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Abstract. For vertices z and y in a connected graph G, the detour distance D(z,y)
is the length of a longest © — y path in G. An z — y path of length D(z,y) is an
x — y detour. The closed detour interval Ip[z,y] consists of z,y, and all vertices
lying on some x — y detour of G; while for S C V(G), Ip[S] = Uw,yES Iplz,y].
A set S of vertices is a detour convex set if Ip[S] = S. The detour convex hull
[S]p is the smallest detour convex set containing S. The detour hull number dh(G)
is the minimum cardinality among subsets S of V(G) with [S]p = V(G). Let x
be any vertex in a connected graph G. For a vertex y in G, denote by Ig[y]*,
the set of all vertices distinct from z that lie on some x — y detour of G; while
for S C V(G), Ip[S]® = U,ecs ID[Y]*. For = ¢ S, S is an a-detour set of G if
Ip[S]* = V(G) — {z} and an z-detour set of minimum cardinality is the z-detour
number d;(G) of G. For x ¢ S, S is an x-detour convex set if Ip[S]* = S. The
x-detour convex hull of S, [S]}, is the smallest z-detour convex set containing S.
The z-detour hull number dhg(G) is the minimum cardinality among the subsets
S of V(G) — {z} with [S]}, = V(G) — {z}. In this paper, we investigate how the
detour hull number and the vertex detour hull number of a connected graph are
affected by adding a pendant edge.
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Abstrak. Misalkan = dan y berada di graf terhubung G, jarak detour D(z,y)
adalah panjang dari lintasan x — y yang terpanjang di GG. Lintasan z — y dengan
panjang D(zx,y) adalah suatu detour x—y. Interval detour tertutup Ip [z, y] memuat
z,y dan semua titik yang berada dalam suatu detour z —y dari GG; sedangkan untuk
S C V@), Inls] = U, _,
konveks detour jika I'p[S] = S. Konveks hull detour [S]p adalah himpunan konveks

Ip[z,y]. Himpunan titik S adalah suatu himpunan

detour terkecil yang memuat S. Bilangan hull detour dh(G) adalah kardinalitas
minimum diantara sub-subhimpunan S dari V(G) dengan [S]p = V(G). Misalkan
z adalah suatu titik di graf terhubung G. Untuk suatu titik y di G, dinotasikan
dengan I¢[y]*, himpunan dari semua titik berbeda dari = yang terletak pada suatu
detour = — y dari G; sedangkan untuk S C V(G), Ip[S]® = U,cs Ip[y]®. Untuk
z ¢ S, S adalah suatu himpuan detour-z dari G jika Ip[S]® = V(G) —{z} dan suatu
himpuan detour-z dengan kardinalitas minimum adalah bilangan detour-z d(G)
dari G. Untuk z ¢ S, S adalh suatu himpunan detour-z konveks jika Ip[S]* =
S. Konveks hull detour-z dari S, [S]%, adalah himpunan konveks detour-z yang
memuat S. Bilangan hull detour-z dhs(G) adalah kardinalitas minimum diantara
sub-subhimpunan S dari V(G) — {z} dengan [S]}, = V(G) — {z}. Pada paper
ini, kami memeriksa pengaruh penambahan sisi anting dari suatu graf terhubung

terhadap bilangan hull detour dan bilangan hull detour titik.

Kata kunci: Detour, bilangan detour, bilangan hull detour, bilangan detour-z, bi-
langan hull detour-x.

1. INTRODUCTION

By a graph G = (V, E), we mean a finite undirected graph without loops or
multiple edges. The order and size of GG are denoted by n and m respectively. For
basic definitions and terminologies, we refer to [1, 6]. For vertices x and y in a
nontrivial connected graph G, the detour distance D(x,y) is the length of a longest
x —y path in G. An x — y path of length D(z,y) is an = — y detour. It is known
that the detour distance is a metric on the vertex set V(G). The detour eccentricity
of a vertex u is ep(u) =max{D(u,v) : v € V(G)}. The detour radius, radp(G) of
G is the minimum detour eccentricity among the vertices of G, while the detour
diameter, diamp(G) of G is the maximum detour eccentricity among the vertices
of G. The detour distance and the detour center of a graph were studied in [2].
The closed detour interval Ip|x,y] consists of x,y, and all vertices lying on some
z —y detour of G; while for S C V(G), Ip[S] =U,  _, Iplz,y]; Sis a detour set if
Ip[S] = V(G) and a detour set of minimum cardinality is the detour number dn(G)
of G. Any detour set of cardinality dn(G) is the minimum detour set or dn-set of
G. A vertex z in G is a detour extreme vertex if it is an initial or terminal vertex of
any detour containing x. The detour number of a graph was introduced in [3] and
further studied in [4, 8]. These concepts have interesting applications in Channel
Assignment Problem in radio technologies [5, 7].
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A set S of vertices of a graph G is a detour convex set if Ip[S] = S. The
detour convex hull [S]p of S is the smallest detour convex set containing S. The
detour convex hull of S can also be formed from the sequence {I5[S], k > 0}, where
I%[S] = S, I5[S] = Ip[S] and I}, = Ip[I%7[S]]. From some term on, this sequence
must be constant. Let p be the smallest number such that I2[S] = I%[S]. Then
IL[S] is the detour convex hull [S]p and we call p as the detour iteration number
din(S) of S. A set S of vertices of G is a detour hull set if [S]p = V(G) and
a detour hull set of minimum cardinality is the detour hull number dh(G). The
detour hull number of a graph was introduced and studied in [11].

