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Abstract. Box-Cox transformation is often used to reduce heterogeneity and to

achieve a symmetric distribution of response variable. In this paper, we estimate

the parameters of Box-Cox transformed ARCH(1) model using second-order least

square method and then we study the consistency and asymptotic normality for

second-order least square (SLS) estimators. The SLS estimation was introduced by

Wang (2003, 2004) to estimate the parameters of nonlinear regression models with

independent and identically distributed errors.
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Abstrak. Transformasi Box-Cox sering digunakan untuk mengurangi heterogeni-

tas dan mencapai distribusi simetris dari variabel respon. Pada paper ini dibahas

estimasi parameter dari model ARCH(1) di mana variabel responnya ditransformasi

Box-Cox dengan menggunakan metode estimasi second-order least square dan se-

lanjutnya diteliti konsistensi dan normalitas asimtotik dari estimator second-order

least square. Metode ini pertama kali diperkenalkan oleh Wang (2003, 2004) untuk

mengestimasi parameter model regresi nonlinier yang variabel errornya berdistribusi

identik dan independen.

Kata kunci: Transformasi Box-Cox, second-order least square, model ARCH

1. INTRODUCTION

Time series related to finance usually have three typical characteristics (Chan
(2002)):
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(1) the unconditional distribution of financial time series such as stock price
returns, has heavier tails than the normal distribution,

(2) the value of time series {Xt} is not correlated with each other, but {X2
t }

is strongly correlated with each other,
(3) the volatility clustering.

One of the models that can be used to model the above conditions is Autoregressive
Conditional Heteroscedastic (ARCH) model proposed by Engle (1982).

Two popular estimation methods for ARCH model are maximum likelihood
and least square methods. Weiss (1986) discussed properties of maximum likeli-
hood estimation and least square estimation of the parameters of both regression
and ARCH equation. Basawa (1976) studied consistency and asymptotic normality
for maximum likelihood estimators in the case where the observed random variables
may be dependent and not identically distributed. The least square estimation pro-
cedure for ARCH model is constructed in two stages. The first is to estimate the
regression equation of the mean and the second is to estimate the regression equa-
tion of variance. Therefore, using least square method for estimating the ARCH
model will not obtain estimator for the mean and the variance regression simultane-
ously. Wang and Leblanc (2008) estimated the parameters of nonlinear regression
models with independent and identically distributed errors. We will propose sec-
ond order least square (SLS) method to estimate parameters of ARCH model. The
method does not require assumptions on the specific distribution of the errors and
the estimators for mean and variance regression will be obtained simultaneously.

Box-Cox transformation can be used to reduce heterogeneity and achieve a
symmetrical distribution of the response variable. Draper and Cox (1969) and
Poiriers (1978) have shown that linearity, homoscedasticity, and normality cannot
be done simultaneously with a certain Box-Cox transformation. Sarkar (2000) de-
fined Box-Cox transformed ARCH model (BCARCH) and he considered maximum
likelihood method to estimate parameters of BCARCH. Testing and estimation of
BCARCH model are investigated and a Lagrange multiplier test is also developed
to test Engle’s linear ARCH model against this wider class of models. In this paper,
we propose second-order least square method to estimate parameters of BCARCH
model.

The paper is organized as follows. In section 2, we describe Box-Cox trans-
formed ARCH model. Estimation method is discussed in section 3. We developed
method for testing power Box-Cox transformation in section 4. Finally, in section 5,
Monte Carlo simulations of finite sample performance of the estimator is provided.

2. BOX-COX TRANSFORMED ARCH MODEL

The family of ARCH model, which was introduced by Engle (1982) have
proven useful in financial applications and have attracted great attention in eco-
nomics and statistical literature (Alberola (2006), Gao, Yu, and Chen (2009), Har-
dle and Hafner (2000), Lamoureux, et al.(1990)). Let (Xt, Yt) denote vector of
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predictor variables and response variable at the time t respectively. The ARCH(R)
models proposed in this paper is defined by

Yt|=t ∼ N(X′
tβ, ht), (1)

where =t is the information set containing information about the process up to and
including time t− 1 and

ht = α0 + α1ε
2
t−1 + · · ·+ αRε2

t−R. (2)

The error term, εt, has mean zero and variance ht which is split into a stochastic
piece ut and time-dependent variation ht characterizing the typical size of the term
so that εt = ut

√
ht. Coefficients α0 ≥ 0, αi > 0, so that conditional variance

is strictly positive, Xt is a k × 1 vector of fixed observation at the time t on
p independent variables which may include this lagged value of the dependent
variable, β′ = (β1, β2, ..., βp) is a vector of associated regression coefficients.

