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Abstract. We discuss the concepts of strong and weak convergence in n-Hilbert
spaces and study their properties. Some examples are given to illustrate the con-
cepts. In particular, we prove an analogue of Banach-Saks-Mazur theorem and
Radon-Riesz property in the case of n-Hilbert space.
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Abstrak. Makalah ini menjelaskan konsep konvergensi kuat dan lemah dalam
ruang n-Hilbert dan mempelajari sifat-sifatnya. Beberapa contoh diberikan untuk
menjelaskan konsep-konsep tersebut. Khususnya, teorema analog dari Banach-Saks-
Mazur dan sifat Radon-Riesz dibuktikan untuk kasus ruang n-Hilbert..

Kata kunci: Konvergensi kuat dan lemah, ruang n-Hilbert.

1. INTRODUCTION AND PRELIMINARIES

The notion of n-normed spaces was introduced by Géhler ([4]) as a gener-
alization of normed spaces. It was initially suggested by the area function of a
triangle determined by a triple in Euclidean space. The corresponding theory of
n-inner product spaces was then established by Misiak ([10]). Since then, various
aspects of the theory have been studied, for instance the study of Mazur-Ulam
theorem and Aleksandrov problem in n-normed spaces are done in [1, 2], the study
of operators in n-Banach space is done in [5, 11], and many others.

In this paper, we will generalize the notion of weak convergence in Hilbert
space to the case of n-Hilbert space and study its properties. In particular, we will
expand on the results in [6]. We will also give an analogue of Radon-Riesz property
(on conditions relating strong and weak convergence) in the case of n-Hilbert space.
Furthermore, an analogue of the well-known Banach-Saks-Mazur theorem (on the
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strong convergence of a convex combination of a weakly convergent sequence) will
be given.

We begin with some preliminary results. Let X be a real vector space with
dim(X) > n, where n is a positive integer. We allow dim(X) to be infinite. A
real-valued function ||-,...,-|| : X™ — R is called an n-norm on X™ if the following
conditions hold:

(1) |1, ..., 2] =0 if and only if z1,...,x, are linearly dependent;
(2) ||z1,- ..,z is invariant under permutations of x1, ..., xy,;
3) |laz1,xay ... &0l = |a|l|z1, 22, ..., 2, for all @« € R and 24, ..., 2, € X;
(4) |lzo +z1,22, .. oy 20l < ||To, T2y - -y 20|l + |21, 22, . . ., Ty, for all
Lo, L1y.-., Ly € X.
The pair (X, ||-,...,]|]) is then called an n-normed space. It also follows from the

definition that an n-norm is always non-negative.

Let X be a real vector space with dim(X) > n, where n is a positive integer.
A real-valued function (-,-|-,...,-) : X"+ — R is called an n-inner product on X
if the following conditions hold:

(1) (z1,21]22,-..,2n) > 0, with equality if and only if 21, 23, ..., 2, are linearly
dependent;

(2) (z1,21]22, -+, 2n) = (2iy, Ziy | Zigs - - - 24, ) fOr every permutation (iy,...,1,)
of (1,...,n);

(3) <$7y|22a BRRE) Zn> = <yax‘227 BEEE) Zn>7

(4) (ax,y|za, ..., 2n) = a(z,y|22,...,2,) for every a € R;

(5) <‘T + I/,y|22, sty Z7L> = <1',y‘22, e ,Zn> + <.T/,y|22, MR Z7L>

The pair (X, {-,|-,...,)) is then called an n-inner product space.

Observe that any inner product space (X, (-,-)) can be equipped with the
standard n-inner product:

(r,y)  (v,22) - (@, 2,)
<x’y|z27.“7zn> — <Z2:a y> <22,:,22> <Z27:Zn> (1)
<Znay> <Zn,2’2> <Zn,2’n>

where |A| denotes the determinant of A.
In that case, the induced standard n-norm on X is given by

lz1,. .., znlls == y/det[{z;, z;)] (2)

Note that the value of ||z1,..., 2|5 is just the volume of the n-dimensional paral-
lelepiped spanned by x1, ..., x,.

