, from a vertex to itself, is called a loop. Weight of a path p =
(j1, j2), (j2, j3), . . . , (jk−1, jk) is denoted by |p|w and equal to sum of all weight
each edge i.e. |p|w = aj2j1 + aj3j2 + . . . + ajkjk−1

and length of path is denoted by
|p|l and equal to the number of edges in path p. The average weight of path p

defined by weight of p divide by length of path p,

|p|w
|p|l

=
aj2j1 + aj3j2 + . . .+ ajkjk−1

k − 1
(5)

Any circuit with maximum average weight is called a critical circuit. A graph
called strongly connected if there is a path for any vertex i to any vertex j. If graph
G(L) is strongly connected, then matrix L is irreducible. We can infer that [L]i,j
is equal to the weight of path with length 1 from j to i, [L⊗2]i,j is equal to the
maximal weight of path with length 2 from j to i or generally for positive integer
k, [L⊗k]i,j is equal to the maximal weight of path with length k form j to i.

There is relation between σi ∈ Sn and a circuit in G(L). Every r-cycle
in σi represented circuit of length r with each edge have weight i. Let graph
representation in Fig. 1. We get σ2 = (1)(2 3 4) and there are two cycles of
(1)(2 3 4), 1-cycle (1) and 3-cycle (2 3 4). As we can see in Fig. 1 there are two
circuit with all edges have weight 2, a loop in vertex 1 and a circuit with length 3
(4, 3), (3, 2), (2, 4).
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Let A ∈ R
n×n
ε , we define the matrix A+ as follow

A+ def
=

∞⊕

i=1

A⊗i = A⊕A⊗2 ⊕ . . .⊕A⊗n ⊕ . . . (6)

Because [A⊗k]i,j is equal to maximal weight of all paths with length k from vertex
j to vertex i then [A+]i,j is equal to maximal weight of any path with any length
from vertex j to vertex i.

If B ∈ R
n×n such that all circuits in G(B) have average weight less than

or equal to 0 then B+ is equal to the summation (in max-plus) of B⊗k for k =
1, 2, . . . , n, or in other words

B+ = B ⊕B⊗2 ⊕ . . .⊕B⊗n

4. Eigenproblems

Eigenproblems are common problem in mathematics especially in linear al-
gebra. In linear algebra, eigenproblems are the problems of finding λ ∈ R and
vectors v ∈ R

n from matrix A of size n × n that satisfy Av = λv and then λ is
called by eigenvalue while vector v is called by eigenvector. In max-plus algebra,
similar to linear algebra, eigenproblems are formulated as A⊗ v = λ ⊗ v for given
matrix A ∈ R

n×n
ε , where λ ∈ R and v ∈ R

n. The method to solve eigenproblems
in max-plus algebra is quite different in linear algebra.

Methods to solve eigenproblems in max-plus algebra were handled by sev-
eral authors for ordinary matrices [6, 7, 8], as well as for special matrices such as
circulant matrix [10, 11], Monge matrix [2] and inverse Monge matrix [4]. Special
case for irreducible matrices, problem to get an eigenvalue related to problem to
get critical circuits because the eigenvalue of A is equal to the weight of critical
circuits in G(A) [8]. If the eigenvalue exist for irreducible matrix A then there is
unique eigenvalue [8].

In this paper we define λ(A) as eigenvalue of matrix A and Aλ be a matrix
such that [Aλ]i,j = [A]i,j − λ(A) or in other word Aλ = (−λ(A)) ⊗ A. It is clear

that the maximum average weight of any circuit in G(A+
λ ) is less than or equal 0.

Consequently, we can derived as follow

A+
λ = Aλ ⊕A⊗2

λ ⊕ . . .⊕A⊗n
λ

and the ith column of A+
λ is eigenvector of A if [A+

λ ]i,i = 0 [8]. There is an algorithm
to obtain eigenvalue and eigenvector that called Power Algorithm [6, 7].

