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Abstract. Let G be a simple graph with vertex set V (G) and edge set E(G),

and let Z2 = {0, 1}. Any edge labeling f induces a partial vertex labeling f+ :

V (G) → Z2 assigning 0 or 1 to f+(v), v being an element of V (G), depending on

whether there are more 0-edges or 1-edges incident with v, and no label is given

to f+(v) otherwise. For each i ∈ Z2, let vf (i) =
∣∣{v ∈ V (G) : f+(v) = i

}∣∣ and let

ef (i) = |{e ∈ E(G) : f(e) = i}|. An edge-labeling f of G is said to be edge-friendly

if
{∣∣ef (0)− ef (1)

∣∣ ≤ 1
}

. The edge-balance index set of the graph G is defined as

EBI(G) =
{∣∣vf (0)− vf (1)

∣∣ : f is edge-friendly.
}

. In this paper, exact values of the

edge-balance index sets of L-product of cycles with cycles, Cn×LCm are presented.

Key words: Edge labeling, edge-friendly labeling, cordiality, edge-balance index set,

L-products, cycles.

Abstrak. Misalkan G adalah graf sederhana dengan himpunan titik V (G) dan

himpunan sisi E(G), dan misalkan Z2 = {0, 1}. Setiap pelabelan sisi f menginduksi

pelabelan titik parsial f+ : V (G)→ Z2 memberikan 0 atau 1 untuk f+(v), dengan

v titik di V (G), tergantung pada apakah terdapat lebih sisi-sisi-0 atau sisi-sisi-1

terkait dengan v, dan yang lain adalah tidak ada label diberikan untuk f+(v).

Untuk setiap i ∈ Z2, misalkan vf (i) =
∣∣{v ∈ V (G) : f+(v) = i

}∣∣ dan misalkan

ef (i) = |{e ∈ E(G) : f(e) = i}|. Sebuah pelabelan sisi f dari G dikatakan ramah-sisi

jika
{∣∣ef (0)− ef (1)

∣∣ ≤ 1
}

. Himpunan indeks seimbang-sisi dari graf G didefinisikan

sebagai EBI(G) =
{∣∣vf (0)− vf (1)

∣∣ : f adalah ramah-sisi}. Dalam paper ini dis-

ajikan nilai-nilai eksak himpunan-himpunan indeks seimbang-sisi hasil-kali-L dari

lingkaran dengan lingkaran, Cn ×L Cm.
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Kata kunci: Pelabelan sisi, pelabelan ramah-sisi, kordialitas, himpunan indeks

seimbang-sisi, hasil-kali-L, lingkaran.

1. Introduction

In [8], Kong and Lee considered a new labeling problem of graph theory. Let
G be a simple graph with vertex set V (G) and edge set E(G), and let Z2 = {0, 1}.
An edge labeling f : E(G)→ Z2 induces a vertex partial labeling f+ : V (G)→ Z2

defined by f+(v) = 0 if the edges labeled 0 incident on v is more than the number
of edges labeled 1 incident on v, and f+(v) = 1 if the edges labeled 1 incident on v
is more than the number of edges labeled 0 incident on v. f+(v) is not defined if the
number of edges labeled by 0 is equal to the number of edges labeled 1. For i ∈ Z2,
let vf (i) = |{v ∈ V (G) : f+(v) = i}|, and let ef (i) = |{e ∈ E(G) : f(e) = i}|.

With these notations, we now introduce the notion of an edge-balanced graph.

Definition 1.1. An edge labeling f of a graph G is said to be edge-friendly if
|ef (0) − ef (1)| ≤ 1. A graph G is said to be an edge-balanced graph if there is
an edge-friendly labeling f of G satisfying |vf (0)− vf (1)| ≤ 1.

Chen, Lee, et al in [2] proved that all connected simple graphs except the
star K1,2k+1, where k ≥ 0 are edge-balanced.

Definition 1.2. The edge-balance index set of the graph G, EBI(G), is defined
as {|vf (0)− vf (1)| : the edge labeling f is edge-friendly.}.

We will use v(0), v(1), e(0), e(1) instead of vf (0), vf (1), ef (0), ef (1), provided
there is no ambiguity.