Sarkar (2000) stated that the Box-Cox transformed ARCH(1) model is gen-
eralization of the ARCH model and can be represented by

Y
(λ)
t = X′

tβ + εt, (3)

ht = α0 + α1ε
2
t−1, (4)

with
εt = ut

√
ht (5)

where 0 ≤ α0, 0 < α1 < 1, (ut) is a sequence of iid random variables with E(ut) = 0
and E(u2

t ) = 1. The Box-Cox transformed value of the (original) dependent variable
yt i.e.

y
(λ)
t =

{(
Y λ

t − 1
)
/λ , λ 6= 0

log Yt , λ = 0
(6)

The transformation in equation (6) is valid only for yt > 0 and, therefore, modifica-
tions have to be made for negative observation. Box and Cox proposed the shifted
power transformation with the form

y
(λ)
t =

{
(yt+c)λ−1

λ , λ 6= 0
log(yt + c), λ = 0

(7)

where λ is the power transformation and c is chosen such that yt + c > 0 for
t = 1, 2, ..., T. The λ is a parameter in this model, and the parameter indicates
degree of nonlinearity in the data. The model reduces to the linear model when
λ = 1. Hence, we develop test for the linear model by hypothesis H0 : λ = 1 vs
H1 : λ 6= 1.

The ARCH(1) model assume that E
[
log(α1ε

2
t )
]

< 0. The assumption is
known to be necessary for stationarity, see Nelson (1990) for coefficient of condi-
tional variance of εt on the GARCH (1,1) model is zero.

Conditional mean of εt is given by

E(εt|=t−1) = 0, (8)
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and conditional variance of εt is

ht = E(ε2
t |=t−1)

= α0 + α1ε
2
t−1.

where α′ = (α0, α1) is a vector of parameters in the ARCH or variance equation.
The complete parameter vector for the model is θ′ = (λ, β′, α′). The parameter
space as Θ ⊂ Rp+3 is compact set that has at least one interior point.

3. ESTIMATION

In this section, we briefly outline the estimation procedure for model (3) and
(4) with the second-order least square estimation method proposed by Wang and
Leblanc (2008), Abarin and Wang (2006). If θ̂SLS is second-order least square
estimator for θ, then it is determined by minimizing the squared distance of the
response variable to its first conditional moment and the square response variable
to its second conditional moment of response variable:

QT (θ) =
1
T

T∑
t=1

ρ′t(θ)Wtρt(θ) (9)

where ρt(θ) = (Y (λ)
t −E(Y λ

t |=t), (Y
(λ)
t )2−E((Y (λ)

t )2|=t))′ Wt = W(Xt) is weight
that is a 2x2 nonnegative definite matrix which may depend on Xi.

The SLSE for θ can be represented

θ̂SLS = arg min
θ

QT (θ), (10)

where θ ∈ Θ. In order to find θ which minimizes QT (θ) in equation (9), we
recommend using the algorithm proposed by Berndt et al (1974).

Lemma 3.1. Let εt be a ARCH(1) process,

εt =
√

htzt, zt ∼ IID(0, σ2), (11)

ht = α0 + α1ε
2
t−1, 0 ¡ α1 < 1. (12)

Then {ε2
t} is an ergodic process.

Proof. Sequence (zt) is iid, so (zt) is stationary and ergodic. Repeatedly substi-
tuting for ε2

t−1 in equation (12), we have, for t ≥ 1,

ht = α0

 ∞∑
j=0

αj
1

j∏
i=0

z2
t−i

 . (13)

Suppose

g(z0, z1, z2, ...) = α0

 ∞∑
j=0

αj
1

j∏
i=0

z2
t−i

 . (14)
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Let a sequence space S = {z = (zk) : zk ∈ R, k = 0, 1, 2, ...}. For z,y ∈ S and

j ≤ t, we define aj =
j∏

i=0

z2
t−i and bj =

j∏
i=0

y2
t−i and a function ρ : S × S → R such

that for any z,y ∈ S,

ρ(z,y) = max
j
{|aj − bj |}

= max
j

{∣∣∣∣∣
j∏

i=0

z2
t−i −

j∏
i=0

y2
t−i

∣∣∣∣∣
}

.

