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Abstract. This paper focuses on studying the properties of constacyclic codes and

quantum error-correcting codes. The code is studied over a specific mathematical

structure called the ring S, which is defined as S = Iq [u, v]/⟨u2 −α2, v2 −α2, uv−
vu⟩, where Iq is a finite field of q elements, α be the nonzero elements of the field

Iq , and q is a power of an odd prime p such that q = pm, for m ≥ 1. The paper

also introduces a Gray map and use it to decompose constacyclic codes over the

ring S into a direct sum of constacyclic codes over Iq . We construct new and better

quantum error-correcting codes over the ring S (cf.; Table 1 and Table 2). Moreover,

we also obtain best known linear codes as well as best dimension linear codes (cf.;

Table 4).
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1. Introduction

Quantum codes, like conventional linear codes, aid in securing quantum in-
formation while it is being transmitted across a quantum channel. These codes are
widely employed in quantum computation, which provides faster solutions to diffi-
cult problems than classical computation. For instance, in quantum computation,
Shor’s Algorithm [1] takes polynomial time to determine the prime factors of a big
number, whereas in classical computation, it takes sub-exponential time. By Shor
[2], quantum codes were first introduced. Later, Calderbank et al. [3] formalized
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the challenge of constructing quantum codes from classical codes. A q-ary quan-
tum code with the parameters [[n, k, d]]q is a type of quantum error-correcting code
used in quantum computing. The parameters of the code indicate the length of
the code, the number of quantum bits (qubits) it can encode, and the minimum
distance among codewords. The quantum singleton bound is a mathematical limit
that determines the maximum error that can be corrected by the code, and it is
given by the formula n− k+ 2 ≥ d. If a code achieves this bound then it is known
as Maximum Distance Separable (MDS), which means that it can correct the max-
imum possible number of errors for its length and dimension.

“One of the primary goals of Coding Theory is to investigate linear codes
with large code rates and minimum distances. As a result, this leads to the fol-
lowing inquiries: What is the maximum rate of a code with a given length and
distance? What is the maximum distance of a code with a given length and rate?
To address these challenges, numerous theoretical bounds on [n, k, d] have been
proposed [4], including the Singleton bound, Plotkin bound, Hamming bound, and
Griesmer bound, among others. A code [n, k, d] that achieves any of these bounds is
referred to as optimal under that bound. Some online databases exist that compile
the parameters of optimal and best-known codes (e.g., best known linear codes and
best dimension linear codes). The database [5] is a popular platform containing
parameters for various types of linear codes over finite fields of size up to 9.”

Cyclic codes over I4 + uI4 with u2 = 0 were previously utilized by Kai and
Zhu to determine quantum codes over I4. Similarly, Qian [6] employed cyclic codes
over I2 + vI2 with u2 = 0 to construct binary quantum codes. The research on
cyclic codes over finite commutative rings has had a significant impact on quantum
codes, as evident in works such as [7], [8], [9], and [10]. Constacyclic codes, as a
generalized type of cyclic codes, have also proven to be essential in quantum code
construction ([11], [12]). Notably, the study of constacyclic codes over Ip + vIp +
v2Ip, where v3 = v, by Ma et al. [13] and u-constacyclic codes over Ip + uIp, with
u2 = 1, by Gao and Wang [14] in 2018 have led to the development of non-binary
quantum codes. Building upon the work of Alkenani et al. [15], who explored
constacyclic codes over a finite non-chain ring for constructing quantum codes, this
article focuses on quantum codes over the field Iq. To achieve this, we utilize
constacyclic codes over the ring S = Iq[u, v]/⟨u2 − α2, v2 − α2, uv − vu⟩. A key
aspect of our investigation is the exploitation of the self-orthogonal property of
these constacyclic codes. This approach holds great promise in the construction of
efficient quantum codes. In 2019, Islam and Prakash [16] obtained quantum codes
over the ring I[v,w]/⟨v2 − 1,w2 − 1, vw − wv⟩. In this article, we describe the
properties of constacyclic codes over the ring S. We define a Gray map and with
the help of Gray may we obtain better quantum codes over S than the old quantum
codes presented in [17, 18, 7, 8, 19, 20, 21, 16, 22] (and references therein).
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Three contributions of this article are as follows:

(i) The article offered better quantum codes from the old quantum codes pre-
sented in recent references [17, 18, 7, 8, 19, 20, 21, 16, 22], see Tables 1 and
2.

