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Abstract. Let G be a finite group, H be a subgroup of G and g be a fixed element of

G. The relative g-noncommuting graph Γg,H,G of G is defined as a graph with vertex

set is G and two distinct vertices x and y are adjacent if [x, y] ̸= g or [x, y] ̸= g−1,

where at least x or y belong to H. In this paper, we will discuss the relative g-

noncommuting graph of the dihedral groups D2n, in particular case when n is an

odd number. We give several topological indices of the relative g-noncommuting

graph of the dihedral groups D2n including the first Zagreb index, Wiener index,

Edge-Wiener index, Hyper-Wiener index, and Harary index.

Key words and Phrases: Relative g-noncommuting graph, Dihedral group, Topo-

logical indices.

1. INTRODUCTION

The topological index is one of the applications of graph theory and group
theory in chemistry that can be used to predict the chemical and physical prop-
erties of molecular structures with numerical values. In a graph, the molecular
structure of atoms is represented as vertices and the bonds between atoms as edges
[7]. A graph can be constructed from a finite group. Some of the graphs are
built from groups, including commuting graphs, noncommuting graphs, relative g-
noncommuting graphs, and so on. A noncommuting graph is a graph where two
vertices are connected if xy ̸= yx, the vertices are all members of the group except
the identity while a g-noncommuting graph is a graph where two vertices x, y are
adjacent if [x, y] ̸= g and [x, y] ̸= g−1 where x or y belong to H and the vertices
are all members of the group [15][12].
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Research on graphs of a group has been continued in recent years including
Raza and Faizi [15] and Abdollahi et al [1] discussed the noncommuting graph of
a finite group. Jahandideh et al examined the topological index of noncommuting
graphs of finite groups while Alimon et al [2] examined the topological index on
noncommuting graphs more specifically on dihedral groups. Nasiri et al [12] and
Sharma and Nath [17] studied the relative g-noncommuting graphs of finite groups.

In this paper, we will discuss further the relative g-noncommuting graphs of a
group that refer more to the research of Nasiri et al [12]. In Nasiri et al.’s research,
we discuss the relative g-noncommuting graphs of groups in general, while in this
research specifically discuss dihedral groups. In this paper, the dihedral group
D2n is restricted to the case of n is odd and two types of subgroups, namely the
subgroups H = ⟨a⟩ and H = {e, ajb} for j = 0, 1, . . . , n − 1. Furthermore, in this
paper we will determine some topological indices such as the first Zagreb index,
Wiener index, edge Wiener index, hyper Wiener index, and Harary index.

2. LITERATURE REVIEW

This section will provide some definitions, lemmas, proposition, and theorems
that will be used in this research.

Definition 2.1. [5] The dihedral group of order 2n, D2n where n ∈ N and n ≥ 3,
is the group generated by two elements a, b with the properties

an = e = b2, bab−1 = a−1

Proposition 2.2. [16] Let H be a subgroup of G ∼= ⟨a, b : an = e, b2 = e, bab = a−1⟩
with n ≥ 3, n ∈ N. Then

Z(G) =

{
{e} , n is odd

{e, an/2} , n is even.

Definition 2.3. [9] Define the commutator [x, y] of x, y ∈ G as

[x, y] = x−1y−1xy.

For H a subgroup of G and g ∈ G define

K(H,G) = {(x, y)|x ∈ H, y ∈ G\H; [x, y] = g or [x, y] = g−1}
KH = {x ∈ H : (x, y) ∈ K(H,G)} (1)

KG\H = {y ∈ G\H : (x, y) ∈ K(H,G)} (2)

Definition 2.4. [4] A graph Γ is defined as a pair (V (Γ), E(Γ)) with V (Γ) is a
finite nonempty set of elements called vertices and E(Γ) is a set of unordered pairs
of vertices in V (Γ) whose elements are named edges.
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Definition 2.5. Let G be a finite group, H be a subgroup of G and g be a fixed
element of G. The relative g-noncommuting graph Γg,H,G of G is defined as a graph
with vertex set is G and two distinct vertices x and y are adjacent if [x, y] ̸= g or
[x, y] ̸= g−1, where at least x or y belong to H [12].

These are some examples of relative g-noncommuting graphs of dihedral group
for n = 5.

Figure 1. Case H = ⟨a⟩ with g = b and g = a2.

Figure 2. Case H = {e, b} with g = b and g = a.

Theorem 2.6. [12] Let G be a non-identity element of G. Then

(1) Γg,H,G has no isolated vertex,
(2) The diameter of Γg,H,G is 2.

If x ∈ G and H is a subgroup of G, CH(x) denotes the centralizer of x in H.