For the graph G given in Figure 1, and S = {v1,v6}, Ip[S] =V — {vr} and
I3[S] = V. Thus S is a minimum detour hull set of G and so dj,(G) = 2. Since S
is not a detour set and S U {v7} is a detour set of G, it follows from Theorem 1.2
that dn(G) = 3. Hence the detour number and detour hull number of a graph are
different. Note that the sets S1 = {v1,v2} and So = {va, v3,v4, v5,v7} are detour
convex sets in G. Let a be any vertex of G. For a vertex y in G, Ig[y]” denotes
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FIGURE 1. Graph G with d(G) =2 and dn(G) =3

the set of all vertices distinct from x that lie on some x — y detour of G; while for
S CV(G), Ip[S]* = U,es Inlyl*. It is clear that Ip[z]* = ¢. For x ¢ S, S is an
a-detour set if Ip[S]* = V(G) — {z} and an z-detour set of minimum cardinality
is the xz-detour number d,(G) of G. Any z-detour set of cardinality d,(G) is the
minimum x-detour set or d.-set of G. The vertex detour number of a graph was
introduced and studied in [9].

Let G be a connected graph and = a vertex in GG. Let S be a set of vertices
in G such that ¢ S. Then S is an a-detour conver set if Ip[S]* = S. The
x-detour conver hull of S, [S]} is the smallest z-detour convex set containing S.
The x-detour convex set can also formed from the sequence {I%[S]*, k > 0}, where
I9[S]* = S,15[S]® = Ip[S]* and I5[S]* = Ip[I% '[S]®]*. From some term on,
this sequence must be constant. Let p, be the smallest number such that 175 [S]* =
1% F1S)*. Then I%[S]* is the z-detour convex hull [S]% of S and we call p, as
the a-detour iteration number din,(S) of S. The set S is an z-detour hull set if
[S15, = V(G) — {z} and an z-detour hull set of minimum cardinality is the z-
detour hull number dh,(G) of G. Any z-detour hull set of cardinality dh,(G) is the
manimum x-detour hull set or d,-hull set of GG.

For the graph G in Figure 2, the minimum vertex detour hull numbers and
vertex detour numbers are given in Table 1. Table 1 shows that, for a vertex x, the
z-detour number and the z-detour hull number of a graph are different.
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Table 1. z-detour numbers and z-detour hull numbers of G in Figure 2

Vertex Minimom vertex | Minimum vertex detour Vertex Vertex
detour sets hull sets detour detour hull
number number
x {ywh{z.wl.{u,w} {w} 2 1
y () {w} 1 1
z {w} {w} 1 1
U {w} {w] 1 1
v {ywhizwl.{aw} | {xowh{yw){zwh{u,w] 2 2
w {¥}{z}.{u} {xhi{y}{z}.{u} 1 1

It is clear that every minimum z-detour hull set of a connected graph G of order n
contains at least one vertex and at most n — 1 vertices. Also, since every z-detour
set is a x-detour hull set, we have the following proposition. Throughout this paper
G denotes a connected graph with at least two vertices. The following theorems
will be used in the sequel.

Theorem 1.1. [11] Let G be a connected graph. Then
(i) Each detour extreme vertex of G belongs to every detour hull set of G.
(i) No cut vertex of G belongs to any minimum detour hull set of G.

Theorem 1.2. [9] Each end vertex of G other than x (whether x is an end vertex
or not) belongs to every minimum x-detour set of G.