(ii) The article provides some new quantum codes, see Tables 1 and 2
(iii) The article examines some Best Known Linear Codes (BKLC) as well as

best dimension linear codes over the ring S, see Table 4.

2. Some Background

This section provides a review of fundamental definitions in coding the-
ory. We start by considering a linear code L, which is a subset of Inq . If x =
(x0, x1, . . . , xn−1) is a codeword in L, then its y-constacyclic version, denoted as
σy(x), is defined as (yxn−1, x0, . . . , xn−2), and this transformed codeword also be-
longs to L. When y = 1 or y = −1, we refer to L as a cyclic code or a negacyclic
code, respectively. The dual of a y-constacyclic code is a y−1-constacyclic code. We
focus on finding quantum codes over the ring S = Iq[u, v]/⟨u2−α2, v2−α2, uv−vu⟩,
for q be an odd prime power. The ringS can be written asS = Iq+uIq+vIq+uvIq,
satisfying u2 = α2, v2 = α2, uv = vu. Each element in S takes the form
a1 + a2u + a3v + a4uv, where ai ∈ Iq for 1 ≤ i ≤ 4. Now, let’s proceed with
the following definitions:

(i) The Hamming distance, denoted by d(x,y), measures the number of differ-
ing components between two codewords x = x1x2 . . . xn and y = y1y2 . . . yn.

(ii) The Hamming weight of a codeword x = x1x2 . . . xn is represented as
wtH(x) and counts the number of non-zero components xi.

(iii) The Euclidean inner product of two vectors x and y in Inq is given by
x · y = x0y0 + x1y1 + . . .+ xn−1yn−1.

(iv) A linear code is a non-empty subset L of the ring S. It is an S-submodule
of Sn, and its elements are called codewords.

(v) A code L is self-orthogonal if L ⊆ L⊥, self-dual if L = L⊥, and dual-
containing if L⊥ ⊆ L.

(vi) A linear code L of length n overS is cyclic if every cyclic shift of a codeword
c in L is also a codeword in L. The cyclic shift operator is denoted as J,
and the shift of a codeword c = (c0, c1, c2, . . . , cn−1) is given by σ(c) =
(cn−1, c0, . . . , cn−2).

(vii) A linear code C is referred to as a Linear Complementary Dual (LCD) code
if it satisfies the condition:

L ∩ L⊥ = {0}.

One of the most crucial parameters associated with a code is its minimum
distance. For a linear code [n, k, d]q, the Singleton bound provides an upper limit
on its minimum distance: d(L) ≤ n− k + 1.

A linear code [n, k, d]q that attains this upper bound is known as a Maximum
Distance Separable (MDS) code. Furthermore, a linear code C with parameters
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[n, k, d]q is termed an ”almost MDS” code if its minimum distance satisfies: d(L) =
n− k.

A code is considered ”optimal” if it achieves the highest possible minimum
distance for its given length and dimension. Consequently, an MDS code is, by
definition, an optimal code.

3. Gray map and linear codes over the ring S

In addition to introducing the Gray map S over the ring S formed by the
matrix A, this section will also look at the structure and characteristics of linear
codes with length n over S. We analyze several characteristics of linear codes
using this Gray map, which is a key tool in the study of coding theory and its
applications. By using this Gray map, we find a class of constacyclic codes over
the ring S. In this paper, we take the ring S = Iq[u, v]/⟨u2 − α2, v2 − α2, uv−
vu⟩ = Iq + uIq + vIq + uvIq, and the set B = {1, u, v, uv} is a set of basis of S.
We represent the basis elements like as S as ζ1 = 1, ζ2 = u, ζ3 = v, ζ4 = uv.
On the other hand, we have

P1 =
(α+ u)(α+ v)

4α2
,

P2 =
(α+ u)(α− v)

4α2
,

P3 =
(α− u)(α+ v)

4α2
,

P4 =
(α− u)(α− v)

4α2
.