Lemma 2.7. [12] Let G be a group and H a subgroup of G. The degree of x ∈ G
as a vertex in Γg,H,G is given as follows:

(1) Let x ∈ G\H.
• If g2 = e, then deg(x)=|H| − ε|CH(x)| where ε = 1 if x if conjugate to
xg or xg−1 in H, but not both and ε = 2 ix x is conjugate to xg and
xg−1 in H.

• If g2 = e and g ̸= e, then deg(x)=|H| − |CH(x)| whenever xg is
conjugate to x in H. For g = e we have deg(x)=|H| − |CH(x)|.
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• If xg and xg−1 are not conjugate to x in H, then deg(x)=H.
(2) Let x ∈ H.

• If g2 ̸= e, then deg(x) = |G|−ε|CG(x)|−1 where ε = 1 if x is conjugate
to xg or xg−1, but not both and ε = 2 if x is conjugate to xg and xg−1.

• If g2 = e and g ̸= e, then deg(x) = |G| − |CG(x)| − 1 whenever xg is
conjugate to x. For g = e we have deg(x) = |G| − |CG(x)|.

• If xg and xg−1 are not conjugate to x, then deg(x) = |G| − 1 [12].‘

Definition 2.8. [6][13][3][14] Given Γ a connected graph.

(1) The first Zagreb index of Γ is the sum of all squares of the degree of each
vertex of Γ, written as

M1(Γ) =
∑

x∈V (Γ)

(deg(x))2.

(2) The Wiener index of Γ is the sum of the distances of every pair of unordered
vertex of the graph Γ, written as

W (Γ) =
∑

{x,y}⊂V (Γ)

d(x, y).

(3) The edge Wiener index of Γ is the sum of all distances between any two
edges of the graph Γ, written as

We(Γ) =
∑

{e,f}⊂E(Γ)

d(e, f).

(4) The hyper Wiener index of Γ is the sum of all distances between vertices of
Γ, written as

WW (Γ) =
1

2

 ∑
{u,v}⊂V (Γ)

d(u, v) + (d(u, v))2


(5) The Harary index of Γ is the sum of reciprocals of distances between all

pairs of vertices of a connected graph, written as

H(Γ) =
∑

{u,v}⊂V (Γ)

1

d(u, v)

Below is an example of the topological index of the relative g-noncommuting
graph of the dihedral group, for n = 3, H = {e, b}, and g = b.
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Figure 3. Graph Γg,H,G and graph L(Γg,H,G), case n = 3, H =
{e, b}, g = b.

Example 2.9. M1(Γg,H,G) = deg(e)2 + deg(a)2 + deg(a2)2 + deg(b)2 + deg(ab)2 +
deg(a2b)2 = 52 + 22 + 22 + 22 + 22 + 52 = 66.

Example 2.10. W (Γg,H,G) = d(e, a) + d(e, a2) + d(e, b) + d(e, ab) + d(e, a2b) +
d(a, a2) + d(a, b) + d(a, ab) + d(a, a2b)d(a2, b) + d(a2, ab) + d(a2, a2b) + d(b, ab) +
d(b, a2b)+ d(ab, a2b) = 1+1+1+1+1+2+1+2+2+1+2+2+1+1+2 = 21.

Example 2.11. WW (Γg,H,G) =
1
2 [d(e, a)+d(e, a2)+d(e, b)+d(e, ab)+d(e, a2b)+

d(a, a2) + d(a, b) + d(a, ab) + d(a, a2b) + d(a2, b) + d(a2, ab) + d(a2, a2b) + d(b, ab) +
d(b, a2b)+d(ab, a2b)+d(e, a)2+d(e, a2)2+d(e, b)2+d(e, ab)2+d(e, a2b)2+d(a, a2)2+
d(a, b)2 + d(a, ab)2 + d(a, a2b)2 + d(a2, b)2 + d(a2, ab)2 + d(a2, a2b)2 + d(b, ab)2 +
d(b, a2b)2 + d(ab, a2b)2] = 1

2 [1 + 1 + 1 + 1 + 1 + 2 + 1 + 2 + 2 + 1 + 2 + 2 + 1 + 1 +

2 + 12 + 12 + 12 + 12 + 12 + 22 + 12 + 22 + 22 + 12 + 22 + 22 + 12 + 12 + 22 = 27.

