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Abstract. For vertices x and y in a connected graph G, the detour distance D(x, y)

is the length of a longest x − y path in G. An x − y path of length D(x, y) is an

x − y detour. The closed detour interval ID[x, y] consists of x, y, and all vertices

lying on some x − y detour of G; while for S ⊆ V (G), ID[S] =
⋃

x,y∈S
ID[x, y].

A set S of vertices is a detour convex set if ID[S] = S. The detour convex hull

[S]D is the smallest detour convex set containing S. The detour hull number dh(G)

is the minimum cardinality among subsets S of V (G) with [S]D = V (G). Let x

be any vertex in a connected graph G. For a vertex y in G, denote by IG[y]x,

the set of all vertices distinct from x that lie on some x − y detour of G; while

for S ⊆ V (G), ID[S]x =
⋃

y∈S ID[y]x. For x /∈ S, S is an x-detour set of G if

ID[S]x = V (G) − {x} and an x-detour set of minimum cardinality is the x-detour

number dx(G) of G. For x /∈ S, S is an x-detour convex set if ID[S]x = S. The

x-detour convex hull of S, [S]x
D

is the smallest x-detour convex set containing S.

The x-detour hull number dhx(G) is the minimum cardinality among the subsets

S of V (G) − {x} with [S]xD = V (G) − {x}. In this paper, we investigate how the

detour hull number and the vertex detour hull number of a connected graph are

affected by adding a pendant edge.
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Abstrak. Misalkan x dan y berada di graf terhubung G, jarak detour D(x, y)

adalah panjang dari lintasan x − y yang terpanjang di G. Lintasan x − y dengan

panjang D(x, y) adalah suatu detour x−y. Interval detour tertutup ID[x, y] memuat

x, y dan semua titik yang berada dalam suatu detour x−y dari G; sedangkan untuk

S ⊆ V (G), ID[S] =
⋃

x,y∈S
ID[x, y]. Himpunan titik S adalah suatu himpunan

konveks detour jika ID [S] = S. Konveks hull detour [S]D adalah himpunan konveks

detour terkecil yang memuat S. Bilangan hull detour dh(G) adalah kardinalitas

minimum diantara sub-subhimpunan S dari V (G) dengan [S]D = V (G). Misalkan

x adalah suatu titik di graf terhubung G. Untuk suatu titik y di G, dinotasikan

dengan IG[y]x, himpunan dari semua titik berbeda dari x yang terletak pada suatu

detour x − y dari G; sedangkan untuk S ⊆ V (G), ID[S]x =
⋃

y∈S ID[y]x. Untuk

x /∈ S, S adalah suatu himpuan detour-x dari G jika ID[S]x = V (G)−{x} dan suatu

himpuan detour-x dengan kardinalitas minimum adalah bilangan detour-x dx(G)

dari G. Untuk x /∈ S, S adalh suatu himpunan detour-x konveks jika ID[S]x =

S. Konveks hull detour-x dari S, [S]x
D

adalah himpunan konveks detour-x yang

memuat S. Bilangan hull detour-x dhx(G) adalah kardinalitas minimum diantara

sub-subhimpunan S dari V (G) − {x} dengan [S]xD = V (G) − {x}. Pada paper

ini, kami memeriksa pengaruh penambahan sisi anting dari suatu graf terhubung

terhadap bilangan hull detour dan bilangan hull detour titik.

Kata kunci: Detour, bilangan detour, bilangan hull detour, bilangan detour-x, bi-
langan hull detour-x.