We can easily seen that P2
i = Pi and PiPj = 0, where i ̸= j for 1 ≤ i, j ≤ 4.

It is easy to see that
4∑

i=1

Pi = 1 for 1 ≤ i, j ≤ 4. Thus {Pi | 1 ≤ i ≤ 4} can also

be regarded as a set of basis of S. Now, we give the relationship between ζi and
Pi for 1 ≤ i ≤ 4 on S. We have ζ1 = 1, ζ2 = u, ζ3 = v, ζ4 = uv

and P1 =
(α+ u)(α+ v)

4α2
, P2 =

(α+ u)(α− v)

4α2
, P3 =

(α− u)(α+ v)

4α2
and

P4 =
(α− u)(α− v)

4α2
. We write the connection of two type of bases in the form,

(P1, P2, P3, P4) = (ζ1, ζ2, ζ3, ζ4)A,
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where

A =



1

4

1

4

1

4

1

4

1

4α

1

4α

−1

4α

−1

4α

1

4α

−1

4α

1

4α

−1

4α

1

4α2

−1

4α2

−1

4α2

1

4α2


.

Henceforward, we see that (A−1)T =


1 1 1 1
α α −α −α
α −α α −α
α2 −α2 −α2 α2

 and (A−1) =


1 α α α2

1 α −α −α2

1 −α α −α2

1 −α −α α2

. We take that A−1 = N and (A−1)T = NT . By using

Chinese Remainder Theorem, we write S = SP1⊕SP2⊕SP3⊕SP4 = IqP1⊕
IqP2 ⊕ IqP3 ⊕ IqP4. Therefore, S is semi-local, commutative, and nonchain ring

and each r ∈ S can be represented as r =
4∑

i=1

aiζi =
4∑

i=1

νiPi, where ai, νi ∈ Iq,

for 1 ≤ i ≤ 4.
With the help of matrix A, we give more intuitive Gray map

S : S −→ I4q

by S (ν1P1 + ν2P2 + ν3P3 + ν4P4) = (ν1, ν2, ν3, ν4)N
T , where NT denotes

the transpose of N and NT =


1 1 1 1
α α −α −α
α −α α −α
α2 −α2 −α2 α2

.
In the matrix N , we choose those nonzero α from the finite field Iq such that

NNT = 4I4, where I4 is the identity matrix of order 4 over Iq. It is evident that S
is a bijective, linear map that is extendable component-wise over Sn. We describe
Gray weight of c ∈ S such that wG(c) = wH(S (c)), where wH is the Hamming

weight in Iq. The Gray weight c ∈ Sn is wG(c) =
n∑

i=0

wG(ci) and Gray distance

between c
′
and c

′′
is dG(c

′
, c

′′
) = wG(c

′
, c

′′
). Further, the Gray distance for a

linear code L is given by dG(L) = {wG(c) | 0 ̸= c ∈ L}.
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For a linear code L of length n over S, we define four linear codes Lj for
1 ≤ j ≤ 4 over Iq as follows:

Lj = {xj ∈ Inq |
4∑

i=1

Pixi ∈ L for some xi ∈ Inq , i ̸= j, and 1 ≤ i ≤ 4}.

Each Lj is a linear code of length n over Iq, and we denote the linear code
Lj as Aj for 1 ≤ j ≤ 4.

