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Abstract. According to the Weierstrass Approximation Theorem, any continuous

function on the closed and bounded interval can be approximated by polynomials.

A constructive proof of this theorem uses the so-called Bernstein polynomials. For

the approximation of integrable functions, we may consider Kantorovich operators

as certain modifications for Bernstein polynomials. In this paper, we investigate the

behaviour of Kantorovich operators in Lebesgue spaces. We first give an alternative

proof of the uniform boundedness of Kantorovich operators in Lebesgue spaces by

using the Riesz-Thorin Interpolation Theorem. In addition, we examine the conver-

gence of Kantorovich operators in the space of essentially bounded functions. We

also give an example related to the rate of convergence of Kantorovich operators in

a subspace of Lebesgue spaces.
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1. INTRODUCTION

According to the Weierstrass Approximation Theorem, any continuous func-
tion on the closed and bounded interval can be approximated by polynomials.
Bernstein [2] provided a constructive proof for this theorem by using the Bernstein
polynomials.
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Definition 1.1 (Bernstein Polynomials). Let f : [0, 1] → R be a bounded function
and n ∈ N. The Bernstein polynomial of order n of f is defined by

Bnf(x) :=

n∑
k=0

f

(
k

n

)
bn,k(x), x ∈ [0, 1] (1)

with bn,k =
(
n
k

)
xk(1− x)n−k.

The uniform convergence of Bernstein polynomials of continuous functions is
stated as follows.

Theorem 1.2 (Bernstein [2]). Let f be continuous on [0, 1], then {Bnf} converges
uniformly to f on [0, 1].

The reader may notice that the term

bn,k(x) =

(
n

k

)
xk(1− x)n−k

is none other than the probability of k successes from n Bernoulli trials with proba-
bility of success x. That is, bn,k(x) is the probability mass function of the binomial
distribution. As such, we get the following proposition.

Proposition 1.3. For n ∈ N, k = 0, 1, 2, . . . , n, and x ∈ [0, 1] we have

n∑
k=0

bn,k(x) = 1,

n∑
k=0

kbn,k(x) = nx,

n∑
k=0

k2bn,k(x) = n(n− 1)x2 + nx.

However, the Bernstein polynomials are not suitable for approximating dis-
continuous functions. Consider the Dirichlet function f(x) = χ[0,1]∩Q. This func-

tion is discontinuous for all x ∈ [0, 1]. In this case, we have f
(
k
n

)
= 1 for all n ∈ N

and k = 0, 1, . . . , n since k
n ∈ [0, 1] ∩Q. As a result,

Bnf(x) =

n∑
k=0

bn,k(x) = 1, x ∈ [0, 1].

Therefore, |Bnf(x)−f(x)| = 1 for all x ∈ [0, 1]\Q and {Bnf(x)} does not converge
to f(x) for all x ∈ [0, 1] \ Q. To address this problem, we can use an alternative
to Bernstein polynomials for Lebesgue integrable functions on [0, 1] that is the
Kantorovich operators provided by Kantorovich [4].

Definition 1.4 (Kantorovich Operators). Let f : [0, 1] → R be a Lebesgue inte-
grable function and n ∈ N. The Kantorovich operator of order n of f is defined
by

Knf(x) :=

n∑
k=0

bn,k(x)(n+ 1)

∫ k+1
n+1

k
n+1

f(t) dt, x ∈ [0, 1]

with bn,k =
(
n
k

)
xk(1− x)n−k.
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Note that the Kantorovich operators and the Bernstein polynomials are related by
the identity

Knf(x) =
d

dx
Bn+1F (x)

where F (x) :=
∫ x

0
f(t) dt is the antiderivative of some function f ∈ L1([0, 1]).