1. Introduction

By a graph G = (V,E), we mean a finite undirected graph without loops or
multiple edges. The order and size of G are denoted by n and m respectively. For
basic definitions and terminologies, we refer to [1, 6]. For vertices x and y in a
nontrivial connected graph G, the detour distance D(x, y) is the length of a longest
x − y path in G. An x − y path of length D(x, y) is an x− y detour. It is known
that the detour distance is a metric on the vertex set V (G). The detour eccentricity
of a vertex u is eD(u) =max{D(u, v) : v ∈ V (G)}. The detour radius, radD(G) of
G is the minimum detour eccentricity among the vertices of G, while the detour
diameter, diamD(G) of G is the maximum detour eccentricity among the vertices
of G. The detour distance and the detour center of a graph were studied in [2].
The closed detour interval ID[x, y] consists of x, y, and all vertices lying on some
x− y detour of G; while for S ⊆ V (G), ID[S] =

⋃
x,y∈S

ID[x, y]; S is a detour set if

ID[S] = V (G) and a detour set of minimum cardinality is the detour number dn(G)
of G. Any detour set of cardinality dn(G) is the minimum detour set or dn-set of
G. A vertex x in G is a detour extreme vertex if it is an initial or terminal vertex of
any detour containing x. The detour number of a graph was introduced in [3] and
further studied in [4, 8]. These concepts have interesting applications in Channel
Assignment Problem in radio technologies [5, 7].
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A set S of vertices of a graph G is a detour convex set if ID[S] = S. The
detour convex hull [S]D of S is the smallest detour convex set containing S. The
detour convex hull of S can also be formed from the sequence {IkD[S], k ≥ 0}, where

I0D[S] = S, I1D[S] = ID[S] and IkD = ID[Ik−1
D [S]]. From some term on, this sequence

must be constant. Let p be the smallest number such that IpD[S] = Ip+1
D [S]. Then

IpD[S] is the detour convex hull [S]D and we call p as the detour iteration number
din(S) of S. A set S of vertices of G is a detour hull set if [S]D = V (G) and
a detour hull set of minimum cardinality is the detour hull number dh(G). The
detour hull number of a graph was introduced and studied in [11].

For the graph G given in Figure 1, and S = {v1, v6}, ID[S] = V − {v7} and
I2D[S] = V . Thus S is a minimum detour hull set of G and so dh(G) = 2. Since S
is not a detour set and S ∪ {v7} is a detour set of G, it follows from Theorem 1.2
that dn(G) = 3. Hence the detour number and detour hull number of a graph are
different. Note that the sets S1 = {v1, v2} and S2 = {v2, v3, v4, v5, v7} are detour
convex sets in G. Let x be any vertex of G. For a vertex y in G, IG[y]

x denotes

Figure 1. Graph G with dh(G) = 2 and dn(G) = 3

the set of all vertices distinct from x that lie on some x− y detour of G; while for
S ⊆ V (G), ID[S]x =

⋃
y∈S ID[y]x. It is clear that ID[x]x = φ. For x /∈ S, S is an

x-detour set if ID[S]x = V (G) − {x} and an x-detour set of minimum cardinality
is the x-detour number dx(G) of G. Any x-detour set of cardinality dx(G) is the
minimum x-detour set or dx-set of G. The vertex detour number of a graph was
introduced and studied in [9].

Let G be a connected graph and x a vertex in G. Let S be a set of vertices
in G such that x /∈ S. Then S is an x-detour convex set if ID[S]x = S. The
x-detour convex hull of S, [S]xD is the smallest x-detour convex set containing S.
The x-detour convex set can also formed from the sequence {IkD[S]x, k ≥ 0}, where

I0D[S]x = S, I1D[S]x = ID[S]x and IkD[S]x = ID[Ik−1
D [S]x]x. From some term on,

this sequence must be constant. Let px be the smallest number such that Ipx

D [S]x =

Ipx+1
D [S]x. Then Ipx

D [S]x is the x-detour convex hull [S]xD of S and we call px as
the x-detour iteration number dinx(S) of S. The set S is an x-detour hull set if
[S]xD = V (G) − {x} and an x-detour hull set of minimum cardinality is the x-
detour hull number dhx(G) of G. Any x-detour hull set of cardinality dhx(G) is the
minimum x-detour hull set or dx-hull set of G.