Further examples and results on n-normed space can be found in [8, 9]. In
particular, for the standard case, completeness in the norm is equivalent to that in
the induced standard n-norm.

Every n-inner product space is an n-normed space with the induced n-norm:

||xla-..7an = <x17$1|$2""7xn>1/2 (3)
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An analogue of Cauchy-Schwarz inequality also holds for n-inner product
space, i.e. for all z,y, z2,..., 2, € X, we have

|<$ay‘z27 s 7zn>| < ||$C, TR ,ZTLHH% R2y . azn” (4)
The following definitions are taken and inspired from [12].

Definition 1.1. A sequence {x} in an n-normed space (X, |-,...,-||) is said to
converge to x € X if ||xx — x,29,...,2,]| = 0 as k — oo for all z,...,2, € X.

Definition 1.2. A sequence {x} in an n-normed space (X, ||-,...,-||) is a Cauchy
sequence if ||z — @y, 22, .., 20| = 0 as k, 1 — oo for all z9,...,2, € X.

Definition 1.3. If every Cauchy sequence in an n-normed space (X, |- ...,||)
converges to an x € X, then X is said to be complete. A complete n-inner product
space is called an n-Banach space. A complete n-inner product space is called an
n-Hilbert space.

2. STRONG AND WEAK CONVERGENCE

In this section, we will consider the notions of strong and weak convergence
in n-Hilbert space. The notion of (strong) convergence in 2-normed space has been
studied extensively in [12]. Here, we will focus more on the weak convergence and
the relationships between the two concepts. Let (X, (-,-|-,...,-)) be an n-Hilbert
space and ||, ..., || be the induced n-norm.

Definition 2.1 (Strong convergence). A sequence (xy) in X is said to converge
strongly to a pointx € X if |xp—x, z2,..., 25| = 0 as k — oo for every za, ..., 2, €
X. In this case, we write x — .

Definition 2.2 (Weak convergence). A sequence (xy) in X is said to converge
weakly to a point x € X if (xp — x,ylz2,...,2n) — 0 as k — oo for every
Yy 29,...,2n € X. In this case, we write x — x.

The following proposition is immediate from the definition.

Proposition 2.3. If (xr) and (yx) converges strongly (resp. weakly) to x and y
respectively, then (axy + Byi) converges strongly (resp. weakly) to ax + By.

Here we mention some of the basic properties, the proofs of which can be
found in [6].

Proposition 2.4 (Continuity). The following results hold:

(1) The n-norm is continuous in each variable.
(2) The n-inner product is continuous in the first two variables.

Proposition 2.5. If (zy) converges strongly (resp. weakly) to x and ', then
x=u.
Note that strong convergence implies weak convergence.

Proposition 2.6. If (xy) converges strongly to x, then it converges weakly to x.
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PROOF. Refer to [6]. [ |

However, the converse is not true in general. The following highlights some
of the way a sequence can fail to converge strongly.

Example 2.7. Let X = L2[0,1] which is a Hilbert space with the usual inner
product. Equip X with the standard 2-inner product. Define a sequence (f,) by

fn(x) =sinnrx. Then for all g,h € X,
(fns glh) = (s 9) (hy h) = (fn, R) (R, )
< ‘(/1 g(z) sinnrx dx) |2 </1 h(z)sinnrz dx) 17211 9]l2
so that f, — 0, wl?ere we used the Riemann-Lebesogue lemma. However,
sl = (LFal3IRI3 = (£, 1))

Asn — o0, || fn, bl — %Hhﬂg, which is not zero as long as h # 0 a.e., showing
that f,, does not converge strongly to the zero function.

+

Example 2.8. Let (X, (-,-)) be a separable infinite-dimensional Hilbert space with
(ex)?2, as an orthonormal basis. Equip X with the standard n-inner product. In
[6], it is proven that (ex) converges weakly, but not strongly to 0.

