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Abstract. A canoe paddle is a cycle attached to an end-vertex of a path. It was

shown by Truszczyński that all canoe paddles are graceful and therefore decompose

complete graphs. A kayak paddle is a pair of cycles joined by a path. We prove

that the complete graph K2n+1 is decomposable into kayak paddles with n edges

whenever at least one of its cycles is even.
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Abstrak. Sebuah dayung kano adalah lingkaran yang dikaitkan ke sebuah titik

ujung dari lintasan. Truszczyński telah menunjukkan bahwa semua dayung kano

adalah graceful dan oleh karenanya mendekomposisi graf lengkap. Sebuah dayung

kayak adalah sepasang lingkaran yang dikaitkan dengan lintasan. Kami membuk-

tikan bahwa graf lengkap K2n+1 dapat didekomposisi menjadi dayung-dayung kayak

dengan n sisi jika sekurang-kurangnya satu lingkarannya adalah lingkaran genap.

Kata kunci: Dekomposisi graf, pelabelan graceful, pelabelan rosy.

1. Introduction

Let G be a graph with at most n vertices. We say that the complete graph
Kn has a G-decomposition (or that it is G-decomposable) if there are subgraphs
G0, G1, G2, . . . , Gs of Kn, all isomorphic to G, such that each edge of Kn belongs
to exactly one Gi.

In 1967 Rosa [4] introduced some important types of vertex labelings serving
as tools for finding decompositions of complete graphs. Graceful labeling (called
β-valuation by AR) and rosy labeling (called ρ-valuation by Rosa) are useful tools
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for decompositions of complete graphs K2n+1 into graphs with n edges. A labeling
of a graph G with n edges is an injection ρ from V (G), the vertex set of G, into
a subset S of the set {0, 1, 2, . . . , 2n} of elements of the additive group Z2n+1.
The length of an edge e = xy with endvertices x and y is defined as `(xy) =
min{ρ(x) − ρ(y), ρ(y) − ρ(x)}. Notice that the subtraction is performed in Z2n+1

and hence 1 ≤ `(e) ≤ n. If the set of all lengths of the n edges is equal to
{1, 2, . . . , n}, then ρ is a rosy labeling; if S ⊆ {0, 1, . . . , n}, then ρ is a graceful
labeling. A graceful labeling α is said to be an α-labeling if there exists a number
α0 with the property that for every edge e in G with endvertices x and y and with
α(x) < α(y) it holds that α(x) ≤ α0 < α(y). Obviously, G must be bipartite to
allow an α-labeling. For an exhaustive survey of graph labelings, see [3] by Gallian.

Rosa observed that if a graph G with n edges has a graceful or rosy labeling,
then K2n+1 can be cyclically decomposed into 2n+ 1 copies of G. It is so because
K2n+1 has exactly 2n+1 edges of length i for every i = 1, 2, . . . , n and each copy of
G contains exactly one edge of each length. The cyclic decomposition is constructed
by taking a labeled copy ofG, sayG0, and then adding a non-zero element i ∈ Z2n+1

to the label of each vertex of G0 to obtain a copy Gi for i = 1, 2, . . . , 2n.

A canoe paddle (also called a kite or dragon) is a cycle attached to an end-
vertex of a path. It was shown by Truszczyński [6] that all canoe paddles are
graceful. A kayak paddle (or a double kite or double dragon) is a pair of cycles
joined by a path. In particular, KP(r, s, l) stands for cycles of lengths r and s
joined by a path of length l.

In this paper we introduce an auxiliary tool, called gap graceful labeling, and
use it to find rosy labelings of kayak paddles with at least one even cycle. We will
prove that every kayak paddle KP(r, s, l) with n = r + s + l edges and r even has
a rosy labeling and hence K2n+1 is KP(r, s, l)-decomposable.

2. Basic notions and auxiliary results

To deal with graph decomposition problems for graphs that are not graceful,
Rosa [4] introduced a modification of graceful labelings, called ρ̂-labeling (Frucht [1]
used the term nearly graceful labeling). In a nearly graceful labeling the vertices are
labeled by elements of the set {0, 1, 2, . . . , n, n+1} while the edge lengths are either
{1, 2, . . . , n} or {1, 2, . . . , n − 1, n + 1}. To avoid confusion, we note that the edge

length was in these papers defined as ˆ̀(xy) = ρ̂(y)−ρ̂(x) for 0 ≤ ρ̂(x) < ρ̂(y) ≤ n+1.

