ON THE EDGE-BALANCE INDEX SETS OF *L*-PRODUCT OF CYCLES

DANIEL BOUCHARD¹, PATRICK CLARK², AND HSIN-HAO SU³

¹Department of Mathematics, Stonehill College, Easton, MA 02357, USA, dbouchard@students.stonehill.edu ²Department of Mathematics, Stonehill College, Easton, MA 02357, USA, pclark1@students.stonehill.edu ³Department of Mathematics, Stonehill College, Easton, MA 02357, USA, hsu@stonehill.edu

Abstract. Let G be a simple graph with vertex set V(G) and edge set E(G), and let $\mathbb{Z}_2 = \{0, 1\}$. Any edge labeling f induces a partial vertex labeling f^+ : $V(G) \to \mathbb{Z}_2$ assigning 0 or 1 to $f^+(v)$, v being an element of V(G), depending on whether there are more 0-edges or 1-edges incident with v, and no label is given to $f^+(v)$ otherwise. For each $i \in \mathbb{Z}_2$, let $v_f(i) = |\{v \in V(G) : f^+(v) = i\}|$ and let $e_f(i) = |\{e \in E(G) : f(e) = i\}|$. An edge-labeling f of G is said to be edge-friendly if $\{|e_f(0) - e_f(1)| \leq 1\}$. The edge-balance index set of the graph G is defined as $EBI(G) = \{|v_f(0) - v_f(1)| : f \text{ is edge-friendly.}\}$. In this paper, exact values of the edge-balance index sets of L-product of cycles with cycles, $C_n \times_L C_m$ are presented.

 $K\!ey$ words: Edge labeling, edge-friendly labeling, cordiality, edge-balance index set, L-products, cycles.

²⁰⁰⁰ Mathematics Subject Classification: 05C78, 05C25.

Received: 09-08-2011, revised: 09-09-2011, accepted: 04-12-2012.