Example 2.12. H(Γg,H,G) =
1

d(e,a) +
1

d(e,a2) +
1

d(e,b) +
1

d(e,ab) +
1

d(e,a2b) +
1

d(a,a2) +
1

d(a,b) +
1

d(a,ab) +
1

d(a,a2b) +
1

d(a2,b) +
1

d(a2,ab) +
1

d(a2,a2b) +
1

d(b,ab) +
1

d(b,a2b) +
1

d(ab,a2b) =
1
1 + 1

1 + 1
1 + 1

1 + 1
1 + 1

2 + 1
1 + 1

2 + 1
2 + 1

1 + 1
2 + 1

2 + 1
1 + 1

1 + 1
2 = 12.

From Lemma 2.6 we can calculate the topology indices using the following
theorem.

Theorem 2.13. [11] Given Γ a simple graph with diam(Γ) ≤ 2.

(1) The Wiener index of Γ is

W (Γ) = |V (Γ)|(|V (Γ)| − 1)− |E(Γ)|.

(2) Then hyper Wiener index of Γ is

WW (Γ) =
3

2
|V (Γ)|(|V (Γ)| − 1)− 2|E(Γ)|.

(3) The Harary index of Γ is

H(Γ) =
1

4
|V (Γ)|(|V (Γ)| − 1) +

1

2
|E(Γ)|.
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Proof. Note that diam(Γ) ≤ 2, then the number of unordered pairs in Γ that
have distance 2 is (

|V (Γ)|
2

)
− |E(Γ)|

hence

(1) The Wiener index of Γ is

W (Γ) = |E(Γ)|+ 2

((
|V (Γ)|

2

)
− |E(Γ)|

)
= |V (Γ)|(|V (Γ)| − 1− |E(Γ)|.

(2) The hyper Wiener index of Γ is

WW (Γ) =
1

2

[
|E(Γ)|+ 2

((
|V (Γ)|

2

)
)− |E(Γ)|

)
+ |E(Γ)|+ 4

((
|V (Γ)|

2

)
− |E(Γ)|

)]
=

3

2
|V (Γ)|(|V (Γ)| − 1)− 2|E(Γ)|.

(3) The Harary index of Γ is

H(Γ) = |E(Γ)|+ 1

2

((
|V (Γ)|

2

)
)− |E(Γ)|

)
=

1

4
|V (Γ)|(|V (Γ)| − 1) +

1

2
|E(Γ)|.

Theorem 2.14. [11] Given Γ a connected graph. Let L(Γ) be a simple graph with
diam(L(Γ)) ≤ 2. The edge Wiener index of Γ is

We(Γ) = |E(Γ)|2 − 1

2
M1(Γ)

Proof. Note that two edges e, f on Γ will be L(Γ)-neighboring if they are incident
to a point in Γ. Since every point x in Γ will have as many as deg(x) edges incident
to x, then the number of pairs of unordered edges in Γ that are adjacent to L(Γ)

is
∑

x∈V (Γ)

(
deg(x)

2

)
. We obtain

|E(L(Γ))| = 1

2

∑
x∈V (Γ)

deg(x)(deg(x)− 1)

=
1

2

∑
x∈V (Γ)

deg(x)2 − 1

2

∑
x∈V (Γ)

deg(x)

=
1

2
M1(Γ)− |E(Γ)|.
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Since diam(L(Γ)) ≤ 2, by Theorem 2.13 (1) we get

We(Γ) = W (L(Γ))

= |V (L(Γ))|(|V (L(Γ))| − 1)− |E(L(Γ))|

= |E(Γ)|(|E(Γ)| − 1)− 1

2
M1(Γ) + |E(Γ)|

= |E(Γ)|2 − 1

2
M1(Γ).

Example 2.15. The line graph of Γg,H,G has diameter 2 with |E(Γ)| = 9 and
M1(Γ) = 66. Therefore, We(Γg,H,G) = 92 − 1

2 (66) = 48.

3. MAIN RESULTS

3.1. Some Properties of Relative g-noncommuting Graph of Dihedral
Groups. In
In this section, we will discuss the properties of the relative g-noncommuting graph
of the dihedral group (D2n), for the case n is an odd number.

Lemma 3.1. Let G be D2n. If x, y ∈ G, then [x, y] = ai for some i = 0, 1, . . . , n−1.

Proof. Let G be D2n and x, y ∈ G.

If x = aj and y = ak for j, k = 0, 1, . . . , n− 1 where j ̸= k, then

[x, y] = a−ja−kajak = e. (3)

If x = aj and y = akb for j, k = 0, 1, . . . , n− 1 , then

[x, y] = a−jakbajakb = an−2j . (4)

If x = ajb and y = ak for j, k = 0, 1, . . . , n− 1, then

[x, y] = ajba−kajbak = a2k. (5)

If x = ajb and y = akb for j, k = 0, 1, 2, . . . , n− 1 for j ̸= k, then

[x, y] = ajbakbajbakb = a2(j−k). (6)

So, [x, y] = ai for some i = 0, 1, . . . , n− 1.