Remark 2.9. More generally, if X is a separable Hilbert space and {¢y} is an
orthonormal sequence in X. Then ¢, — 0 in the induced standard n-inner product.

Example 2.10. Let X = L?(R), equipped with the standard 2-inner product. De-
fine a sequence (f) by fn(2) = X(n,n+1)(x), where x is the characteristic function.
Then one can check that (f,) converges weakly, but not strongly, to zero in X.

Remark 2.11. In [6], it is observed that in standard, finite-dimensional n-Hilbert
spaces, the notions of strong and weak convergence are equivalent.

We will now give an extension of Radon-Riesz property for n-Hilbert space.

Theorem 2.12. If x;, — x, then

|z, 22, . . ., 2n || < liminf ||zg, 29, ..., 24| (5)
k—oo
If, in addition,
lim ||z, z2,. .., zall = |2, 22, .. ., 25l
k—oo
forall zo,...,2, € X, then xp, — x.

Proor. Using weak convergence of (z) and Cauchy-Schwarz inequality,

2, 22, 20l = (2, 2|20, . ., 20) = lim (2, 2|22, ..., 2)
k—oo
< @, 22, . .., zp || Uminf ||zg, 22, .. ., 25|
k—oo

proving (5). Next, by expanding the n-norm,

ek — 2, 20, ., 20 ll? = |k, 225 - - 20 ||* = 2@, 2|20, . . ., 20) + |2, 20, .., 20 || — O
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using the assumptions given. Hence z; — . |

Next, we give an analogue of Banach-Saks-Mazur theorem for the case of
n-Hilbert spaces.

Theorem 2.13. Ifzpy — z in X and

1 m
lim — ; — e 2=
mgnoo m2 Z; ||$1 €T, z2, 7Zn|| 0 (6)
1=
forall zo, ..., z, € X, then there exists a sequence (y) of finite convex combinations

of (xx) such that yr — x (strongly).

PRrOOF. Replacing zj by zp — x, we may assume z; — 0. Pick k3 = 1 and choose

ky > ki such that (xg,,xg,|22,...,2n) < 1 for all z5,...,2,. Inductively, given
ki,...,km, pick k41 > ky, such that
1 1
|<mk1umkm+1|227 e 7Zn> S E g ey |<ka7ka+1|227 e uzn> S E
which is possible since by the weak convergence of (xy), (zk,, k|22, .., 2n) — 0 as

k— oo for1<i<m. Let

1( )
m = —(Tg, +...+x
Y k1 Em

Then we have

1 m 9 m j—1
Hym,ZQ,...’anQ = 722 ||mm,22,...7zn||2 + TZZ@"i’m"i'ZQ"“’Z")
mei me o=
1 & , 2 &1
sznxnuz%vznn +WZZJ'_1
1=1 j=11:=1
1 «— 2
:Tznmmaz%"wzn”z‘Fi
m= < m
i=1
so that y,, — 0 strongly as m — oo as required. |

Corollary 2.14. Let X be an Hilbert space equipped with the standard n-inner
product. Suppose xy, — x in X and ||z;|| < M for all i, where M is a constant and
|| - 1| is the norm induced by the inner product on X. Then there exists a sequence
(yk) of finite convex combinations of (xx) such that yr — x (strongly).

PROOF. It suffices to check that (6) holds in this case. Clearly, |z; — z|? is also
bounded in norm, say |z; — z||*> < M’. By Hadamard’s inequality,

1 & M ||z2|]? ... ||znl|?
L izl < Ml
i=1

m
as m — oo for all zg,..., 2z, € X, hence the statement is proven. ]
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3. APPLICATIONS

In this section, we apply the theorems deduced earlier to L?-space, L?(X, p),
where (X, pt) is a measure space, equipped with the usual inner product

(f.9) = /X f(@)g(z) du(z)

We then equip L?(X) with the standard n-inner product. Note that when n = 1,
the following reduce to the familiar cases. Subsequently, |A| = det(A).