We observe that for an edge with ˆ̀(xy) = n+ 1 the vertices would be labeled 0 and
n+ 1, respectively. Using our definition of the edge length, we would conclude that
`(xy) = min{ρ(y) − ρ(x), ρ(x) − ρ(y)} = n, since the subtraction is carried out in
Z2n+1. We will use this observation later in our constructions.

Seoud and Elsakhawi [5] have shown that all cycles are nearly graceful, and
Barrientos [2] proved that Cn is nearly graceful with edge lengths {1, 2, . . . , n −
1, n+ 1} if and only if n ≡ 1 or 2 (mod 4).
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We generalize this notion further by defining a gap graceful labeling, which we
denote β̈. Here the vertices are again labeled by elements of the set {0, 1, 2, . . . , n,
n+1} while the set of the edge lengths is an n-element subset of {1, 2, . . . , n, n+1}.
If we want to point out the missing length p, we will call the labeling p-gap graceful
labeling and denote it by β̈p. We will call this labeling a p-gap α-labeling and denote
by α̈ if it moreover has the alpha-like property that there exists a number α0 such
that for every edge e = xy in G with α̈(x) < α̈(y) it holds that α̈(x) ≤ α0 < α̈(y).
Again, a p-gap α-labeling will be denoted by α̈p. One can notice that in our
terminology, the nearly graceful labeling is an n-gap graceful labeling.

Now we prove some lemmas that will be useful in our constructions. We will
often describe labelings as follows. An edge e = xy along with the endvertices
x, y whose labels are i and j, respectively, and i > j, will be denoted as . . . (i)[i−
j](j) . . . .

Lemma 2.1. The cycle C4k+2 has a p-gap α-labeling α̈p for p = 2 and p = 4k + 2
for any k ≥ 1.

Proof. For p = 2 the labeling is

(0)[4k + 3](4k + 3)[4k + 2](1)[4k + 1](4k + 2)[4k](2) . . .

. . .(k)[2k + 3](3k + 3)[2k + 2](k + 1)[2k](3k + 1)[2k − 1](k + 2) . . .

. . .(2k − 1)[4](2k + 3)[3](2k)[1](2k + 1)[2k + 1](0).

For p = 4k + 2 the labeling is

(0)[4k + 3](4k + 3)[4k + 1](2)[4k](4k + 2)[4k − 1](3) . . .

. . .(k)[2k + 4](3k + 4)[2k + 3](k + 1)[2k + 1](3k + 2)[2k](k + 2) . . .

. . .(2k)[3](2k + 3)[2](2k + 1)[1](2k + 2)[2k + 2](0).

Lemma 2.2. The cycle C4k+1 has a 1-gap α-labeling β̈1 for any k ≥ 1.

Proof. For p = 2 the labeling is

(0)[4k + 2](4k + 2)[4k + 1](1)[4k](4k + 1)[4k − 1](2) . . .

. . .(k)[2k + 2](3k + 2)[2k + 1](k + 1)[2k − 1](3k)[2k − 2](k + 2) . . .

. . .(2k − 1)[3](2k + 2)[2](2k)[2k](0).

3. Case KP(4k, s, l)

This well known construction was proved by many authors. One of the first
ones was Truszczyński [6].

Lemma 3.1. Let G be a graceful graph with t edges, β(x0) = 0, β(x1) = t and H
a graph with an α-labeling with α(y0) = α0, α(y1) = α0 + 1. For i ∈ {0, 1} denote
by Fi = (G � H)i the graph with V (Fi) = V (G) ∪ V (H) where the vertex xi is
identified with yi. Then each of F0 and F1 has a graceful labeling.
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The following then holds.

Observation 3.2. The graphs KP(4k, 4m, l) and KP(4k, 4m−1, l) are graceful for
any k ≥ 1,m ≥ 1, l ≥ 1.

Proof. Because all cycles C4m and C4m−1 are graceful and all paths Pl+1 have
α-labelings, by applying Lemma 3.1 we observe that both C4m�Pl+1 and C4m−1�
Pl+1 are graceful. Because C4k has an α-labeling, both KP(4k, 4m, l) = (C4m �
Pl+1)� C4k and KP(4k, 4m− 1, l) = (C4m−1 � Pl+1)� C4k are graceful.