Lemma 3.2. Let G be D2n where n is odd. Let H be a subgroup of G and g = ai

for some i = 1, 2, . . . , n− 1.

(1) If H = ⟨a⟩, then |KH | = 2.
(2) If H = {e, ajb} for some j = 0, 1, . . . , n− 1, then |KG\H | = 4.

Proof.

(1) Let H = ⟨a⟩ and g = ai. We will prove that |KH | = 2.
Based on Lemma 3.1, we obtain :
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• If x = aj and y = ak for some j, k = 0, 1, . . . , n − 1 where j ̸= k
then from Lemma 3.1, [x, y] = e. Since g ̸= e, then [x, y] ̸= g and
[x, y] ̸= g−1.

• If x = aj and y = akb for some j, k = 0, 1, . . . , n−1 then [x, y] = an−2j ,
so that

[x, y] = g ⇔ [x, y] = ai [x, y] = g−1 ⇔ [x, y] = an−i (7)

⇔ an−2j = ai ⇔ an−2j = an−i

⇔ n− 2j = i mod n ⇔ 2j = i mod n

⇔ j =

{
n−i
2 , i is odd

n− i
2 , i is even

⇔ j =

{
i
2 , i is even

−(n−i
2 ), i is odd

If i is odd, x ∈ KH ⇔ x = a
n−i
2 or x = a−(n−i

2 ), and if i is even, then

x ∈ KH ⇔ x = a
i
2 or x = an−

i
2 . Therefore |KH | = 2.

(2) LetH = {e, ajb} for some j = 0, 1, . . . , n−1. We will show that |KG\H | = 4.
Based on Lemma 3.1, we obtain:
• If x = ajb and y = ak for some j = 0, 1, . . . , n−1 and k = 1, 2, . . . , n−1,

then [x, y] = a2k.
• If x = ajb and y = akb for j, k = 0, 1, . . . , n− 1, then [x, y] = a2(j−k).

By using similar argument as in Equation 7, if i is odd, then y ∈ KG\H ⇔
y ∈ {an−i

2 , a−(n−i
2 ), aj+

n−i
2 b, aj−(n−i

2 )b}. If i is even, then y ∈ KG\H ⇔ y ∈
{a i

2 , an−
i
2 , aj+

i
2 b, aj−( i

2 )b}, so that |KG\H | = 4.

Lemma 3.3. Let G be D2n where n is odd.

(1) If j = 1, 2, . . . , n− 1 and k = 0, 1, . . . , n− 1, then ajakb ̸= akbaj.
(2) If j, k = 0, 1, . . . , n− 1 and j ̸= k, then ajbakb ̸= akbajb.

Proof.

(1) If (aj)(akb) = (akb)(aj) then aj ∈ Z(G), but we know Z(G) = {e}. This
contradicts j ̸= 0. So, (aj)(akb) ̸= (akb)(aj)

(2)

al = a−l ⇔ l = n− l mod n ⇔ 2l = 0 mod n. (8)

Because n is odd, then Equation 8 is not statisfied so al ̸= a−l.
Consequently, ajbakb = aj−k ̸= ak−j = akbajb with j ̸= k.

Lemma 3.4. Let G be D2n with n is odd and H be a subgroup of G.

(1) If H = ⟨a⟩, then {
|CH(x)| = 1 , x ∈ G\H
|CG(x)| = n , x ∈ KH
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(2) If H = {e, ajb} for some j = 0, 1, . . . , n− 1, then{
|CH(x)| = 1 , x ∈ KG\H

|CG(x)| = 2 , x ∈ H\{e}

Proof. Let G be D2n with n is odd.

(1) Let H = ⟨a⟩. We will prove that |CH(x)| = 1. Based on Proposition 2.2,
obviously that e commutes with all x ∈ G. Let x ∈ G\H and y ∈ H.
Because x = ajb and y = ak, then from Lemma 3.3, xy ̸= yx. Thus, the
centralizer of x ∈ G\H is e, so that |CH(x)| = 1.
Next, we will prove that |CG(x)| = n with x ∈ KH and y ∈ G. From Lemma

3.2 we have x = a
n−i
2 or x = a−(n−i

2 ) for i is odd while x = a
i
2 or x = an−

i
2

for i is even. It is obvious that if y = aj for some j = 1, 2, . . . , n− 1, then
xy = yx. From Lemma 3.3, if y = ajb for some j = 1, 2, . . . , n − 1, then
xy ̸= yx.