Next, we define the sum and product of linear codes:

A1 ⊕ A2 ⊕ A3 ⊕ A4 = {θ1 + θ2 + θ3 + θ4 | θi ∈ Ai, 1 ≤ i ≤ 4},

and

A1 ⊗ A2 ⊗ A3 ⊗ A4 = {θ1, θ2, θ3, θ4 | θi ∈ Ai, 1 ≤ i ≤ 4}.
Thus, a linear code L having length n over S can be uniquely expressed as:

L = P1L1 ⊕P2L2 ⊕P3L3 ⊕P4L4.

In the case where the rows of a matrix generate the code L, that matrix
is referred to as the generator matrix for the code L. Specifically, let Gi be the
generator matrix of the code Li for i = 1, 2, 3, 4. Then, a generator matrix of the
code L is

G =


P1G1

P2G2

P3G3

P4G4


and a generator of S (L) is

S (G) =


S (P1G1)
S (P2G2)
S (P3G3)
S (P4G4)

 .

Proposition 3.1. The Gray map S is linear and distance preserving map from
(Sn, dL) to (I4nq , dH), where dL = dH .

Proof. Let x1,x2 ∈ Sn

x1 = ν1P1 + ν2P2 + ν3P3 + ν4P4

x2 = ν
′

1P1 + ν
′

2P2 + ν
′

3P3 + ν
′

4P4

where ai, bi ∈ Iq and 1 ≤ i ≤ 4. Then, we have

x1 + x2 = (ν1 + ν
′

1)P1 + (ν2 + ν
′

2)P2 + (ν3 + ν
′

3)P3 + (ν4 + ν
′

4)P4

S (x1 + x2) = (ν1 + ν
′

1 + ν2 + ν
′

2 + ν3 + ν
′

3 + ν4 + ν
′

4)(N)T

= (ν1, ν2, ν3, ν4)(N)T + (ν
′

1, ν
′

2, ν
′

3, ν
′

4)(N)T

= S (x1) + S (x2)
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and

S (γL1) = S (ν1P1 + ν2P2 + ν3P3 + ν4P4)

= (γν1, γν2, γν3, γν4)(N)T

= γ(ν1, ν2, ν3, ν4)(N)T

= γS (x1).

So, S is an Iq-linear map.

Moreover, we have

dL(x1, x2) = wL(x1 − x2)

= wH(S (x1 − x2))

= wH(S (x1)− S (x2))

= dH(S (x1), S (x2)).

Hence, S is distance a preserving map.
□

Proposition 3.2. Let L be a linear code having length n over S. Then

(i) S (L⊥) = S (L)⊥.

(ii) S (L) is a linear code having the parameters [4n,
4∑

i=1

ki, d] over Iq.

(iii) L is a self-dual code having length n if and only if S (L) is a self-dual linear
code of length 4n over Iq.

(iv) L is a self-orthogonal linear code having length n over S if and only if
S (L) is a self-orthogonal linear code of length 4n over Iq.

Proof. (i) Suppose c = (c0, c1, . . . , cn−1) ∈ L⊥, where ci = P1c
1
i +P2c

2
i +P3c

3
i +

P4c
4
i , for 0 ≤ i ≤ n − 1. Then, we will show that S (c) ∈ S (L⊥). Next let us

consider, d = (d0, d1, . . . , dn−1) ∈ L, where di = P1d
1
i +P2d

2
i +P3d

3
i +P4d

4
i for

0 ≤ i ≤ n− 1. Hence,

c · d = 0

=⇒
n−1∑
i=0

cidi = 0

=⇒
n−1∑
i=0

(P1c
1
i d

1
i +P2c

2
i d

2
i +P3c

3
i d

3
i +P4c

4
i d

4
i ) = 0.

From here,

n−1∑
i=0

c1i d
1
i =

n−1∑
i=0

c2i d
2
i =

n−1∑
i=0

c3i d
3
i =

n−1∑
i=0

c4i d
4
i = 0.