5. Discussion, Analyses and Results

We will discuss Latin squares in max-plus algebra, so it is allowed to use
infinite element ε = −∞ as a symbol of a Latin square. Thus, we consider two
cases of Latin squares.

• Case 1.
Latin square without infinite element that use n = {1, 2, . . . , n} as elements
of Latin square.
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• Case 2.
Latin square with infinite element that use nε = {ε, 1, 2, . . . , n − 1} as
elements of Latin square

We denote Ln and Ln
ε be the set of all Latin squares of order n without and with

infinite element, respectively.
We begin the observation from graph representation of Latin square. Let

L1 ∈ Ln, because all numbers in L1 are finite then [L1]i,j 6= ε for all i, j ∈ n and it
is clear that G(L1) is strongly connected, consequently L1 is irreducible. It can be
concluded that all Latin squares without infinite element are irreducible matrix.

Let L2 ∈ Ln
ε , because in each row and each column of L2 there is exactly one

ε then [L⊗2
2 ]i,j = max

k∈n
{ai,k + ak,j} is finite. Consequently, there is a path length

2 from any vertex i to any vertex j and L2 also irreducible. It can be concluded
that all Latin squares with infinite element are irreducible matrix. Because both
L1 and L2 are irreducible matrix then to find eigenvalue of L1 and L2 we need to
find the critical circuit of graph representation of each matrix.

In next discussion we will solve eigenproblems of Latin squares in max-plus
algebra and given the result about eigenvalue, eigenvector and the number of lin-
early independent eigenvectors also derive some theorems about them. See Section
6 for examples.

Theorem 5.1. Let L1 ∈ Ln and L2 ∈ Ln
ε . The average weight of critical circuits

of G(L1) and G(L2) is equal to n and n− 1 respectively.

Proof. We only need to consider permutation of the largest number in L1 and L2.
It is clear that maxn = n and maxnε = n− 1. Let σn be permutation symbol of
number n in L, from σn we get circuit with the weight of all edges are n. Because
all edges have weight n, then the average weight of circuit is n and there is no
circuit with average weight more than n. Thus, all circuits based on σn are critical
circuit in G(L1) and the average weight of those critical circuit in G(L1) is equal to
n.

By the same argument, we get the average weight of critical circuits in G(L2)
is equal to n− 1.

�

Theorem 5.2. Let L1 ∈ Ln and L2 ∈ Ln
ε . Eigenvalue of L1 and L2 is equal to

n and n − 1 respectively or generally eigenvalue of Latin square L is equal to the

maximal number in L.

Proof. The proof of this theorem is from direct result of Theorem 5.1

�

Let L be Latin square of order n that has eigenvalue λ. To get eigenvalue of Latin
square in max-plus algebra we consider the matrix L+

λ . We know that the ith

column of L+
λ is eigenvector of L if [L+

λ ]i,i = 0. Number i ∈ n satisfies [L+
λ ]i,i = 0

if and only if in graph G(L) there is critical circuit from vertex i.
If L is Latin square then λ is equal to the maximal number in L i.e. λ(A) =
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max(A) and λ appears exactly once in each row and column of L, consequently
there is always critical circuit that every edge has weight λ from any vertex i for
all i ∈ n. Consequently, for Latin square L all column of L+

λ are eigenvector of L
with eigenvalue λ.

We say that two vectors v1, v2 are linearly independent (in max-plus algebra)
if there is no c ∈ R such that v1 = c⊗ v2. In max-plus algebra, it is possible that
any matrix L has two or more linearly independent eigenvectors.

We know that each critical circuit in G(L) represents eigenvector of L. If there
are m different critical circuits then there are m linearly independent eigenvectors
or we can say that the number of linearly independent eigenvectors is equal to the
number of different critical circuit in G(L).