So, the centralizer of x ∈ KH is H, so that |CG(x)| = n.
(2) Let H = {e, ajb} for some j = 0, 1, . . . , n−1. We will prove that |CH(x)| =

1. From Lemma 3.2, x ∈ {an−i
2 , a−(n−i

2 ), aj+
n−i
2 b, aj−

n−i
2 b} for i is odd and

x ∈ {a i
2 , an−

i
2 , aj+

i
2 b, aj−

i
2 b} for i is even. From Lemma 3.3, if x ∈ KG\H

and y = ajb for some j = 0, 1, . . . , n − 1, then xy ̸= yx. So, centralizer of
x ∈ KG\H is e, so that |CH(x)| = 1.

Next, we will prove that |CG(x)| = 2 for x ∈ H\{e} and y ∈ G. Note
that x = ajb. Since x2 = e, then the only elements that commute with x are
e and x. From Lemma 3.3, if y = akb for some j, k = 0, 1, . . . , n− 1 where
j ̸= k, then xy ̸= yx, while for y = ak for some k = 1, 2, . . . , n − 1, then
xy ̸= yx. So, the centralizer x ∈ H\{e} is {e, ajb}, so that |CG(x)| = 2.

Below we will discuss the lemmas related to conjugates. Before that, we will
first show the relationship between conjugates and commutators as follows.

Suppose x, y ∈ G. If [x, y] = g or [x, y] = g−1, then

x−1y−1xy = g or x−1y−1xy = g−1

xy = xg or xy = xg−1.

Lemma 3.5. Let G be D2n where n is odd. Let H be a subgroup of G and g = aib
for some i = 0, 1, . . . , n− 1.

(1) If x ∈ G\H, then x is not conjugate to xg and xg−1 in H.
(2) If x ∈ H , then x is not conjugate to xg and xg−1.

Proof. It is clear because [x, y] = g if and only if y−1xy = xg, and by Lemma 3.1
[x, y] = ai. Therefore, if g = aib then x ∈ G\H is not conjugate to xg and xg−1 in
H and x ∈ H is not conjugate to xg and xg−1.

Lemma 3.6. Let G be D2n with n is odd. Let H be a subgroup of G and g = ai

for some i = 0, 1, . . . , n− 1.
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(1) If H = ⟨a⟩, then x ∈ G\H is conjugate to xg and xg−1 in H.
(2) If H = {e, ajb}, then x ∈ H\{e} is conjugate to xg and xg−1.

Proof.

(1) Let H = ⟨a⟩. We will prove that x ∈ G\H and y ∈ KH , then x is conjugate
to xg and xg−1 in H. Let x = ajb for some j = 0, 1, . . . , n − 1. Based on

Lemma 3.2 for case i is odd take y1 = a
n−i
2 and y2 = a−(n−i

2 ), so that

xy1 = a
n−i
2 ajba−(n−i

2 )

= aj−ib
= xg

and
xy2 = a−(n−i

2 )ajba
n−i
2

= aj+ib
= xg−1

(9)

For case i is even, using the similar argument as in Equation 9, we obtain
x is conjugate to xg and xg−1.

Thus, every x ∈ G\H is conjugate to xg and xg−1 in H.
(2) Let H = {e, ajb} for some j = 0, 1, . . . , n − 1. We will prove that if x ∈

H\{e} and y ∈ KG\H , then x is conjugate to xg and xg−1.

Let x = ajb for some j = 0, 1, . . . , n−1. Based on Lemma 3.2, for case i is

odd take y ∈ {an−i
2 , a−(n−i

2 ), aj+
n−i
2 b, aj−(n−i

2 )b} and y ∈ {a i
2 , an−

i
2 , aj+

i
2 b,

aj−( i
2 )b} for i is even. By using similar argument as in Equation 9, we

obtain x ∈ H\{e} is conjugate to xg and xg−1.

Below is a lemma on the degree of the relative g-noncommuting graph of the dihe-
dral group D2n.

Lemma 3.7. Let G be D2n where n is odd and H be a subgroup of G. If g = aib
for some i = 0, 1, 2, . . . , n− 1, then

deg(x) =

{
2n− 1 , x ∈ H

|H| , x ∈ G\H

Proof. Note that g2 = e, but from Lemma 3.5 for x ∈ H or x ∈ G\H, x is not
conjugate to xg and xg−1. From Lemma 2.11, then

deg(x) =

{
|G| − 1 = 2n− 1 , x ∈ H

|H| , x ∈ G\H

Lemma 3.8. Let G be D2n where n is odd, H be a subgroup of G and g = ai for
some i = 1, 2, . . . , n− 1.