For the graph G in Figure 2, the minimum vertex detour hull numbers and
vertex detour numbers are given in Table 1. Table 1 shows that, for a vertex x, the
x-detour number and the x-detour hull number of a graph are different.
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Figure 2. G

Table 1. x-detour numbers and x-detour hull numbers of G in Figure 2

It is clear that every minimum x-detour hull set of a connected graph G of order n
contains at least one vertex and at most n− 1 vertices. Also, since every x-detour
set is a x-detour hull set, we have the following proposition. Throughout this paper
G denotes a connected graph with at least two vertices. The following theorems
will be used in the sequel.

Theorem 1.1. [11] Let G be a connected graph. Then
(i) Each detour extreme vertex of G belongs to every detour hull set of G.
(ii) No cut vertex of G belongs to any minimum detour hull set of G.

Theorem 1.2. [9] Each end vertex of G other than x (whether x is an end vertex
or not) belongs to every minimum x-detour set of G.

Theorem 1.3. [10] Let x be a vertex of a connected graph G. Let S be any x-detour
hull set of G. Then
(i) Each x-detour extreme vertex of G belongs to S.
(ii) If v is a cut vertex of G and C a component of G− v such that x /∈ V (C), then
S ∩ V (C) 6= ∅.
(iii) No cut-vertex of G belongs to any minimum x-detour hull set of G.

Theorem 1.4. [10] For any vertex x in a connected graph G of order n, dhx(G) ≤
n− eD(x).

2. Graphs of Order n with Vertex Detour Hull Number n− 1, n− 2
and n− 3

Theorem 2.1. Let G be a connected graph of order n ≥ 2. Then dhx(G) = n− 1
for every vertex x in G if and only if G = K2.
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Proof. Suppose that G = K2. Then dhx(G) = 1 = n − 1. The converse follows
from Theorem 1.4. �

Theorem 2.2. Let G be a connected graph of order n ≥ 3. Then dhx(G) = n− 2
for every vertex x in G if and only if G = K3.

Proof. Suppose that G = K3. Then it is clear that dhx(G) = 1 = n − 2 for every
vertex x in G. Conversely, suppose that dhx(G) = n − 2 for every vertex x in G.
Then by Theorem 1.4, eD(x) ≤ 2 for every vertex x in G. It follows from Theorem
2.1 that eD(x) 6= 1 for every vertex x in G. Thus eD(x) = 2 for every vertex x
in G; or the vertex set can be partitioned into V1 and V2 such that eD(x) = 1 for
x ∈ V1 and eD(x) = 2 for x ∈ V2. Thus either radD(G) = diamD(G) = 2; or
we have radD(G) = 1 and diamD(G) = 2. This implies that either G = K3 or
G = K1,n−1. If G = K1,n−1, then by Theorem 1.3, dhx(G) = n − 1 for the cut
vertex x and dhy(G) = n− 2 for any end vertex y in G, which is a contradiction to
the hypothesis. Hence G = K3. �

Theorem 2.3. Let G be a connected graph of order n ≥ 2. Then G = K1,n−1 if
and only if the vertex set V (G) can be partitioned into two sets V1 and V2 such that
dhx(G) = n− 1 for x ∈ V1 and dhy(G) = n− 2 for y ∈ V2.

Proof. Suppose that G = K1,n−1. Then dhx(G) = n− 1 for the cut vertex x in G
and dhy(G) = n− 2 for any end vertex y in G. Conversely, suppose that the vertex
set V (G) can be partitioned into two sets V1 and V2 such that dhx(G) = n− 1 for
x ∈ V1; and we have dhy(G) = n−2 for y ∈ V2. Then by Theorem 1.4, eD(x) = 1 for
each x ∈ V1 and eD(y) = 1 or eD(y) = 2 for each y ∈ V2. It follows from Theorem
2.1 that eD(y) = 2 for some y ∈ V2. Hence radD(G) = 1 and diamD(G) = 2. Thus
G = K1,n−1. �

Theorem 2.4. Let G be a connected graph of order n ≥ 5. Then G is a double
star or G = K1,n−1 + e if and only if the vertex set V (G) can be partitioned into
two sets V1 and V2 such that dhx(G) = n − 2 for x ∈ V1 and dhy(G) = n − 3 for
y ∈ V2.