Theorem 1.3. [10] Let x be a vertex of a connected graph G. Let S be any x-detour
hull set of G. Then

(i) Each x-detour extreme vertex of G belongs to S.

(i) If v is a cut vertex of G and C' a component of G —v such that x ¢ V(C), then
SNV (C) #0.

(iii) No cut-vertex of G belongs to any minimum x-detour hull set of G.
Theorem 1.4. [10] For any vertex x in a connected graph G of order n, dh,(G) <
n—ep(x).

2. GRAPHS OF ORDER n WITH VERTEX DETOUR HULL NUMBER n — 1, n — 2

AND n — 3

Theorem 2.1. Let G be a connected graph of order n > 2. Then dh,(G) =n —1
for every vertex x in G if and only if G = K.
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Proof. Suppose that G = K5. Then dh,(G) = 1 = n — 1. The converse follows
from Theorem 1.4. O

Theorem 2.2. Let G be a connected graph of order n > 3. Then dh,(G) =n — 2
for every vertex x in G if and only if G = Ks.

Proof. Suppose that G = K3. Then it is clear that dh,(G) =1 = n — 2 for every
vertex z in G. Conversely, suppose that dh,(G) = n — 2 for every vertex z in G.
Then by Theorem 1.4, ep(z) < 2 for every vertex z in G. It follows from Theorem
2.1 that ep(z) # 1 for every vertex x in G. Thus ep(x) = 2 for every vertex x
in G; or the vertex set can be partitioned into V4 and V5 such that ep(z) = 1 for
x € Vi and ep(z) = 2 for © € V,. Thus either radp(G) = diamp(G) = 2; or
we have radp(G) = 1 and diamp(G) = 2. This implies that either G = K3 or
G = Kip-1. I G = Kj,_1, then by Theorem 1.3, dh,(G) = n — 1 for the cut
vertex = and dh,(G) = n — 2 for any end vertex y in G, which is a contradiction to
the hypothesis. Hence G = K. O

Theorem 2.3. Let G be a connected graph of order n > 2. Then G = Ky 1 if
and only if the vertex set V(G) can be partitioned into two sets Vi and Va such that
dhy(G) =n—1 forx € Vi and dhy(G) =n —2 fory € Va.

Proof. Suppose that G = K1 ,,—1. Then dh,(G) = n — 1 for the cut vertex z in G
and dh,(G) = n—2 for any end vertex y in G. Conversely, suppose that the vertex
set V(G) can be partitioned into two sets V; and V, such that dh,(G) =n — 1 for
x € Vq; and we have dh, (G) = n—2 for y € V5. Then by Theorem 1.4, ep(z) = 1 for
each x € V; and ep(y) =1 or ep(y) = 2 for each y € V. It follows from Theorem
2.1 that ep(y) = 2 for some y € V5. Hence radp(G) = 1 and diamp(G) = 2. Thus
G =K, O

Theorem 2.4. Let G be a connected graph of order n > 5. Then G is a double
star or G = Ky n—1 + € if and only if the vertex set V(G) can be partitioned into
two sets Vi and Vo such that dhy(G) = n —2 for x € Vi and dhy(G) = n — 3 for
y e Vs

Proof. Suppose that G is a double star or G = Ky ,,-1 4+ e. Then it follows from
Theorem 1.3 that dh,(G) = n — 2 or dh,(G) = n — 3 according to whether = is a
cut vertex of G or not. Conversely, suppose that dh,(G) = n — 2 for € V4 and
dh,(G) =n — 3 for x € V5. Then by Theorem 1.4, ep(x) < 3 for every = and so
diamp(G) < 3. Tt follows from Theorem 2.1 that G # K5 and so diamp(G) > 2.
If diamp(G) = 2, then G is the star K; ,_; and by Theorem 2.3, dh,(G) =n —1
or dh,(G) = n — 2 for every vertex x. This is a contradiction to the hypothesis.
Now, suppose that diamp(G) = 3. If G is a tree, then G is a double star. If G is
not a tree, then it is clear that 3 < cir(G) < 4, where cir(G) denotes the length
of a longest cycle in G. We prove that cir(G) = 3. Suppose that cir(G) = 4.
Let Cy : v1,v2,v3,v4,v1 be a 4-cycle in G. Since n > 5 and G is connected,
there is a vertex x not on Cy such that x is adjacent to some vertex say, v; of
G. Then z,v1,v2,v4,v4 is a path of length 4 in G and so diamp(G) > 4, which
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is a contradiction. Thus cir(G) = 3. Also, if G contains two or more cycles,
then it follows that diamp(G) > 4. Hence G contains a unique triangle, say
Cs3 : v1,v9,v3,v1. Since n > 5, at least one vertex of C3 has degree at least 3. If
there are two or more vertices of Cs having degree at least 3, then diamp(G) > 4,
which is a contradiction. Thus exactly one vertex of C3 has degree at least 3 and
it follows that G = K 1 + e. This completes the proof. O