(1) If H = ⟨a⟩, then

deg(x) =


2n− 1 , x ∈ H\KH

n− 1 , x ∈ KH

n− 2 , x ∈ G\H
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(2) If H = {e, ajb} for some j = 0, 1, 2, . . . , n− 1, then

deg(x) =


2n− 1 , x = e

2n− 5 , x ∈ H\{e}
2 , x ∈ G\(H ∪KG\H)

1 , x ∈ KG\H

Proof.

(1) Note that H = ⟨a⟩ and g2 ̸= e. Based on Lemma 3.2 there are two elements
of H that are not connected to G\H. Based on Equation 2, for x ∈ KH

it is obviously conjugate to xg or xg−1 while x ∈ H\KH is not conjugate
to xg and xg−1. Notice that for x ∈ G\H. From Lemma 3.6, x ∈ G\H
is conjugate to xg and xg−1. So, from Lemma 2.11 and Lemma 3.4, we
obtain

deg(x) =


2n− 1 , x ∈ H\KH

2n− n− 1 = n− 1 , x ∈ KH

n− 2 , x ∈ G\H.

(2) Note that H = {e, ajb} for some j = 0, 1, . . . , n − 1. Based on Equation 4
and Equation 5, for x = e and y ∈ G, [x, y] ̸= g and [x, y] ̸= g−1. So, x is
not conjugate to xg and xg−1. For x ∈ KG\H , based on Equation 3, x is

conjugate to xg or xg−1 in H. From Lemma 3.6, x ∈ H\{e} is conjugate
to xg and xg−1. Otherwise, x ∈ G\(H ∪ KG\H) is not conjugate to xg
and xg−1. So, from Lemma 2.11 and Lemma 3.4, we obtain

deg(x) =


2n− 1 , x = e

2n− 2.2− 1 = 2n− 5 , x ∈ H\{e}
2 , x ∈ G\(H ∪KG\H)

2− 1 = 1 , x ∈ KG\H .

Furthermore, some lemmas on the number of edges of the relative g-noncommuting
graph of the dihedral group is given below.

Lemma 3.9. Let G be D2n where n is odd and H a subgroup of G. Suppose g = aib
for some i = 0, 1, 2, . . . , n− 1

(1) If H = ⟨a⟩, then the number of edges of Γg,H,G is

|E(Γg,H,G)| =
3n2 − n

2
.

(2) If H = {e, ajb} for some j = 0, 1, . . . , n − 1, then the number of edges of
Γg,H,G is

|E(Γg,H,G)| = 4n− 3.

Proof. Let G be D2n where n is odd and H a subgroup of G. Suppose g = aib
for some i = 0, 1, . . . , n− 1.



282 N.A. Supu, et al

(1) If H = ⟨a⟩, then from Lemma 3.7,

2|E(Γg,H,G)| =
∑

deg(x) = (2n− n)n+ n(2n− 1)

|E(Γg,H,G)| =
3n2 − n

2
.

(2) If H = {e, ajb} for some j = 0, 1, . . . , n− 1, then from Lemma 3.7,

2|E(Γg,H,G)| =
∑

deg(x) = (2n− 2)2 + 2(2n− 1)

|E(Γg,H,G)| =
8n− 6

2
= 4n− 3.

Lemma 3.10. Let G be D2n where n is odd. Let H be a subgroup of G and g = ai

for some i = 1, 2, . . . , n− 1.

(1) If H = ⟨a⟩, then the number of edges of Γg,H,G is

|E(Γg,H,G)| =
3n2 − 5n

2

(2) If H = {e, ajb} for some j = 0, 1, 2, . . . , n− 1, then the number of edges of
Γg,H,G is

|E(Γg,H,G)| = 4n− 7

Proof. Let G be D2n where n is odd. Let H be a subgroup of G and g = ai for
some i = 0, 1, . . . , n− 1.

(1) If H = ⟨a⟩, then from Lemma 3.8,

2|E(Γg,H,G)| =
∑

deg(x) = (n− 2)(2n− 1) + 2(n− 1) + (2n− n)(n− 2)

|E(Γg,H,G)| =
3n2 − 5n

2
.

(2) If H = {e, ajb} for some j = 0, 1, . . . , n− 1, then from Lemma 3.8,

2|E(Γg,H,G)| =
∑

deg(x) = 2n− 1 + 2n− 5 + (2n− 6)2 + 4(1)

|E(Γg,H,G)| =
8n− 14

2
= 4n− 7.