Example 1. EBI (nK2) is {0} if n is even and {2} if n is odd. 2

i i1 1
1

i i0 0
0

|v(0)− v(1)| = 0

i i1 1
1

i i1 1
1

i i0 0
0

|v(0)− v(1)| = 2

Figure 1. The edge-balance index sets of 2K2 and 3K2.

For any n ≥ 1, we denote the tree with n + 1 vertices of diameter two by
St(n). The star has a center c and n appended edges from c.

Example 2. The edge-balance index set of the star St(n) is

EBI (St(n)) =

{
{0} if n is even,

{2} if n is odd.
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2

Example 3. In [16], Lee, Lo and Tao showed that

EBI (Pn) =



{2} if n is 2;

{0} if n is 3;

{1, 2} if n is 4;

{0, 1} if n is odd and greater than 3;

{0, 1, 2} if n is even and greater than 4.

Figure 2 shows the edge-balance index sets of P3 and P4. 2
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|v(0)− v(1)| = 0

i ii i
i ii i
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1 0

1 0

1

1 1

1 1
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|v(0)− v(1)| = 1 |v(0)− v(1)| = 2

Figure 2. The edge-balance index set of P3 and P4.

Example 4. Figure 3 shows that the edge-balance index set of a tree with six
vertices is {0, 1, 2}. 2
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Figure 3. The edge-balance index set of a tree with six vertices.

Edge-balance index sets of trees, flower graphs and (p, p + 1)-graphs were
considered in [10, 16, 18].

The edge-balance index sets can be viewed as the dual of balance index sets.
The balance index sets of graphs were considered in [9, 11, 12, 13, 14, 15, 17, 19, 20].
Let G be a simple graph with vertex set V (G) and edge set E(G), and let Z2 =
{0, 1}. A labeling f : V (G) → Z2 induces an edge partial labeling f∗ : E(G) → A
defined by f∗(vw) = f(v), if and only if f(v) = f(w) for each edge vw ∈ E(G). For
i ∈ Z2, let vf (i) = |{v ∈ V (G) : f(v) = i}| and ef∗(i) = |{e ∈ E(G) : f∗(e) = i}|.
A labeling f of a graph G is said to be friendly if |vf (0)− vf (1)| ≤ 1. If |ef (0)−
ef (1)| ≤ 1 then G is said to be balanced . The balance index set of the graph
G, BI(G), is defined as {|ef (0)− ef (1)| : the vertex labeling f is friendly}.
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Definition 1.3. Let H be a connected graph with a distinguished vertex s. Con-
struct a new graph G×L (H, s) as follows: take |V (G)| copies of (H, s) and identify
each vertex of G with s of a single copy of H. We call the resulting graph the
L-product of G and (H, s).

Note here that, in [7], Koh, Rogers and Tan defined the same graph operation
and used the notation G4H, instead of G×L (H, s).

In a series of papers [1, 5], Chou et al. investigated the edge-balance index
sets of L-product of cycles with stars, Cn ×L (St(m), c)). The edge-balance index
of L-product of graphs are also considered in [6]. In this paper, exact values of the
edge-balance index sets of L-product of cycles with cycles, Cn×LCm, are presented.

2. The Highest Edge-balance Index

In order to find the full set of the edge-balance indexes, we begin by finding
the highest edge-balance index first. The following notations and propositions are
borrowed from [3]. You can also find them in [4].

Notation 1. Let Cn be a cycle with a vertex set {c1, c2, . . . , cn}. Let f : E(Cn)→
Z2 be an edge labeling on Cn (not necessarily edge-friendly), where E(Cn) is the
edge set of Cn. We denote the numbers of edges labeled 0 or 1 by f by eC(0)
or eC(1), respectively. We also denote the number of vertices labeled 0, 1, or not
labeled by f+ by vC(0), vC(1), or vC(×), respectively.

Proposition 2.1. In a cycle Cn with an edge labeling f (not necessarily edge-
friendly), assume that vC(×) = 2k > 0. Then

vC(1) = eC(1)− k.

Proposition 2.2. In a cycle Cn with an edge labeling f (not necessarily edge-
friendly), assume that vC(×) = 2k > 0. Then

vC(0) = n− eC(1)− k.

We note here that when vC(×) = 0, i.e., either eC(0) = n or eC(1) = n, the
above propositions are still true.