Theorem 5.3. Let L a be Latin square with eigenvalue λ. The number of linearly

independent eigenvectors of L with respect to eigenvalue λ is equal to the number

of cycle in permutation symbol σλ.

Proof. Because L is a Latin square with eigenvalue λ then in graph G(L) there are
critical circuits with average weight equal to λ where each edge has weight λ. And
because λ appears exactly once in each row and column of L then we can always
make critical circuit based on permutation symbol of λ i.e. σλ.

We know that every r-cycle in σλ represented a critical circuit length r where
each edge have weight λ then the number critical circuit is equal to the number of
cycle in σλ and this completes the proof.

�

6. Example

We give two examples of Latin square, without and with infinite element
ε = −∞.

Example I.

A =







4 1 2 3
1 2 3 4
2 3 4 1
3 4 1 2







By Theorem 5.2 eigenvalue of A is maximal number in A i.e. λ(A) = max(A) = 4.
From A we get permutation symbol σλ = σ4 = (2 4) = (1)(2 4)(3) ∈ S4 and there
are three cycles in σλ. Next we get

Aλ =







0 −3 −2 −1
−3 −2 −1 0
−2 −1 0 −3
−1 0 −3 −2







A⊗2
λ =







0 −1 −2 −1
−1 0 −1 −2
−2 −1 0 −1
−1 −2 −1 0







A⊗3
λ =







0 −1 −2 −1
−1 −2 −1 0
−2 −1 0 −1
−1 0 −1 −2







A⊗4
λ =







0 −1 −2 −1
−1 0 −1 −2
−2 −1 0 −1
−1 −2 −1 0
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and

A+
λ = Aλ ⊕A⊗2

λ ⊕A⊗3
λ ⊕A⊗4

λ

=







0 −1 −2 −1
−1 0 −1 0
−2 −1 0 −1
−1 0 −1 0







By Theorem 5.3, the number of linearly independent eigenvectors is equal to the
number of cycle in σλ and from A+

λ , we can get three different column vectors






0
−1
−2
−1






,







−1
0
−1
0






,







−2
−1
0
−1







There are three linearly independent eigenvectors of A with eigenvalue λ = 4 and
the number of cycle in σλ is also 3.

Example II.

B =







2 3 1 −∞
3 −∞ 2 1
1 2 −∞ 3

−∞ 1 3 2







By Theorem 5.2, the eigenvalue of B is maximal number in B i.e. λ(B) = max(B) =
3. From B we get permutation symbol σλ = (1 2)(3 4) ∈ S4 and there are two
cycles in σλ. Next we get

Bλ =







−1 0 −2 −∞
0 −∞ −1 −2
−2 −1 −∞ 0
−∞ −2 0 −1







B⊗2
λ =







0 −1 −1 −2
−1 0 −2 −1
−1 −2 0 −1
−2 −1 −1 0







B⊗3
λ =







−1 0 −2 −1
0 −1 −1 −2
−2 −1 −1 0
−1 −2 0 −1







B⊗4
λ =







0 −1 −1 −2
−1 0 −2 −1
−1 −2 0 −1
−2 −1 −1 0







and

B+
λ = Bλ ⊕B⊗2

λ ⊕B⊗3
λ ⊕B⊗4

λ

=







0 0 −1 −1
0 0 −1 −1
−1 −1 0 0
−1 −1 0 0







By Theorem 5.3, the number of linearly independent eigenvectors is equal to the
number of cycle in σλ and from B+

λ , we can get two different column vectors
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0
0
−1
−1






,







−1
−1
0
0







There are two linearly independent eigenvectors of B with eigenvalue λ = 3 and
the number of cycle in σλ is also 2.

7. Conclusion

Eigenproblems for any Latin square L can be solved by considering the per-
mutation symbol of maximal number in L. Moreover, eigenvalue is equal to the
maximal number in L and the number of linearly independent eigenvectors is equal
to the number of cycle in permutation symbol of those maximal number.
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