3.2. Topological Indices of Relative g-noncommuting Graph of Dihedral
Groups. In
In this section, we will discuss some topological indices of the relative g-noncommuting
graph of a group D2n, including the first Zagreb index, Wiener index, hyper Wiener
index, Wiener edge index, and Harary index.
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3.2.1. Case H = ⟨a⟩.

Theorem 3.11. Given Γg,H,G the relative g-noncommuting graph of group D2n

with n is odd. If H = ⟨a⟩ and g = aib for some i = 0, 1, . . . , n− 1, then

• the first Zagreb Index of Γg,H,G is

M1(Γg,H,G) = 5n3 − 4n2 + n.

• the Wiener Index of Γg,H,G is

W (Γg,H,G) =
1

2
(5n2 − 3n).

• the edge Wiener Index of Γg,H,G is

We(Γg,H,G) =
1

4
(9n4 − 16n3 + 9n2 − 2n).

• the hyper Wiener Index of Γg,H,G is

WW (Γg,H,G) = 3n2 − 2n.

• the Harary Index of Γg,H,G is

H(Γg,H,G) =
1

4
(7n2 − 3n).

Proof.

• From Definition 2.8 (1) and Lemma 3.7, we obtain

M1(Γg,H,G) =
∑

(deg(x))2

=
∑

x∈G\H

n2 +
∑
x∈H

(2n− 1)2

= 5n3 − 4n2 + n. (10)

• From Theorem 2.13 (1) and Lemma 3.7, we obtain

W (Γg,H,G) = |V (Γg,H,G)|(|V (Γg,H,G)| − 1)− |E(Γg,H,G)|

= 2n(2n− 1)−
(
3n2 − n

2

)
=

1

2
(5n2 − 3n).

• From Theorem 2.14, Lemma 3.7, and Equation 10, we obtain

We(Γg,H,G) = |E(Γg,H,g)|2 −
1

2
M1(Γg,H,G)

=
1

4
(9n4 − 16n3 + 9n2 − 2n).

• From Theorem 2.13 (2), and Lemma 3.7, we obtain

WW (Γg,H,G) =
3

2
|V (Γg,H,G)|(|V (Γg,H,G)| − 1)− 2|E(Γg,H,G)|

= 3n2 − 2n.
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• From Theorem 2.13 (3), and Lemma 3.7, we obtain

H(Γg,H,G) =
1

4
|V (Γg,H,G)|(|V (Γg,H,G)| − 1) +

1

2
|E(Γg,H,G)|

=
1

4
(7n2 − 3n).

Theorem 3.12. Given Γg,H,G the relative g-noncommuting graph of group D2n

with n is odd. If H = ⟨a⟩ and g = ai for some i = 1, 2, . . . , n− 1, then

• the first Zaegreb index of Γg,H,G is

M1(Γg,H,G) = 5n3 − 14n2 + 9n.

• the Wiener index of Γg,H,G is

W (Γg,H,G) =
1

2
(5n2 + n).

• the edge Wiener index of Γg,H,G is

We(Γg,H,G) =
1

4
(9n4 − 40n3 + 53n2 − 18n).

• the hyper Wiener index of Γg,H,G is

WW (Γg,H,G) = 3n2 + 2n.

• the Harary index of Γg,H,G is

H(Γg,H,G) =
1

4
(7n2 − 7n).

Proof.

• From Definition 2.8 (1) and Lemma 3.8, we obtain

M1(Γg,H,G) =
∑

deg(x)2

=
∑

x∈G\H

deg(x)2 +
∑

x∈H\KH

deg(x)2 +
∑

x∈KH

deg(x)2

= 5n3 − 14n2 + 9n. (11)

• From Theorem 2.13 (1), and Lemma 3.8, we obtain

W (Γg,H,G) = |V (Γg,H,G)|(|V (Γg,H,G)| − 1)− |E(Γg,H,G)|

=
1

2

(
5n2 + n

)
.

• From Theorem 2.14, Lemma 3.8, and Equation 11, we obtain

We(Γg,H,G) = |E(Γg,H,g)|2 −
1

2
M1(Γg,H,G)

=
1

4
(9n4 − 40n3 + 53n2 − 18n).
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• From Theorem 2.13 (2), and Lemma 3.8, we obtain

WW (Γg,H,G) =
3

2
|V (Γg,H,G)|(|V (Γg,H,G)| − 1)− 2|E(Γg,H,G)|

= 3n2 + 2n.

• From Theorem 2.13 (3), and Lemma 3.8, we obtain

H(Γg,H,G) =
1

4
|V (Γg,H,G)|(|V (Γg,H,G)| − 1) +

1

2
|E(Γg,H,G)|

=
1

4
(7n2 − 7n).