It is easy to show that ρ is a metric on S. For ρ(z,y) = ‖z − y‖ then ρ is a
norm. Given ε > 0, there exists a δ = 1−α1

α0
ε > 0 such that for all z,y ∈ S with

‖z− y‖ = max
j

{∣∣∣∣ j∏
i=0

z2
t−i −

j∏
i=0

y2
t−i

∣∣∣∣} < δ, then

|g(z)− g(y)| =

∣∣∣∣∣∣α0

∞∑
j=0

αj
1

j∏
i=0

z2
t−i − α0

∞∑
j=0

αj
1

j∏
i=0

y2
t−i

∣∣∣∣∣∣
≤ α0

∞∑
j=0

αj
1

∣∣∣∣∣
j∏

i=0

z2
t−i −

j∏
i=0

y2
t−i

∣∣∣∣∣
< α0

∞∑
j=0

αj
1

1− α1

α0
ε

= (1− α1)ε
∞∑

j=0

αj
1

= ε

Therefore, function g is continuous. By using ergodic theory, {ε2
t} is an ergodic

process. �

Theorem 3.2. (Meyn and Tweedie (1993)) Function fn : Rd → R,n ∈ N are
continuous and they have partial derivative due to each variable. If there exists
constant M such that ‖fn‖ 6 M for n ∈ N and x ∈ Rd then the family {fn, n ∈ N}
is equicontinuous.

Assumption 1 Parameter space Θ ⊂ Rp+R+2 is compact.
Assumption 2 (Wt)t∈ N

a.s−−→ W0.
Assumption 3 E(ε4

t ) < ∞.

Theorem 3.3. Under assumption 1-3, the estimator SLS θ̂SLS
a.s−−→ θ0 as T →∞.

Proof. By using ergodic theory, {QT (θ)} is a ergodic process and we have

QT (θ) a.s−−→ E (ρ′t(θ)W0ρt(θ)) = Q(θ).
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The expected value of ρ′t(θ)W0ρt(θ) can be described by

Q (θ) = E (ρ′t (θ))W0ρt (θ)

= E
{
[ρt (θ0) + (ρt (θ)− ρt (θ0))]

′W0 [ρt (θ0) + (ρt (θ)− ρt (θ0))]
}

= E {ρ′t (θ0)W0ρt (θ0) + 2E {ρ′t (θ0)W0 (ρt (θ)− ρt (θ0))}}
+ E

{
(ρt (θ)− ρt (θ))′W0 (ρt (θ)− ρt (θ0))

}
.

Since ρ′t (θ0)W0 (ρt (θ)− ρt (θ0)) does not depend on Yt, it is a function of =t−1,
and E

{
(ρt (θ)− ρt (θ))′W0 (ρt (θ)− ρt (θ0))

}
> 0 we have

Q(θ) = Q(θ0) + E
(
(ρt(θ)− ρt(θ0))

′W0 (ρt(θ)− ρt(θ0))
)

≥ Q(θ0).

It is clear that Q(θ) = Q(θ0) if only if θ = θ0. It means that Q(θ) has a unique
minimum.

Note that θ̂SLS = arg min
θ∈Θ

QT (θ) and θ0 = arg min
θ∈Θ

Q(θ) which imply

QT (θ̂SLS) 6 QT (θ), for every θ ∈ Θ (15)

and
Q(θ0) 6 QT (θ), for every θ ∈ Θ. (16)

By using inequality (15) and (16) we observe that

QT (θ̂SLS)−Q(θ̂SLS) 6 QT (θ̂SLS)−Q(θ0) 6 QT (θ0)−Q(θ0). (17)

Therefore from the above we have∣∣∣QT (θ̂SLS)−Q(θ0)
∣∣∣ 6 max

{
|QT (θ0)−Q(θ0)|, |QT (θ̂SLS)−Q(θ̂SLS)|

}
≤ sup

θ∈Θ
|QT (θ)−Q(θ)|. (18)

QT (θ) is a continuous function on a compact set Θ and differentiable for every
element ith of θ, θi for i = 1, 2, ..., p + 3.