It is known that Kantorovich operators are uniformly bounded on Lebesgue
spaces with norm 1 (see Lorentz [5, pages 30-33] and Theorem 3.1). Moreover,
for finite values of p, {Knf} converges to f in Lp([0, 1]) (see Lorentz [5]). Here,
Lp([0, 1]) denotes the set of all measurable functions f for which |f |p is integrable
on [0, 1]. In this paper, we are interested in the study of uniform boundedness of
Kantorovich operators and their convergence in Lebesgue spaces. In particular,
we will give an alternative proof of the uniform boundedness of these operators
in Lebesgue spaces. In addition, we will disprove the convergence of Kantorovich
operators in the spaces of essentially bounded functions. We also discuss the rate
of convergence of Kantorovich operators in Lp([0, 1]) for 1 < p < ∞.

The rest of the paper is organized as follows. Some basic properties of Kan-
torovich operators is given in the next section. The main results of this paper are
given in Section 3. The first result is an alternative proof of the uniform bounded-
ness of Kantorovich operators in Lebesgue spaces by using interpolation of linear
operators (see Theorem 3.1). The second result is a counterexample for the conver-
gence of Kantorovich operators in L∞([0, 1]) (see Proposition 3.4). Our last result
is an example of the exact rate of convergence of Kantorovich operators in Lebesgue
spaces (see Example 3.7). We conclude the paper by the summary of our results
and future works.

2. PRELIMINARIES

Let us recall several basic properties of Kantorovich operators. The following
proposition gives a few examples of Kantorovich operators of elementary functions.

Proposition 2.1. Let f0(x) = 1, f1(x) = x, f2(x) = x2 for x ∈ [0, 1]. We have

Knf0(x) = 1,

Knf1(x) =
1

n+ 1

(
nx+

1

2

)
,

Knf2(x) =
1

(n+ 1)2

(
n(n− 1)x2 + 2nx+

1

3

)
.
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Proof. Let n ∈ N and x ∈ [0, 1]. For k = 0, 1, . . . , n we have∫ k+1
n+1

k
n+1

f0(t) dt =
k + 1

n+ 1
− k

n+ 1
=

1

n+ 1
,

∫ k+1
n+1

k
n+1

f1(t) dt =
1

2

[(
k + 1

n+ 1

)2

−
(

k

n+ 1

)2
]
=

1

(n+ 1)2

(
k +

1

2

)
,

∫ k+1
n+1

k
n+1

f2(t) dt =
1

3

[(
k + 1

n+ 1

)3

−
(

k

n+ 1

)3
]
=

1

(n+ 1)3

(
k2 + k +

1

3

)
.

By Proposition 1.3, we get

Knf0(x) =

n∑
k=0

bn,k(x) = 1,

Knf1(x) =
1

n+ 1

n∑
k=0

(
k +

1

2

)
bn,k(x) =

1

n+ 1

(
nx+

1

2

)
,

Knf2(x) =
1

(n+ 1)2

n∑
k=0

(
k2 + k +

1

3

)
bn,k(x)

=
1

(n+ 1)2

(
n(n− 1)x2 + 2nx+

1

3

)
.

□
Observe that Kn can be written as

Knf(x) =

∫ 1

0

σn(x, t)f(t) dt

where f is a Lebesgue integrable function on [0, 1] and

σn(x, t) :=

n∑
k=0

(n+ 1)bn,k(x)χIk(t), x, t ∈ [0, 1]

with bn,k(x) =
(
n
k

)
xk(1 − x)n−k, Ik =

[
k

n+1 ,
k+1
n+1

)
for k = 0, 1, 2, . . . , n − 1, and

In =
[

n
n+1 , 1

]
. In other words, Kn is an integral operator with kernel function

σn. Note that clearly σn(x, t) ≥ 0 for all x, t ∈ [0, 1]. This fact, together with the
following lemma, will be used to prove our first main result.

Lemma 2.2 (Lorentz [5]). For all n ∈ N we have∫ 1

0

σn(x, t) dt = 1, x ∈ [0, 1],∫ 1

0

σn(x, t) dx = 1, t ∈ [0, 1].
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Proof. Let x ∈ [0, 1]. Since

∫ 1

0

χIk(t) dt =
1

n+ 1
for k = 0, 1, 2, . . . , n, we have∫ 1

0

σn(x, t) dt =

n∑
k=0

(n+ 1)bn,k(x)

∫ 1

0

χIk(t) dt

=

n∑
k=0

bn,k(x) = 1.