3.2.2. Case H = {e, ajb}.

Theorem 3.13. Given Γg,H,G the relative g-noncommuting graph of group D2n

with n is odd. If H = {e, ajb} and g = aib for some i, j = 0, 1, . . . , n− 1, then

• the first Zagreb index of Γg,H,G is

M1(Γg,H,G) = 8n2 − 6.

• the Wiener index of Γg,H,G is

W (Γg,H,G) = 4n2 − 6n+ 3.

• the edge Wiener index of Γg,H,G is

We(Γg,H,G) = 12n2 − 24n+ 12.

• the hyper Wiener index of Γg,H,G is

WW (Γg,H,G) = 6n2 − 11n+ 6.

• the Harary index of Γg,H,G is

H(Γg,H,G) =
1

2
(2n2 + 3n− 3).

Proof.

• From Definition 2.8 (1) and Lemma 3.7, we obtain

M1(Γg,H,G) =
∑

(deg(x))2

=
∑

x∈G\H

22 +
∑
x∈H

(2n− 1)2

= (2n− 2)22 + 2(2n− 1)2 = 8n2 − 6. (12)

• From Theorem 2.13 (1), and Lemma 3.7, we obtain

W (Γg,H,G) = |V (Γg,H,G)|(|V (Γg,H,G)| − 1)− |E(Γg,H,G)|
= 4n2 − 6n+ 3.
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• From Theorem 2.14, Lemma 3.7, and Equation 12, we obtain

We(Γg,H,G) = |E(Γg,H,g)|2 −
1

2
M1(Γg,H,G)

= 12n2 − 24n+ 12.

• From Theorem 2.13 (2), and Lemma 3.7, we obtain

WW (Γg,H,G) =
3

2
|V (Γg,H,G)|(|V (Γg,H,G)| − 1)− 2|E(Γg,H,G)|

= 6n2 − 11n+ 6.

• From Theorem 2.13 (3), and Lemma 3.7, we obtain

H(Γg,H,G) =
1

4
|V (Γg,H,G)|(|V (Γg,H,G)| − 1) +

1

2
|E(Γg,H,G)|

=
1

2
(2n2 + 3n− 3).

Theorem 3.14. Given Γg,H,G the relative g-noncommuting graph of group D2n

with n is odd. If H = {e, ajb} and g = ai for some i = 1, 2, . . . , n − 1 and
j = 0, 1, . . . , n− 1, then

• the first Zagreb index of Γg,H,G is

M1(Γg,H,G) = 8n2 − 16n+ 6.

• the Wiener index of Γg,H,G is

W (Γg,H,G) = 4n2 − 6n+ 7.

• the edge Wiener index of Γg,H,G is

We(Γg,H,G) = 12n2 − 48n+ 46.

• the hyper Wiener index of Γg,H,G is

WW (Γg,H,G) = 6n2 − 11n+ 14.

• the Harary index of Γg,H,G is

H(Γg,H,G) =
1

2
(2n2 + 3n− 7).

Proof.

• From Defnition 2.8 (1) and Lemma 3.8, we obtain

M1(Γg,H,G) =
∑

(deg(x))2

=
∑
x=e

(2n− 1)2 +
∑

x∈H\{e}

(2n− 5)2 +
∑

x∈G\(H∪KG\H)

22 +
∑

x∈KG\H

12

= 8n2 − 16n+ 6. (13)
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• From Theorem 2.13 (1), and Lemma 3.8, we obtain

W (Γg,H,G) = |V (Γg,H,G)|(|V (Γg,H,G)| − 1)− |E(Γg,H,G)|
= 4n2 − 6n+ 7.

• From Theorem 2.14, Lemma 3.8, and Equation 13, we obtain

We(Γg,H,G) = |E(Γg,H,g)|2 −
1

2
M1(Γg,H,G)

= 12n2 − 48n+ 46.

• From Theorem 2.13 (2), and Lemma 3.8, we obtain

WW (Γg,H,G) =
3

2
|V (Γg,H,G)|(|V (Γg,H,G)| − 1)− 2|E(Γg,H,G)|

= 6n2 − 11n+ 14

• From Theorem 2.13 (3), and Lemma 3.8, we obtain

H(Γg,H,G) =
1

4
|V (Γg,H,G)|(|V (Γg,H,G)| − 1) +

1

2
|E(Γg,H,G)|

=
1

2
(2n2 + 3n− 7).

Conclusion. In this research, several topological indices are obtained, namely the
first Zagreb index, Wiener index, edge Wiener index, hyper Wiener index, and
Harary index. In further research, we will discuss the vertex degree of the relative
g-noncommuting graph and the topological index for another case, namely the case
of n even.
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