The following Lemma is a straightforward generalization of Lemma 3.1 and
therefore the proof can be left to the reader.

Lemma 3.3. Let G be a p-gap graceful graph with t edges, β̈p(x0) = 0, β̈p(x1) = t+1
and H a graph with an α-labeling with α(y0) = α0, α(y1) = α0 + 1. For i ∈ {0, 1}
denote by Fi = (G�H)i the graph with V (Fi) = V (G)∪ V (H) where the vertex xi
is identified with yi. Then each of F0 and F1 has a p-gap graceful labeling.

Notice that if we have G = Ct and H = Pl, we can always choose the α-
labeling of Pl so that one of the vertices of degree one receives label l − 1 while
the other one receives label α0 (when l is even) or α0 + 1 (when l is odd). Hence,
we use (Ct � Pl)0 when l is even and (Ct � Pl)1 when l is odd. In both cases the
resulting graph will have the vertex of degree one labeled t+ l.

Theorem 3.4. The kayak paddles KP(4k, 4m + 1, l) and KP(4k, 4m + 2, l) have
rosy labeling for any k ≥ 1,m ≥ 1, l ≥ 1.

Proof. By Lemma 2.2, C4m+1 has a 1-gap graceful labeling β̈1 for any m ≥ 1.
For l = 1, we use the missing edge length and attach the single edge of P2 to vertex
4m+ 2 of C4m+1. The other end-vertex is then 4m+ 3 = 4m+ l + 2.

For l > 1 we use Lemma 3.3 and find a 1-gap graceful labeling of C4m+1�Pl

with the vertex of degree one labeled 4m+ l + 1. As in the previous case, we join
the vertices 4m+ l + 1 and 4m+ l + 2 by the edge with unused length 1. In both
cases, we have so far used edge lengths 1, 2, . . . , 4m+ l+ 1 and the vertex of degree
one is labeled 4m+ l + 2.

Now because C4k has an α-labeling, we can use it and increase the vertex
labels in the “lower” partite set by 4m+ l+ 2 and the labels in the “upper” partite
set by (4m+ l+2) +(4m+ l+1) = 8m+2l+3 to obtain labels 4m+ l+2, 4m+ l+
3, . . . , 4m+2k+ l+1 and 8m+2k+2l+3, 8m+2k+2l+4, . . . , 8m+4k+2l+3. The
edge lengths in C4k are 4m+l+2, 4m+l+3, . . . , 4m+4k+l+1. Hence, we have used
precisely the lengths 1, 2, . . . , n, where n = 4m+4k+ l+1 is the number of edges in
KP(4k, 4m+1, l). Because k > 0, we have 8m+4k+2l+3 < 8m+8k+2l+2 = 2n
and the labeling is rosy.

For C4k+2 the construction is essentially the same. The cycle has a 2-gap
α-labeling α̈2. Therefore, the only difference is that the edge we add to C4m+2�Pl

(or to C4m+2 if l = 1) is of length two and joins vertices 4m+ l+ 2 and 4m+ l+ 4.
The cycle C4k then receives labels 4m+ l + 4, 4m+ l + 5, . . . , 4m+ 2k + l + 3 and
8m + 2k + 2l + 6, 8m + 2k + 2l + 7, . . . , 8m + 4k + 2l + 7 and the edge lengths
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are 4m + l + 3, 4m + l + 4, . . . , 4m + 4k + l + 2. All lengths 1, 2, . . . , n, where
n = 4m + 4k + l + 2 are used and the highest label satisfies 8m + 4k + 2l + 5 <
8m+ 8k + 2l + 4 = 2n, since k > 0. This completes the proof.

4. Case KP(4k + 2, s, l)

Theorem 4.1. The kayak paddle KP(4k+ 2, 4m+ 1, l) has a rosy labeling for any
k ≥ 1,m ≥ 1, l ≥ 1.