Now again, S (d) = [(d10, d
2
0, d

3
0, d

4
0)N, . . . , (d1n−1, d

2
n−1, d

3
n−1, d

4
n−1)N ] = (y0N, y1N,
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. . . , yn−1N) and S (c) = [(c10, c
2
0, c

3
0, c

4
0)N, . . . , (c1n−1, c

2
n−1, c

3
n−1, c

4
n−1)N ] = (z0N,

z1N, . . . , zn−1N), where yi = (d1i , d
2
i , d

3
i , d

4
i ), zi = (c1i , c

2
i , c

3
i , c

4
i ) and N = ((A−1)T )

for 0 ≤ i ≤ n− 1. Then, we have

S (d) · S (c) = S (d)S (c)T

=

n−1∑
i=0

yiNNT zTi

= 4

n−1∑
i=0

yiz
T
i

= 4

n−1∑
i=0

(c1i d
1
i + c2i d

2
i + c3i d

3
i + c4i d

4
i ) = 0.

From here, S (c) ∈ S (L)⊥ and so S (L⊥) ⊆ S (L)⊥. But, S is a bijective map,
|S (L⊥)| = |S (L)⊥|. Therefore, S (L⊥) = S (L)⊥.

(ii) We know that S (L) is a linear map having length 4n over Iq and also S
is distance preserving map. Therefore, S (L) be a linear code having parameters

[4n,
4∑

i=1

ki, d] over Iq.

(iii) Suppose L be a linear code having length n that means L = L⊥. Hence,
S (L) = S (L⊥) = S (L)⊥. From here, S (L) is a self-dual linear code having
length 4n over Iq.

(iv) Proof is similar as part (iii).

□

Proposition 3.3. Let L = ⊕4
i=1PiLi be a linear code of length n over S. Then

(i) S (L) = L1 ⊗ L2 ⊗ L3 ⊗ L4. and |L| = |L1||L2||L3||L4|.
(ii) L⊥ = ⊕4

i=1PiL
⊥
i , further, L is self-orthogonal if and only if Li is self-orthogonal

and L is self-dual if and only if Li is self-dual, for 1 ≤ i ≤ 4.

Proof. (i) Let s = (ν10 , ν11 , . . . , ν1n−1, ν20 , ν21 , . . . , ν2n−1, ν30 , ν31 , . . . , ν3n−1, ν40 ,

ν41 , . . . , ν4n−1) ∈ S (L) and tj =
4∑

i=1

νijPi, for 1 ≤ j ≤ n− 1. So t = (t0, t1, . . . ,

tn−1) ∈ L. Since S is bijective, (νi0, ν
i
1, . . . , ν

i
n−1) ∈ Li by definition of Li for 1 ≤

i ≤ 4, and this implies that s ∈ L1⊗L2⊗L3⊗L4. Hence, S (L) ⊆ L1⊗L2⊗L3⊗L4.

Conversely, let s = (ν10 , ν
1
1 , . . . , ν

1
n−1, ν

2
0 , ν

2
1 , . . . , ν

2
n−1, ν

3
0 , ν

3
1 , . . . , ν

3
n−1,

ν40 , ν
4
1 , . . . , ν

4
n−1) ∈ L1⊗L2⊗L3⊗L4, then (νi0, ν

i
1, . . . , ν

i
n−1) ∈ Li for 1 ≤ i ≤ 4.

We choose tj =
4∑

i=1

νijPi for 1 ≤ j ≤ n− 1, then t = (t0, t1, . . . , tn−1) ∈ L and
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y(t) = s. Hence s ∈ S (L). This implies that L1 ⊗ L2 ⊗ L3 ⊗ L4 ⊆ S (L). More-
over, since S is bijective, |L| = |S (L)|. Therefore, |L| = |L1 ⊗ L2 ⊗ L3 ⊗ L4| =
|L1||L2||L3||L4|.