For a finite disjoint union of cycles, by using the same technique from [3], we
can calculate vC(0) and vC(1) for each cycle C and then add all up to get
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Theorem 2.3. In a finite disjoint union of cycles ∪iCi
ni

(for notational conve-
nience, we still call it C) with an edge labeling f (not necessarily edge-friendly), we
have

vC(0)− vC(1) =
∑
i

ni − 2eC(1).

We note here that, for a Cn ×L Cm graph, since there are exactly n outer

cycles with m vertices each, it follows that
∑
i

ni = nm. In general, it is also true

that e(Cn ×L Cm) = n(m + 1).

If we remove all edges of Cn from a Cn×LCm graph, we have a disjoint union
of Cm cycles. For convenience, let us call Cn the inner cycle and all copies of Cm

the outer cycles. We also call the edges of Cn inner edges and the edges of Cm

outer edges.

Theorem 2.3 suggests that vC(0) − vC(1) is maximized when eC(1) is mini-
mized. In order to minimize eC(1), we label all the edges of Cn with 1’s.

We now consider the n number of degree 4 vertices, each with two 1-labeled
edges from Cn and two currently unlabeled edges from their respective Cm cy-
cle. Ignoring any edge-friendly labeling restriction for the moment, there are three
possible cases to consider in labeling the last two edges of one of the outer cycles:

(1) One edge is labeled 0 and the other 1;
(2) Both edges are labeled with 0’s;
(3) Both edges are labeled with 1’s.

In order to maximize vC(0)− vC(1) in Theorem 2.3, we maximize vC(0) and
minimize vC(1) at the same time. Consider any single outer cycle by itself, unat-
tached to the inner cycle Cn, with each of our three possible labeling choices above.
Under the first choice, the unattached outer cycle’s vertex would be unlabeled and
attaching it to Cn will change the vertex to a 1, a net gain of one 1-vertex. With
the second choice, the unattached outer cycle’s vertex would be labeled 0 and at-
taching it to Cn would result in an unlabeled vertex, a net loss of one 0-vertex. The
third choice yields a vertex labeling of 1 on the unattached outer cycle and still a
1-vertex when attached to Cn.

We see that only the third choice keeps the edge-balance index unchanged.
The other two choices reduce it by 1. Therefore, it follows that, in order to maximize
vC(0)−vC(1), we want to label the remaining edges adjacent to the degree 4 vertices
with 1’s.

By Theorem 2.3, the remaining unlabeled edges of our graph can be labeled
in any assortment and, as long as the labeling is friendly, it yields the highest edge-
balance index. However, for the purposes of the later proofs, we require that in
each outer cycle at least one of the edges adjacent to the 4 degree vertex is also
adjacent to a 0-edge.

We note here that in order to achieve this labeling, we must have 3n 1-edges
in order to completely label all n edges of Cn and all 2n adjacent edges to the 4
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Figure 4. The change of the labels of the order 4 vertices.

degree vertices in the outer cycles. In order to guarantee there are enough 1-edges,
m must be 5 or greater.

Theorem 2.4. The highest edge-balance index of Cn ×L Cm for m ≥ 5 is
n if m is odd;

n if n is even;

n + 1 if n is odd and m is even.

Proof. If n is even, then we assume n = 2s, where s ∈ N. The number of edges
is then e(Cn ×L Cm) = 2s(m + 1). Therefore, e(0) = e(1) = s(m + 1). After using
our suggested labeling, we have

eC(1) = e(1)− n = s(m + 1)− 2s = sm− s.

Since Cn provides no new vertices to what would be the disjoint union of
outer cycles and with our labeling no vertices are changed whether the cycles are
connected or disconnected, by Theorem 2.3, we have the highest edge-balance index

v(0)− v(1) = nm− 2eC(1) = 2sm− 2(sm− s) = 2s = n.

Similarly, when m is odd, we assume m = 2t + 1, where t ∈ N. Since it is
already shown that the highest edge-balance index is n when n is even, we only have
to prove the case where both m and n are odd. It is then assumed that n = 2s+ 1,
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where s ∈ N. The number of edges is then e(Cn×LCm) = (2s+1)(2t+2). Therefore,
we have e(0) = e(1) = (2s + 1)(t + 1). After using our suggested labeling, we have

eC(1) = e(1)− n = (2s + 1)(t + 1)− (2s + 1) = 2st + t.