3. DETOUR AND VERTEX DETOUR HULL NUMBERS AND ADDITION OF A
PENDANT EDGE

In this section we discuss how the detour hull number and the vertex detour
hull number of a connected graph are affected by adding a pendant edge to GG. Let
G’ be a graph obtained from a connected graph G by adding a pendant edge v,
where u is not a vertex of G and v is a vertex of G.

Theorem 3.1. If G’ is a graph obtained from a connected graph G by adding a
pendant edge wv at a vertex v of G, then dy(G) < dp(G') < dp(G) + 1.

Proof. Let S be a minimum detour hull set of G and let S” = S U {u}. We show
that S’ is a detour hull set of G'. Let x € V(G’). If = u, then z € S’. So, assume
that € V(G). Then x € I§[S]¢ for some k > 0. Since I3[S]g = I}[S]¢ for all
n > 0, we have z € I%[S]c/. Also, since S C S, we see that I5[S]g: C I%[S|a
for all n > 0. Hence x € I¥[S"]¢:. This implies that S’ is a detour hull set of G
so that dy(G') < |S'| = |S| +1 = diy(G) + 1. For the lower bound, let S’ be a
minimum detour hull set of G’. Then by Theorem 1.1, v € S" and v ¢ S’. Let
S = (8" —{u})U{v}. We prove that S is a detour hull set of G. For this, first we
claim that I%[S"]q: — {u} C I¥[S]g for all K > 0. We use induction on k. Since
S’ —{u} C S, the result is true for k = 0. Let k =1 and let @ € Ip[S]¢ — {u}.
Then x # u. If © € S/, then x € S C Ip[S]g. If © ¢ 57, then there exist y,z € S’
such that @ € Iply, z]¢r with @ # y,z. If y # u and z # u, then y,z € S and so
Iply, z]l¢ = Iply,z]le:. Thus z € Ip[S]a. Now, let y = u or z = u, say z = u.
Since v is a cut vertex of G’, it follows that = € Ip[y,v]a: = Iply,v]e and hence
x € Ip[S]c. Assume that the result is true for k = I. Then I5[S]q:—{u} C I, [S]c-
Now, let = € IS — {u}. If z € I5[S]¢r, then by induction hypothesis, we
have x € I5[S]le C I S]g. If ¢ I5[S|g/, then there exist y,z € IH[9]a
such that @ € Iply,z]e with @ # y,z. If y # v and z # w, then it follows
from induction hypothesis that y,z € I} [S]g. Also, since Iply, z]er = Iply, 2]a,
we have z € IZDH[S]G. Let y = w or z = u, say 2 = u. Then y # v and so
by induction hypothesis, y € I5[S]e. Since v is a cut vertex of G’, it follows that
x € Iply,v]le = Iply,v]g. Also, sincev € S C I4[S]q, it follows that z € I *[S]q
Hence the proof of the claim is complete by induction. Now, since S’ is a minimum
detour hull set of G’, there is an integer r > 0 such that I},[S"]¢r = V(G') and it
follows from the above claim that I},[S]¢ = V(G). Thus S is a detour hull set of
G so that dp(G) < |S| = |5’| = dn(G’). This completes the proof. O
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Remark 3.2. The bounds for dj,(G’) in Theorem 3.1 are sharp. Let G’ be the
graph obtained from the graph G in Figure 3, by adding a pendant edge at one of
its end vertices. Then dp(G’) = di(G) = 2. If G’ is obtained from G by adding a
pendant edge at one of its cut vertices, then dy(G’) = dp(G) + 1.

FIGURE 3. Graph G with d,(G') = dn(G) + 1

Theorem 3.3. Let G’ be a graph obtained from a connected graph G by adding a
pendant edge wv at a verter v of G. Then dn(G) = dp(G') if and only if v is a
vertex of some minimum detour hull set of G.