Proof. Suppose that G is a double star or G = K1,n−1 + e. Then it follows from
Theorem 1.3 that dhx(G) = n − 2 or dhx(G) = n− 3 according to whether x is a
cut vertex of G or not. Conversely, suppose that dhx(G) = n − 2 for x ∈ V1 and
dhx(G) = n − 3 for x ∈ V2. Then by Theorem 1.4, eD(x) ≤ 3 for every x and so
diamD(G) ≤ 3. It follows from Theorem 2.1 that G 6= K2 and so diamD(G) ≥ 2.
If diamD(G) = 2, then G is the star K1,n−1 and by Theorem 2.3, dhx(G) = n− 1
or dhx(G) = n − 2 for every vertex x. This is a contradiction to the hypothesis.
Now, suppose that diamD(G) = 3. If G is a tree, then G is a double star. If G is
not a tree, then it is clear that 3 ≤ cir(G) ≤ 4, where cir(G) denotes the length
of a longest cycle in G. We prove that cir(G) = 3. Suppose that cir(G) = 4.
Let C4 : v1, v2, v3, v4, v1 be a 4-cycle in G. Since n ≥ 5 and G is connected,
there is a vertex x not on C4 such that x is adjacent to some vertex say, v1 of
G. Then x, v1, v2, v4, v4 is a path of length 4 in G and so diamD(G) ≥ 4, which
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is a contradiction. Thus cir(G) = 3. Also, if G contains two or more cycles,
then it follows that diamD(G) ≥ 4. Hence G contains a unique triangle, say
C3 : v1, v2, v3, v1. Since n ≥ 5, at least one vertex of C3 has degree at least 3. If
there are two or more vertices of C3 having degree at least 3, then diamD(G) ≥ 4,
which is a contradiction. Thus exactly one vertex of C3 has degree at least 3 and
it follows that G = K1,n−1 + e. This completes the proof. �

3. Detour and Vertex Detour Hull Numbers and Addition of A

Pendant Edge

In this section we discuss how the detour hull number and the vertex detour
hull number of a connected graph are affected by adding a pendant edge to G. Let
G′ be a graph obtained from a connected graph G by adding a pendant edge uv,
where u is not a vertex of G and v is a vertex of G.

Theorem 3.1. If G′ is a graph obtained from a connected graph G by adding a
pendant edge uv at a vertex v of G, then dh(G) ≤ dh(G

′) ≤ dh(G) + 1.

Proof. Let S be a minimum detour hull set of G and let S′ = S ∪ {u}. We show
that S′ is a detour hull set of G′. Let x ∈ V (G′). If x = u, then x ∈ S′. So, assume
that x ∈ V (G). Then x ∈ IkD[S]G for some k ≥ 0. Since InD[S]G = InD[S]G′ for all
n ≥ 0, we have x ∈ IkD[S]G′ . Also, since S ⊆ S′, we see that InD[S]G′ ⊆ InD[S′]G′

for all n ≥ 0. Hence x ∈ IkD[S′]G′ . This implies that S′ is a detour hull set of G′

so that dh(G
′) ≤ |S′| = |S| + 1 = dh(G) + 1. For the lower bound, let S′ be a

minimum detour hull set of G′. Then by Theorem 1.1, u ∈ S′ and v /∈ S′. Let
S = (S′ − {u}) ∪ {v}. We prove that S is a detour hull set of G. For this, first we
claim that IkD[S′]G′ − {u} ⊆ IkD[S]G for all k ≥ 0. We use induction on k. Since
S′ − {u} ⊆ S, the result is true for k = 0. Let k = 1 and let x ∈ ID[S′]G′ − {u}.
Then x 6= u. If x ∈ S′, then x ∈ S ⊆ ID[S]G. If x /∈ S′, then there exist y, z ∈ S′

such that x ∈ ID[y, z]G′ with x 6= y, z. If y 6= u and z 6= u, then y, z ∈ S and so
ID[y, z]G = ID[y, z]G′. Thus x ∈ ID[S]G. Now, let y = u or z = u, say z = u.
Since v is a cut vertex of G′, it follows that x ∈ ID[y, v]G′ = ID[y, v]G and hence
x ∈ ID[S]G. Assume that the result is true for k = l. Then I lD[S′]G′−{u} ⊆ I lD[S]G.