Thus, the highest edge-balance index when m is odd is

v(0)− v(1) = nm− 2eC(1) = (2s + 1)(2t + 1)− 2(2st + t) = 2s + 1 = n.

Finally, for n is odd and m is even, we assume that n = 2s + 1 and m = 2t,
where s, t ∈ N. The number of edges is then e(Cn ×L Cm) = (2s + 1)(2t + 1) =
4st+2t+2s+1 = 2(2st+t+s)+1. Since e(Cn×LCm) is odd, due to the symmetric
roles of 0 and 1 in the edge-balance labeling, without loss of generality, we may
assume that e(1) ≤ e(0). Therefore, we can see that e(0) = 2st + t + s + 1 and
e(1) = e(1)− n = 2st + t + s. After using our suggested labeling, we have

eC(1) = 2st + t + s− (2s + 1) = 2st + t− s− 1.

Thus, the highest edge-balance index when n is odd and m is even is

v(0)− v(1) = nm− 2eC(1) = (2s + 1)(2t)− 2(2st + t− s− 1) = 2s + 2 = n + 1.

This completes the proof. 2

3. The Edge-Balance Index Set of Cn ×L Cm for m ≥ 5

From Theorem 2.4, we can conclude that

Corollary 3.1. The edge-balance index set of Cn ×L Cm for m ≥ 5 is a subset of
{0, 1, 2, . . . , n} if m is odd;

{0, 1, 2, . . . , n} if n is even;

{0, 1, 2, . . . , n + 1} if n is odd and m is even.

In order to show that the edge-balance index set of Cn×LCm contains all the
numbers less then the highest edge-balance index, we observe from our suggested
edge labeling that we can switch a 0-edge we specified to be adjacent to one of the
1-edges which are adjacent to the 4 degree vertex in the outer cycle. Both cases
are demonstrated in the Figures 5 and 6.

We can see that, no matter the edge adjacent to the 0-edge is labeled 0 or 1,
this reduces the current edge-balance index by exactly 1, each time it is done to an
outer cycle. This strategy enables us to prove that

Theorem 3.2. The edge-balance index set of Cn ×L Cm for m ≥ 5 is

EBI (Cn ×L Cm) =


{0, 1, 2, . . . , n} if m is odd;

{0, 1, 2, . . . , n} if n is even;

{0, 1, 2, . . . , n + 1} if n is odd and m is even.
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Figure 5. Switching edges when the adjacent edge is labeled 0.

Figure 6. Switching edges when the adjacent edge is labeled 1.

Proof. When m is odd or n is even, since there are n outer cycles, the above
strategy provides the edge-balance indexes from n− 1 all the way to 0. Therefore,
the edge-balance index set is {0, 1, 2, . . . , n}.

When n is odd and m is even, a similar process of n outer cycles can only
provides the edge-balance index to be any integer between n and 1. Thus, the
edge-balance index set contains {1, 2, 3, . . . , n + 1}.

To show EBI(Cn ×L Cm) when n is odd and m is even includes 0 as well, a
entirely new labeling is necessary. Since n is odd, we may assume that e(0) > e(1)
due to symmetry. First, we label 0, 1, 0, 1, 0, 1, . . . , 0, 1, 0 to the edges of inner cycle.
Since n is odd, the very last label in the sequence must be 0. Thus, there is only
one vertex, namely v, in the inner cycle Cn to have two 0-edges as of now. Because
the sequence has one more 0 then 1, we have the same number of 0- and 1-edges
for outer cycles. For any outer cycle not adjacent to v, we label its edges by the
sequence 0, 1, 0, 1. It is easy to see that every vertex is unlabeled. For the only
outer cycle adjacent to v, we label two edges adjacent to the order 4 vertex 0
and the outer two edges 1. Thus, for this cycle, the order 4 vertex is labeled 0,
two of the adjacent order 2 vertices are unlabeled, and the not-adjacent order 2



On the Edge-balance Index Sets 35

vertex is labeled 1. Therefore, for the whole edge-balance labeling, we have only
one 0-vertex and one 1-vertex. All other vertices are unlabeled. It provides an
edge-balance index 0. 2

4. The Edge-balance Index Set of Cn ×L Cm when m is 3 or 4.

When m is 3 or 4, as discussed before, we do not have enough number of
1-edges to be placed in outer cycles to avoid reducing the highest edge-balance
index while putting back 1-edges for the inner cycle. But, we can still pair 1-edges
to keep the label of the order 4 vertices unchanged as many as possible to produce
the highest edge-balance index.