On the other hand, let t ∈ [0, 1]. By using integration by parts and mathematical

induction, we get

∫ 1

0

bn,k(x) dx =
1

n+ 1
, hence∫ 1

0

σn(x, t) dx =

n∑
k=0

(n+ 1)χIk

∫ 1

0

bn,k(x) dx

=

n∑
k=0

χIk(t)

= χ[0,1](t) = 1.

Thus,

∫ 1

0

σn(x, t) dx = 1 for t ∈ [0, 1]. □

3. MAIN RESULTS

We first state the uniform boundedness of Kantorovich operators in Lebesgue
spaces.

Theorem 3.1 (Lorentz [5]). Let 1 ≤ p ≤ ∞ and n ∈ N. If f ∈ Lp([0, 1]), then
∥Knf∥Lp([0,1]) ≤ ∥f∥Lp([0,1]).

We will give an alternative proof of this theorem by using the following in-
terpolation theorem.

Theorem 3.2 (Riesz-Thorin Interpolation Theorem). Let 1 ≤ p0, p1, q0, q1 ≤ ∞
and let E be a measurable subset of R. Suppose that T is a linear mapping from
Lp0(E)+Lp1(E) to Lq0(E)+Lq1(E). Assume that there exist α0, α1 > 0 such that

∥T (f)∥Lq0 ([0,1]) ≤ α0 ∥f∥Lp0 ([0,1]) and ∥T (f)∥Lq1 ([0,1]) ≤ α1 ∥f∥Lp1 ([0,1]) .

Then there exists α > 0 such that

∥T (f)∥Lq([0,1]) ≤ α ∥f∥Lp([0,1])

with
1

p
=

1− t

p0
+

t

p1
,

1

q
=

1− t

q0
+

t

q1

for some t ∈ [0, 1]. Moreover, we have α ≤ α1−t
0 αt

1.
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We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. For f ∈ Lp([0, 1]) and x ∈ [0, 1] we have

|Knf(x)| =
∣∣∣∣ ∫ 1

0

σn(x, t)f(t) dt

∣∣∣∣ ≤ ∫ 1

0

σn(x, t)|f(t)| dt.

As a result, |Knf(x)| ≤ ∥f∥L∞([0,1])

∫ 1

0

σn(x, t) dt = ∥f∥L∞([0,1]), hence the bound-

edness holds for p = ∞. Next, the boundedness for p = 1 is obtained by switching
order of integration as follows:

∥Knf∥L1([0,1]) =

∫ 1

0

|Knf(x)| dx ≤
∫ 1

0

∫ 1

0

σn(x, t)|f(t)| dt dx

=

∫ 1

0

|f(t)|
(∫ 1

0

σn(x, t) dx

)
dt = ∥f∥L1([0,1]).

Finally, the boundedness for 1 < p < ∞ is obtained by choosing p0 = q0 = ∞, p1 =
q1 = 1, and t = 1

p . Therefore, according to Theorem 3.2 we have

∥Knf∥Lp([0,1]) ≤ ∥f∥Lp([0,1]) .

□
Remark. By Theorem 3.1, for 1 ≤ p ≤ ∞ and n ∈ N, we have the operator norm
of Kantorovich operators satisfy the inequality

∥Kn∥Lp([0,1])→Lp([0,1]) = sup
f ̸=0

∥Knf∥Lp([0,1])

∥f∥Lp([0,1])

≤ 1.

Recall that, for f0(x) = 1, we have Knf(x) = 1 for all n ∈ N (Proposition 2.1),

hence
∥Knf0∥Lp([0,1])

∥f0∥Lp([0,1])

= 1. Therefore, we obtain the operator norm of Kantorovich

operators,

∥Kn∥Lp([0,1])→Lp([0,1]) = sup
f ̸=0

∥Knf∥Lp([0,1])

∥f∥Lp([0,1])

= 1.