Proof. First, assume that there is a minimum detour hull set S of G such that v € S.
Let 8" = (S — {v}) U {u}. Then |S’| = |S|. We show that S’ is a detour hull set of
G’. First, we claim that I}[S]q C I [S"]g/ for all k > 0. We prove this by using
induction on k. Let k =0. Let x € S. If x # v, then z € §" C Ip[Y]¢r. If z = v,
then « € Iply,uler C Ip[S’]ar, where y € S such that y # v. Thus S C Ip[S]a.
Assume the result for k = 1. Then I5[S]g C IS |ar. Let = € I5*S]a
If z € I4[S]g, then by induction hypothesis, = € T4 [S"|ar € I5%[S ). If
x ¢ I5[S]q, then there exist y,z € I4[S]g such that x € Iply,2]e¢ = Iply, 2]cr-
By induction hypothesis, we have y, z € I *[S"]g: and so x € I52[S"]g:.Hence by
induction I%[S]e C 15[ for all k > 0. Now, since S is a detour hull set of
G, there exists an integer r > 0 such that I}, [S]¢ = V(G) and it follows from the
above claim that I}, [S"]g: = V(G’). Thus S’ is a detour hull set of G so that
dn(G') < |S’| =|85| = din(G). The other inequality follows from Theorem 3.1.
Conversely, let dy(G) = dp(G’). Let S” be a minimum detour hull set of G’.
Then by Theorem 1.3, u € S’ and v ¢ S". Let S = (5" — {u}) U {v}. Then, as
in the proof of Theorem 3.1, we can prove that S is a detour hull set of G. Since
|S| = 1S7] = dn(G') = din(G), we see that S is a minimum detour hull set of G and
v € S. This completes the proof. O

Theorem 3.4. Let G be a connected graph and let x be any vertex in G. If G' is
a graph obtained from G by adding a pendant edge xu, then dh,(G') = dh,(G)+ 1.

Proof. Let S be a minimum a-detour hull set of G and let S" = S U {u}. Then,
as in Theorem 3.1, it is straight forward to verify that I}[S]& C IR[S']E, for all
n > 0. Since S is an z-detour hull set of G, there is an integer » > 0 such that
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IL[S1E = V(G) — {z} and it is clear that I},[S']&, = V(G') — {z}. Hence S’ is an
a-detour hull set of G’ so that dh,(G") < |S’| = dhy(G) + 1. Now, suppose that
dhy(G') < dhy(G) + 1. Let S’ be a minimum z-detour hull set of G’. Then, by
Theorem 1.3, u € S’. Let S = S" — {u}. Then, as in Theorem 3.1, it is straight
forward to prove that I} [S"]&, —{u} C I}[S]Z for alln > 0. Since S’ is an z-detour
hull set of G’, there is an integer r > 0 such that I},[S']%, = V(G') — {z}. Hence
IL[S1E = V(G) — {«}. Thus S is an z-detour hull set of G so that dh,(G) < |S| =
dhy(G') — 1, which is a contradiction to dh,(G") < dhy(G) + 1. Hence the result
follows. g

Theorem 3.5. Let G’ be a graph obtained from a connected graph G by adding a
pendant edge uv at a vertex v of G. Then dh,(G') = dh,(G).

Proof. Let S be a minimum v-detour hull set of G. Then v ¢ S. As in Theorem 3.1,
it is straight forward to prove that I3[S]% C IB[S]% for all n > 0. Since S is a v-
detour hull set of G, there is an integer > 0 such that I},[S]% = V(G)—{v}. Now,
since v € Ip[z]¢ for any z € S, it follows that I, [S]¢ = V(G')—{u}. Hence S is a u-
detour hull set of G’ so that dh, (G’) < |S| = dh,(G). For the other inequality, let T
be a minimum u-detour hull set of G’. Then w ¢ T and by Theorem 1.3(iii), v ¢ T.
As in Theorem 3.1, it is straight forward to prove that I} [T]% — {v} C I}[T]%
for all n > 0. Since T is a u-detour hull set of G’, there is an integer r > 0 such
that I} [T)4, = V(G') — {u}. Hence it follows that I [T]% = V(G) — {v} and T
is a v-detour hull set of G. Thus dh,(G) < |T| = dh,(G’). This completes the
proof. O

Theorem 3.6. Let G be a connected graph and x any vertex of G. Let G' be a
graph obtained from G by adding a pendant edge uv at a verter v # x of G. Then
dhy(G) < dh,(G") < dh,(G) + 1.

Proof. The proof is similar to Theorem 3.1. (|

Theorem 3.7. Let G be a connected graph and x any vertex of G. Let G' be a
graph obtained from G by adding a pendant edge uv at a verter v # x of G. Then
dh,(G) = dh,(G") if and only if v belongs to some minimum x-detour hull set of
G.

Proof. The proof is similar to Theorem 3.3. (|
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