Proof. This proof is similar to the proof of Theorem 3.4. First we construct
the labeling of C4m+1 � Pl+1 with the vertex of degree one labeled 4m + l + 2
and edge lengths 1, 2, . . . , 4m + l + 1. Then we use the (4k + 2)-gap α-labeling
of C4k+2 and increase the vertex labels in the lower and upper partite sets by
4m + l + 2 and (4m + l + 2) + (4m + l + 1) = 8m + 2l + 3, respectively. The
edge lengths become 4m+ l + 2, 4m+ l + 3, . . . , 4m+ 4k + l + 2, 4m+ 4k + l + 3.
Notice that while there was the (4k + 2)-gap between the longest edges of lengths
(4k + 1) and (4k + 3), it disappears when the cycle is stretched. The longest
edge is now between the edges 4m + l + 2 and 8m + 4k + 2l + 6 and is equal to
(4m+ l+ 2)− (8m+ 4k+ 2l+ 6) = −(4m+ 4k+ l+ 4) = 4m+ 4k+ l+ 3, because
the labels are elements of the group Z2n+1 and n = 4m+ 4k + l + 3.

It remains to check that the largest label satisfies 8m + 4k + 2l + 6 ≤ 8m +
8k + 2l + 6 = 2n, which is obvious. This concludes the proof.

Theorem 4.2. The kayak paddle KP(4k+ 2, 4m+ 2, l) has a rosy labeling for any
k ≥ 1,m ≥ 1, l ≥ 1.

Proof. Here we combine the ideas of the second part of the proof of Theorem 3.4
with the previous proof. First we construct the labeling of C4m+2 � Pl+1 with the
vertex of degree one labeled 4m+l+4 and edge lengths 1, 2, . . . , 4m+l+2. Then we
use the (4k+ 2)-gap α-labeling of C4k+2 and increase the vertex labels in the lower
and upper partite sets by 4m+ l+ 4 and (4m+ l+ 4) + (4m+ l+ 2) = 8m+ 2l+ 6,
respectively. The edge lengths become 4m + l + 3, 4m + l + 4, . . . , 4m + 4k +
l + 3, 4m + 4k + l + 4. The original (4k + 2)-gap between the longest edges of
C4k+2 disappears for the same reasons as in the previous proof. Hence we have
used all lengths 1, 2, . . . , 4m+ 4k + l + 4. We verify that the largest label satisfies
8m+ 4k + 2l + 9 ≤ 8m+ 8k + 2l + 8 = 2n, which is true because k > 0.

Theorem 4.3. The kayak paddle KP(4k+ 2, 4m+ 3, l) has a rosy labeling for any
k ≥ 1,m ≥ 0, l ≥ 1.

Proof. We know that each of C4m+3 and C4m+3 � Pl for l ≥ 2 has a graceful
labeling. Moreover, the labeling of C4m+3 � Pl can be chosen so that the single
vertex of degree one receives label 0.
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Because C4k+2 has a 2-gap α-labeling with α0 = 2k, we observe that by
increasing all labels in the upper partite set by 4m + l + 2 the edges will have
lengths 4m+ l + 3, 4m+ l + 5, 4m+ l + 6, . . . , 4m+ 4k + l + 5. We place the edge
of length 4m + l + 4 which was not used yet between vertices 0 and 4m + l + 4
to complete the graph C4m+3 � Pl+1. Finally, we increase each label in C4k+2 by
4m+ l+4 to obtain KP(4k+2, 4m+3, l). The highest used label is 8m+4k+2l+9.
Because 2n = 8m+ 8k+ 2l+ 10, we have a rosy labeling and the proof is complete.

We summarize the results as follows.

Corollary 4.4. The kayak paddle KP(r, s, l) has a rosy labeling for any r even,
r ≥ 4, s ≥ 3, l ≥ 1.

Our main result then follows immediately.

Theorem 4.5. Let r be even, r ≥ 4, s ≥ 3, l ≥ 1, and n = r + s + l. Then the
complete graph K2n+1 is decomposable into kayak paddles KP(r, s, l).

5. Concluding Remarks

We believe that similar although more sophisticated methods can be used to
solve the remaining case, that is, the decomposition into kayak paddles with both
cycles odd.

On the other hand, finding graceful labelings of kayak paddles seems to be
much more complicated (expect when r ≡ 0 (mod 4) and s ≡ 0, 3 (mod 4)—see
Observation 3.2). Hence, we conclude the paper by posing the following open
problem.

Problem 5.1. Characterize all graceful kayak paddles KP(r, s, l).
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