The derivative of QT (θ) with respect to θ is denoted by

∇QT (θ) =
1
T

∑ ∂

∂θ
(ρ′t(θ)Wtρt(θ))

=
2
T

∑ ∂ρ′t(θ)
∂θ

Wtρt(θ),

where
∂ρ′t(θ)

∂θ
=

(
∂
∂θ (Y (λ)

t −X′
tβ) ∂

∂θ ((Y (λ)
t )2 − (X′

tβ)2 − ht)
)

=

 ∂Y
(λ)

t

∂θ 2∂Y
(λ)

t

∂θ
−Xt −2X′

tβXt

0 −ε2
t−1

 .

Since θ ∈ Θ ⊂ Rp+3 ia a compact set and ∇QT (θ) is a continuous for every
θ ∈ Θ, then {∇QT (θ)} is a compact set. In other words, there exists a M < ∞
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such that ‖∇QT ()‖ < M for every T ∈ N . By using theorem 3.2 we get {QT (θ)}
equicontinuous which implies

sup
θ∈Θ

|QT (θ)−Q(θ)| a.s−−→ 0 for T →∞.

By inequality (18) we observe that∣∣∣QT (θ̂SLS)−Q(θ0)
∣∣∣ 6 sup

θ∈Θ
|QT (θ)−Q(θ)| a.s−−→ 0.

This implies that QT (θ̂SLS) a.s−−→ Q(θ0). Since Q(θ) has a unique minimum we have
θ̂SLS

a.s−−→ θ0. �

Assumption 4 A0 = E
(

∂ρ′
t(θ)
∂θ Wtρt(θ)ρ′t(θ)Wt

∂ρ′
t(θ)
∂θ

)
is a nonsingular matrix.

Assumption 5 E ‖qt(θ)|=t−1‖4 < ∞ where qt(θ) = ∂ρ′
t(θ)
∂θ Wtρt(θ)

Theorem 3.4. Under Assumptions 4 and 5, as T →∞,
√

T (θ̂SLS − θ0)
d−→ N(0,B−1

0 A0B−1
0 ),

where

A0 = E

[
∂ρ′t(θ0)

∂θ
Wtρt(θ0)ρ′t(θ0)Wt

∂ρt(θ0)
∂θ′

]
and

B0 = E

(
∂ρ′t(θ0)

∂θ
Wt

∂ρt(θ0)
∂θ′

)
.

Proof. Since θ̂ = arg min
θ

QT (θ), we have ∂QT (θ̂)
∂θ = 0. By equation Taylor

expansion in Θ

√
T (θ̂ − θ0) = −

(
1
T

∂2QT (θ̃)
∂θ∂θ′

)−1
1√
T

∂QT (θ0)
∂θ

. (19)

Using the equation (19), the asymptotic distribution of
√

T (θ̂SLS − θ0) will be
normal if:

(1) 1√
T

∂QT (θ0)
∂θ = 1√

T

∑ ∂qt(θ0)
∂θ

d−→ N (0, 4A0) for nonrandom A0 > 0

(2) 1
T

∂2QT ()
∂θ∂θ′

p−→ 2B0 for nonrandom B0 > 0.

The method of the proof is to show that two conditions are satisfied.

(1) Since E (εt|=t) = 0 and E
(
Y

(λ)2
t − E(Y (λ)2

t |=t)
)

= 0 then E
[

∂qt(θ0)
∂θ

]
= 0

and we have

E

(
∂qt(θ0)

∂θ

∂qt(θ0)′

∂θ

)
= 4E

(
∂ρ′t(θ0)

∂θ
Wtρt(θ0)ρ′t(θ0)Wt

∂ρt(θ0)
∂θ′

)
= 4A0.
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Furthermore we can apply a Martingale central limit theorem (Billingsley,
1961 and 1965), so we obtain:

1√
T

∂QT (θ0)
∂θ

=
1√
T

∑ ∂qt(θ0)
∂θ

d−→ N (0, 4A0) .