Now, let x ∈ I l+1
D [S′]G′ − {u}. If x ∈ I lD[S′]G′ , then by induction hypothesis, we

have x ∈ I lD[S]G ⊆ I l+1
D [S]G. If x /∈ I lD[S′]G′ , then there exist y, z ∈ I lD[S′]G′

such that x ∈ ID[y, z]G′ with x 6= y, z. If y 6= u and z 6= u, then it follows
from induction hypothesis that y, z ∈ I lD[S]G. Also, since ID[y, z]G′ = ID[y, z]G,

we have x ∈ I l+1
D [S]G. Let y = u or z = u, say z = u. Then y 6= u and so

by induction hypothesis, y ∈ I lD[S]G. Since v is a cut vertex of G′, it follows that

x ∈ ID[y, v]G′ = ID[y, v]G. Also, since v ∈ S ⊆ I lD[S]G, it follows that x ∈ I l+1
D [S]G.

Hence the proof of the claim is complete by induction. Now, since S′ is a minimum
detour hull set of G′, there is an integer r ≥ 0 such that IrD[S′]G′ = V (G′) and it
follows from the above claim that IrD[S]G = V (G). Thus S is a detour hull set of
G so that dh(G) ≤ |S| = |S′| = dh(G

′). This completes the proof. �
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Remark 3.2. The bounds for dh(G
′) in Theorem 3.1 are sharp. Let G′ be the

graph obtained from the graph G in Figure 3, by adding a pendant edge at one of
its end vertices. Then dh(G

′) = dh(G) = 2. If G′ is obtained from G by adding a
pendant edge at one of its cut vertices, then dh(G

′) = dh(G) + 1.

Figure 3. Graph G with dh(G
′) = dh(G) + 1

Theorem 3.3. Let G′ be a graph obtained from a connected graph G by adding a
pendant edge uv at a vertex v of G. Then dh(G) = dh(G

′) if and only if v is a
vertex of some minimum detour hull set of G.

Proof. First, assume that there is a minimum detour hull set S of G such that v ∈ S.
Let S′ = (S − {v}) ∪ {u}. Then |S′| = |S|. We show that S′ is a detour hull set of

G′. First, we claim that IkD[S]G ⊆ Ik+1
D [S′]G′ for all k ≥ 0. We prove this by using

induction on k. Let k = 0. Let x ∈ S. If x 6= v, then x ∈ S′ ⊆ ID[S′]G′ . If x = v,
then x ∈ ID[y, u]G′ ⊆ ID[S′]G′ , where y ∈ S such that y 6= v. Thus S ⊆ ID[S′]G′ .

Assume the result for k = l. Then I lD[S]G ⊆ I l+1
D [S′]G′ . Let x ∈ I l+1

D [S]G.

If x ∈ I lD[S]G, then by induction hypothesis, x ∈ I l+1
D [S′]G′ ⊆ I l+2

D [S′]G′ . If
x /∈ I lD[S]G, then there exist y, z ∈ I lD[S]G such that x ∈ ID[y, z]G = ID[y, z]G′ .

By induction hypothesis, we have y, z ∈ I l+1
D [S′]G′ and so x ∈ I l+2

D [S′]G′ .Hence by

induction IkD[S]G ⊆ Ik+1
D [S′]G′ for all k ≥ 0. Now, since S is a detour hull set of

G, there exists an integer r ≥ 0 such that IrD[S]G = V (G) and it follows from the

above claim that Ir+1
D [S′]G′ = V (G′). Thus S′ is a detour hull set of G so that

dh(G
′) ≤ |S′| = |S| = dh(G). The other inequality follows from Theorem 3.1.