Note that, the classical proof of Theorem 3.1 relies on the definition of the norm of
Lebesgue spaces. The method used in this alternative proof might be of use when
investigating the boundedness of Kantorovich operators in other function spaces.

We now consider the convergence of Kantorovich operators in Lebesgue spaces.
It is known that Kantorovich polynomials {Knf} converge to f in Lp([0, 1]) for ev-
ery 1 ≤ p < ∞ [5, pages 30-33]. We show that this convergence result does not
hold in L∞([0, 1]) by providing the following counterexample. We first prove the
following lemma.

Lemma 3.3. Let f(x) = χ[ 12 ,1]
(x) for x ∈ [0, 1]. Then Knf

(
1
2

)
= 1

2 for all n ∈ N.
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Proof. Observe that bn,k
(
1
2

)
=

(
n
k

) (
1
2

)k ( 1
2

)n−k
=

(
n
k

)
1
2n . Then,

Knf

(
1

2

)
= (n+ 1)

n∑
k=0

bn,k

(
1

2

)∫ k+1
n+1

k
n+1

f(t) dt

=
n+ 1

2n

n∑
k=0

(
n

k

) ∫ k+1
n+1

k
n+1

f(t) dt.

If n is odd, for k = 0, 1, . . . , 1
2n− 1

2 we have

∫ k+1
n+1

k
n+1

f(t) dt =

∫ k+1
n+1

k
n+1

0 dt = 0,

while for k = 1
2n+ 1

2 , . . . , n we have

∫ k+1
n+1

k
n+1

f(t) dt =

∫ k+1
n+1

k
n+1

1 dt =
1

n+ 1
.

As a result,

Knf

(
1

2

)
=

n+ 1

2n

n∑
k=n+1

2

(
n

k

)
1

n+ 1

=
1

2n

n∑
k=n+1

2

(
n

k

)

=
1

2n

(
1

2
· 2n

)
=

1

2
.

On the other hand, if n is even, for k = 0, 1, . . . , n
2 − 1 we have

∫ k+1
n+1

k
n+1

f(t) dt =

∫ k+1
n+1

k
n+1

0 dt = 0,

for k = n
2 + 1, . . . , n we have

∫ k+1
n+1

k
n+1

f(t) dt =

∫ k+1
n+1

k
n+1

1 dt =
1

n+ 1
,



296 M. V. Obie, E. A. Taebenu, R. Gunadi, and D. I. Hakim

and for k = n
2 , we have

∫ k+1
n+1

k
n+1

f(t) dt =
1

2(n+ 1)
. As a result,

Knf

(
1

2

)
=

n+ 1

2n

 1

2(n+ 1)

(
n

n/2

)
+

n∑
k=n

2 +1

(
n

k

)
1

n+ 1


=

1

2n

1

2

(
n

n/2

)
+

n∑
k=n

2 +1

(
n

k

)
=

1

2n

(
1

2
· 2n

)
=

1

2
.

Hence, Knf
(
1
2

)
= 1

2 for all n ∈ N. □
Our counterexample for the convergence of {Knf} in L∞([0, 1]) is given as follows.

Proposition 3.4. Let f(x) = χ[ 12 ,1]
(x) for x ∈ [0, 1]. Then {Knf} does not

converge to f in L∞([0, 1]).

Proof. Let n be a positive integer. By the continuity of Knf , we can choose
0 < δn < 1

2 such that for all x ∈
(
1
2 − δn,

1
2 + δn

)
we have∣∣∣∣Knf(x)−

1

2

∣∣∣∣ = ∣∣∣∣Knf(x)−Knf

(
1

2

) ∣∣∣∣ < 1

4
.

Observe that if x ∈
(
1
2 − δn,

1
2

)
, then f(x) = 0 and 1

4 < Knf(x) <
3
4 , hence

|Knf(x)− f(x)| = |Knf(x)− 0| = |Knf(x)| >
1

4
.

As a result, we have

∥Knf − f∥L∞([0,1]) = ess sup
x∈[0,1]

|Knf(x)− f(x)|

≥ ess sup
x∈( 1

2−δn,
1
2 )

|Knf(x)− f(x)|

>
1

4
.