(2) The second derivative of QT (θ) is given by

∂2QT (θ)
∂θ∂θ′

=
2
T

∑[
∂ρ′t(θ)

∂θ
Wt

∂ρt(θ)
∂θ

+ (ρt(θ)Wt ⊗ Ip+4)
∂vec (∂ρ′t(θ)/∂θ)

∂θ′

]
(20)

where

∂vec∂ρ′t(θ)/∂θ

∂θ′
=


∂2y

(λ)
t /∂λ

2
0 0

0 0 0
0 0 0

∂2y
(λ)2
t /∂λ

2
0 0

0 −2∂(X′
tβXt)/∂β′ 0

0 0 −∂2ht/∂α∂α′

 .

By the ergodic theory, we get 1
T

∑ ∂ρ′
t(θ)
∂θ Wt

∂ρt(θ)
∂θ′

p−→ E
(

∂ρ′
t(θ)
∂θ Wt

∂ρt(θ)
∂θ′

)
.

Therefore, based on the equation (20), we obtain

1
T

∂2QT (θ̃)
∂θ∂θ′

p−→ 2B0

for nonrandom B0 > 0.

�

4. TESTING

Since Box-Cox transformed ARCH model is a generalization of the original
ARCH model in which dependent variable has been transformed by the Box-Cox
transformation, we need to test whether linear ARCH model provides an adequate
description of the data or not. From section (3) we obtain that SLS estimators of
Box-Cox transformed ARCH model are asymptotically normal in probability, so
we can use z-test in the linearity testing. Consider testing a hypothesis about the
first of coefficient θ. Theorem 3.3 implies that under the H0 : λ = 1 (i.e., the linear
ARCH regression model),

√
T (λ̂SLS − λ) d−→ N(0, var(λ̂SLS))

and

v̂ar(λ̂SLS)
p−→ var(λ̂SLS),
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where v̂ar(λ̂SLS) is the (1,1) element of the (P + 3)× (P + 3) matrix B̂−1
0 Â0B̂−1

0 ,
where

B̂0 =
1
T

∑ ∂ρ′t(θ̂)
∂θ

Wt
∂ρt(θ̂)

∂θ′
,

and

Â0 =
1
T

∑ ∂ρ′t(θ0)
∂θ

Wtρt(θ0)ρ′t(θ0)Wt
∂ρt(θ0)

∂θ′
.

The test statistics of the hypothesis is

t =

√
T − (p + 3)λ̂SLS − 1√

v̂ar(λ̂SLS)
→ tT−(P+3).

5. SIMULATION

In order to study the performance of the SLS estimators of θ in finite samples,
we simulated 100 series that is generated from ARCH(1) process with samples size
T = 50, 100, 200, 350:

Y
(λ)
t = βY

(λ)
t−1 + εt, (21)

and

ht = α0 + α1ε
2
t−1. (22)

where εt has mean zero and variance ht. We use values of the parameters of the
model in which λ = 0.25, β = 0.2, α0 = 0.60, and α1 = 0.15. Figure 1-4 show the
results, where SLS estimators go to the true value when T → ∞. We report the
Monte Carlo means and their mean squared errors (MSE) on the Table 1. The
results show that SLS estimators performance are well, where the MSE decreases.
The p-value in the table is less than 0.05, it means that λ value is significantly
different from one. As the result, nonlinear ARCH model is adequate.
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Table 1. SLS estimators of model (21) and (22)

λ = 0.25 β = 0.20 α0 = 0.60 α1 = 0.15
T λ̂SLS MSE p-value ˆβSLS MSE α̂0.SLS MSE α̂1.SLS MSE
50 0.255 0.046 0.0005 0.163 0.024 0.618 0.032 0.063 0.058
100 0.253 0.018 0.0003 0.209 0.013 0.603 0.012 0.078 0.030
200 0.253 0.010 0.0003 0.194 0.007 0.602 0.008 0.109 0.029
350 0.252 0.006 0.0002 0.197 0.003 0.602 0.004 0.120 0.025

Figure 1. SLS estimation of λ

Figure 2. SLS estimation of β
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Figure 3. SLS estimation of α0

Figure 4. SLS estimation of α1
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