Conversely, let dh(G) = dh(G
′). Let S′ be a minimum detour hull set of G′.

Then by Theorem 1.3, u ∈ S′ and v /∈ S′. Let S = (S′ − {u}) ∪ {v}. Then, as
in the proof of Theorem 3.1, we can prove that S is a detour hull set of G. Since
|S| = |S′| = dh(G

′) = dh(G), we see that S is a minimum detour hull set of G and
v ∈ S. This completes the proof. �

Theorem 3.4. Let G be a connected graph and let x be any vertex in G. If G′ is
a graph obtained from G by adding a pendant edge xu, then dhx(G

′) = dhx(G)+ 1.

Proof. Let S be a minimum x-detour hull set of G and let S′ = S ∪ {u}. Then,
as in Theorem 3.1, it is straight forward to verify that InD[S]xG ⊆ InD[S′]xG′ for all
n ≥ 0. Since S is an x-detour hull set of G, there is an integer r ≥ 0 such that
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IrD[S]xG = V (G) − {x} and it is clear that IrD[S′]xG′ = V (G′)− {x}. Hence S′ is an
x-detour hull set of G′ so that dhx(G

′) ≤ |S′| = dhx(G) + 1. Now, suppose that
dhx(G

′) < dhx(G) + 1. Let S′ be a minimum x-detour hull set of G′. Then, by
Theorem 1.3, u ∈ S′. Let S = S′ − {u}. Then, as in Theorem 3.1, it is straight
forward to prove that InD[S′]xG′−{u} ⊆ InD[S]xG for all n ≥ 0. Since S′ is an x-detour
hull set of G′, there is an integer r ≥ 0 such that IrD[S′]xG′ = V (G′) − {x}. Hence
IrD[S]xG = V (G)−{x}. Thus S is an x-detour hull set of G so that dhx(G) ≤ |S| =
dhx(G

′) − 1, which is a contradiction to dhx(G
′) < dhx(G) + 1. Hence the result

follows. �

Theorem 3.5. Let G′ be a graph obtained from a connected graph G by adding a
pendant edge uv at a vertex v of G. Then dhu(G

′) = dhv(G).

Proof. Let S be a minimum v-detour hull set of G. Then v /∈ S. As in Theorem 3.1,
it is straight forward to prove that InD[S]vG ⊆ InD[S]uG′ for all n ≥ 0. Since S is a v-
detour hull set of G, there is an integer r ≥ 0 such that IrD[S]vG = V (G)−{v}. Now,
since v ∈ ID[z]uG for any z ∈ S, it follows that IrD[S]uG = V (G′)−{u}. Hence S is a u-
detour hull set of G′ so that dhu(G

′) ≤ |S| = dhv(G). For the other inequality, let T
be a minimum u-detour hull set of G′. Then u /∈ T and by Theorem 1.3(iii), v /∈ T .
As in Theorem 3.1, it is straight forward to prove that InD[T ]uG′ − {v} ⊆ InD[T ]vG
for all n ≥ 0. Since T is a u-detour hull set of G′, there is an integer r ≥ 0 such
that IrD[T ]uG′ = V (G′) − {u}. Hence it follows that IrD[T ]vG = V (G) − {v} and T
is a v-detour hull set of G. Thus dhv(G) ≤ |T | = dhu(G

′). This completes the
proof. �

Theorem 3.6. Let G be a connected graph and x any vertex of G. Let G′ be a
graph obtained from G by adding a pendant edge uv at a vertex v 6= x of G. Then
dhx(G) ≤ dhx(G

′) ≤ dhx(G) + 1.

Proof. The proof is similar to Theorem 3.1. �

Theorem 3.7. Let G be a connected graph and x any vertex of G. Let G′ be a
graph obtained from G by adding a pendant edge uv at a vertex v 6= x of G. Then
dhx(G) = dhx(G

′) if and only if v belongs to some minimum x-detour hull set of
G.

Proof. The proof is similar to Theorem 3.3. �
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