Since ∥Knf − f∥L∞([0,1]) > 1
4 for all n ∈ N, {Knf} does not converge to f in

L∞([0, 1]). □
Remark. Recall that Lp1([0, 1]) ⊆ Lp2([0, 1]) whenever p1 ≥ p2. In particular,
L∞([0, 1]) ⊆ Lp([0, 1]) for every finite p. Therefore, the convergence of a sequence of
functions in L∞([0, 1]) implies the convergence in Lp([0, 1]). However, the converse
of this fact does not hold in general. Thus, Proposition 3.4 is not a consequence of
[5, pages 30-33].

For the rate of convergence of Kantorovich operators in Lebesgue spaces, let
us recall the following result.
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Theorem 3.5 (Maier, [6]). Let f : [0, 1] → R and 1 < p < ∞. If f ′ is absolutely
continuous on [0, 1] and f ′′ ∈ Lp([0, 1]), then there exists C > 0 such that

∥Knf − f∥Lp([0,1]) ≤
C

n
(∥f ′∥Lp([0,1]) + ∥f ′′∥Lp([0,1])).

Corollary 3.6. The rate of convergence of Kantorovich Operators is of order 1
n =

n−1 or faster, written as ∥Knf − f∥Lp([0,1]) = O(n−1).

Other results related to the rate of convergence of Kantorovich operators in
Lebesgue spaces can be found in [1, 3, 7]. we give an example for Theorem 3.5
where the exact rate of convergence of Kantorovich operators in Lebesgue spaces
is attained.

Example 3.7. Consider the function f1(x) = x. Then the rate of convergence of
{Knf1} to f1 in Lp([0, 1]) is exactly of order O(n−1) for 1 ≤ p < ∞.

Proof. Clearly f1 is differentiable on [0, 1], f ′
1(x) = 1 is absolutely continuous on

[0, 1], and f ′′
1 (x) = 0 ∈ Lp([0, 1]) for 1 ≤ p < ∞. By Proposition 2.1, we have

Knf1(x)− f1(x) =
1

n+ 1

(
nx+

1

2

)
− x =

1

n+ 1

(
1

2
− x

)
.

Hence, by writing g1(x) =
1

2
− x for x ∈ [0, 1],

∥Knf1 − f1∥Lp([0,1]) =
1

n+ 1
∥g1∥Lp([0,1]) ≥

1

2n
∥g1∥Lp([0,1]) =

1

4n(p+ 1)1/p

for all n ∈ N and 1 ≤ p < ∞. Thus, the rate of convergence of {Knf1} to f1 in
Lp([0, 1]) is exactly of order O(n−1) for 1 ≤ p < ∞. □

4. CONCLUDING REMARKS

We have given an alternative proof of the boundedness of Kantorovich oper-
ators in Lp([0, 1]) for 1 ≤ p ≤ ∞. In addition, we give a counterexample in order to
disprove the convergence of Kantorovich operators in L∞([0, 1]). We also provide
an example of the exact rate of convergence of Kantorovich operators in Lebesgue
spaces. The continuity of first derivative assumption for the class of functions that
were being used to approximate the rate of convergence in this paper is still rather
strong. For future research, it is of our interest to investigate the rate of conver-
gence of Kantorovich operators in subspaces of Lp([0, 1]) with weaker assumptions
or in another function space altogether such as the weighted Lebesgue spaces.
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Bernstein I, II”, C. R. Acad. Sci. USSR (1930), 563-568 and 595-600.

[5] Lorentz, G. G., Bernstein Polynomials (2nd ed.), AMS Chelsea Publishing, 1986.
[6] Maier, V., ”Lp-approximation by Kantorovič operators”, Analysis Mathematica 4(4) (1978),

289-295.

[7] Zeren, Y., Ismailov, M. and Karacam, C., ”The analogs of the Korovkin theorems in Banach
function spaces”, Positivity 26(28) (2018).