Proposition 3.1. Let f, € L*(X,u), k =1,2,..., be such that

fo}?;dILL fxfkth,u fxfkhndﬂ
, Jxhafwdp [y hidp - [ hohn dp
khm . . ) . =0
Jxhnfedu [y hahodp -+ [ h2 dp
for all ha, ... h, € L*(X,pu). Then
Jx frgdu [ fehadp -+ [ fohn dp
. Ixhegdp [y B3 dp o [y hohn dp
lim ) . . ) =0
k—o0 : : c. .
Jxhngdp [y hahadp - [ B3 dp
for all g,ha, ... h, € L*(X,p).
ProOF. This follows from Proposition 2.6. ]

Proposition 3.2. Let f, € L?(X, ), k= 1,2,..., be such that
fx(fk_f)gdu fx(fk_f)hQ dﬂ fX(fk_f)hn d/’6

lim Jxc hag dp Jx 15 dps e [ hah dp —0
k—o0 : : : B
Jx hng du [ hnhodp - [ h2 dp

fO’F allgah27"'ahneL2(X,,U/>. Then
fo2d,u fxfh2d,u fohnd,u
Sxhofdp [y h3du - [y hohy dp
Ixhnfdp [yhnhodp -+ [ B2 dp
T f2dn [y frhadp - [y frhn dp
< liminf Ixhafedu [ hydp oo [ hohn dp
T k—oo . :
Txhafedn [y hnhodp - [ b2 dpu

for all ha,... h, € L*(X, p).
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If, in addition,

folg dp fokhQ dp fokhn du
i [x hafudp [ h3du [y hohn dp
Jx hafidp [y hoho du [y 12 dp
ffod/'L fxfh2d:u fxfhnd,u
Jx bnf dp [ hnho dp Jx P du
for all ha, ... h, € L*(X,u), then

Jx e =2 dp [ (fr = D2 dp

lim Jx he(fx = f) du [x 3 du
Jx ha(fx = f) dp Jx hnha du
for all ha, ... hy € L2(X, ).

PRrOOF. This follows from Theorem 2.12.

Proposition 3.3. Let fp € L?(X, ), k=1,2,..

Jx fegdu [y fuho dp
. fx hag dp fX h3 dp
khm . .

Jx hng dp [ hnho du
for all g, ho, .

[ 2 du
. 1 — th2fk dp th% dp
W}E%OWZ : :

k=1

for all ho, ..
combinations of (fx), such that

fXg]?; dﬂ fnghQ d,u
) fx hagr dp fx h3 dp
khm . .

fX hngr du fX hnho dp

for all ha, ... h, € L*(X, ).

Proor. This follows from Theorem 2.13.

. hn € LA(X, ). Then there exists a sequence (gi) of finite convex

Jx (fe = f)ha dp
[ h2hn dp

fx hy, dp

., be such that

fX fkhn dM
[ hahn du

fX hy, dp

. hy € L2(X, 1), and there exists a constant M such that
fX fkhQ d,LL

Jx fuhn dp
I hahn dp

Ix h% dp

fX gkhn du
T hahy, dp

[ B2 dp
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Remark 3.4. Note that we also have another equivalent formula for the standard
n-inner product and n-norm in L?(X) as follows (see [3, 9])

(f,glha, ..., hn n'// /det ) det(G) dp(z) ... dp(zy)

where
}{(xl) }{(xz) }{(mn)
e
ho(21) Bn(ws) - ho(an)
and
hg(:vl) ,f(xz) ];q(wn)
sty o || o
h(21) hn(@2) - Bl
The standard n-norm is therefore
1/2
Ichaceehall = | o [ ] o [ et(E) duton) . o)
“Ux )t( X

The above propositions hold accordingly using this form of n-inner product and
n-norm.

Similarly, we can get other results concerning weak and strong convergence
in other n-Hilbert spaces. For instance, we mention the Sobolev space W*?2(Q) =
H?(Q), which is a Hilbert space with inner product

:/Qf(x) dx+Z/Dl - D'g(z) dz

We can equip H*(Q)) with the standard n-inner product (1), and all the above
convergence results will hold accordingly.
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