Theorem 4.1. The highest edge-balance index of Cn ×L C4 is{
b 3k2 c if n = 2k is even;

b 3k+1
2 c+ 1 if n = 2k + 1 is odd.

Proof. When n = 2k is even, the total number of edges of Cn ×L C4 is 5n = 10k.
Thus, in an edge-balance labeling, there are 5k 1-edges. As in section 2, with
Theorem 2.3, we maximize the edge-balance index by labeling all inner cycle edges
1. This requires n = 2k 1-edges. Therefore, eC(1) = 3k. So, we have b 3k2 c 1-edges
pairs to be placed in the outer cycle edges of the order 4 vertices. According to the
Figure 4, the other two cases cause a reduction by 1 for the edge-balance index.
It affects n − b3k2 c labels of the order 4 vertices. The highest edge-balance index
becomes

e(0)− e(1) =
∑
i

ni − 2eC(1)− (the number of the reduced labels)

= 4n− 2eC(1)−
(
n− b3k

2
c
)

= 4(2k)− 2 (3k)−
(

2k − b3k
2
c
)

= b3k
2
c.

When n = 2k+1 is odd, the total number of edges of Cn×LC4 is 5n = 10k+5.
Due to the symmetry, we may assume that e(0) > e(1). Thus, in an edge-balance
labeling, there are 5k+2 1-edges. By using n = 2k+1 1-edges to label inner edges,
there are eC(1) = 3k + 1 1-edges left for outer cycles. By the same argument, the
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highest edge-balance index is reduced by n− b 3k+1
2 c. Thus, it becomes

e(0)− e(1) =
∑
i

ni − 2eC(1)− (the number of the reduced labels)

= 4n− 2eC(1)−
(
n− b3k + 1

2
c
)

= 4(2k + 1)− 2 (3k + 1)−
(

2k + 1− b3k + 1

2
c
)

= b3k + 1

2
c+ 1.

2

Theorem 4.2. The edge-balance index of Cn ×L C4 is

EBI (Cn ×L C4) =

{{
0, 1, 2, . . . , b 3k2 c

}
, if n = 2k is even,{

0, 1, 2, . . . , b 3k+1
2 c+ 1

}
, if n = 2k + 1 is odd.

Proof. When n is even, by Theorem 4.1, we see that the highest edge-balance
index is b 3k2 c. This number also represents the number of order 4 vertices with all
four edges labeled 1. Therefore, the same switching strategy from Figure 5 and 6
can produce the edge-balance index for any number between b 3k2 c − 1 and 0.

Similarly, when n is odd, the number of order 4 vertices with all four edges
labeled by 1 for switching is enough to produce the edge-balance indexes for any
number between b 3k+1

2 c and 1.

A similar edge-labeling as the one in the last paragraph of the proof of Theo-
rem 3.2 shows that EBI(Cn×LC4) when n is odd includes 0 as well. This completes
the proof. 2

Theorem 4.3. The edge-balance index of Cn ×L C3 is

EBI (Cn ×L C3) =
{

0, 1, 2, . . . , bn
2
c
}
.

Proof. The total number of edges of Cn ×L C3 is 4n, which is always even. Thus,
in a edge-balance labeling, there are 2n 1-edges. Similarly, we use n 1-edges to label
all inner edges in order to maximize the edge-balance index. Therefore, eC(1) = n.
So, we have bn2 c 1-edges-pairs to be placed in the outer cycle edges of the order 4
vertices. According to the Figure 4, the other two cases causes a reduction by 1
for the edge-balance index. It affects n − bn2 c labels of the order 4 vertices. The
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highest edge-balance index becomes

e(0)− e(1) =
∑
i

ni − 2eC(1)− (the number of the reduced labels)

= 3n− 2n−
(
n− bn

2
c
)

)

= bn
2
c.

The number of order 4 vertices with all four edges labeled by 1 is bn2 c. There-
fore, the same switching strategy from Figure 5 and 6 can produce the edge-balance
index for any number between bn2 c − 1 and 0.

This completes the proof. 2
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