(ii) LetDj = {tj ∈ Inq |
4∑

i=1

Piti ∈ L⊥} for some tj ∈ Inq , i ̸= j and 1 ≤ i, j ≤

4. Then, L⊥ is uniquely represented as L⊥ = P1D1 ⊕ P2D2 ⊕ P3D3 ⊕ P4D4.

Since D1 = {t1 ∈ Inq such that
4∑

i=1

Piti ∈ L⊥, for some ti ∈ Inq , i ̸= 1 and

1 ≤ i ≤ 4}. Clearly L1D1 = 0, so D1 ⊆ L⊥. Let L1 ∈ L⊥, then L1x1 = 0 for any

c =
4∑

i=1

Pixi ∈ L. So P1L1c = P1L1x1 = 0 and this implies that P1L1 ∈ L⊥.

We have, L1 ∈ D1 by the unique representation of L⊥, and hence L⊥ ⊆ D1.
Similarly, we can show L⊥

j = D⊥
j for 1 ≤ i ≤ 4. Thus, L⊥ = ⊕4

i=1PiL
⊥
i .

Moreover, L is self-orthogonal if and only if L ⊆ L⊥. This shows that P1L1 ⊕
P2L2 ⊕P3L3 ⊕P4L4 ⊆ P1L

⊥
1 ⊕P2L

⊥
2 ⊕P3L

⊥
3 ⊕P4L

⊥
4 , for 1 ≤ i ≤ 4. Similarly,

L is self-dual.
□

4. y-Constacyclic codes over S

In this section, we investigate y-constacyclic codes and their generators over
S. Moreover, this y-constacyclic codes help to obtain quantum codes that are
better quantum codes (see Table ?? and Table 2). We also obtain Best Known
Linear Codes (BKLC), and Best Dimension Linear Codes (BDLC), i.e., optimal
codes in Table 4.

Let y ∈ S such that y =
4∑

i=1

yiζi, where yi ∈ Iq for 1 ≤ i ≤ 4. Let y ∈ R

such that y = y1 + y2u+ y3v+ y4uv, where yi ∈ Iq for 1 ≤ i ≤ 4.

y = (y1, y2, y3, y4)N
T


P1

P2

P3

P4

 = (ℓ1, ℓ2, ℓ3, ℓ4)


P1

P2

P3

P4

 .

This implies that

(ℓ1, ℓ2, ℓ3, ℓ4) = (y1, y2, y3, y4)N
T

(ℓ1, ℓ2, ℓ3, ℓ4) = (y1, y2, y3, y4)


1 1 1 1
α α −α −α
α −α α −α
α2 −α2 −α2 α2





148 Shakir Ali, Pushpendra Sharma

and hence

ℓ1 = y1 + αy2 + αy3 + α2y4

ℓ2 = y1 + αy2 − αy3 − α2y4

ℓ3 = y1 − αy2 + αy3 − α2y4

ℓ4 = y1 − αy2 − αy3 + α2y4.

Proposition 4.1. Suppose y =
4∑

i=1

yiζi is an element of S and (ℓ1, ℓ2, ℓ3, ℓ4) =

(y1, y2, y3, y4)N
T . Then y is a unit in S ⇐⇒ ℓi are units in Iq for 1 ≤ i ≤ 4.

Proof. We know that y =
4∑

i=1

ℓiPi (where ℓ′is are mentioned above). Therefore, y

is unit in S if and only if there exists an element ν =
4∑

i=1

βiPi in S such that

1 = yν =

(
4∑

i=1

ℓiPi

)(
4∑

i=1

βiPi

)
=

4∑
i=1

ℓiβiPi.

Here, Pi for 1 ≤ i ≤ 4 are Iq linear independent and
4∑

i=1

Pi = 1. Therefore, y is

unit if and only if ℓiβi = 1 for 1 ≤ i ≤ 4. □

Theorem 4.2. Suppose L = ⊕4
i=1PiLi is a linear code having length n over the

ring S, for y ∈ U(S). Then, L is a y-constacyclic codes having length n over S
⇐⇒ Li are ℓi-constacyclic codes having length n over Iq for 1 ≤ i ≤ 4.

Proof. Let L = ⊕4
i=1PiLi represent a linear code with length n over S. For every

codeword c = (c0, c1, . . . , cn−1) ∈ L, where cj =
∑4

i=1 c
i
jPi, c

i
j ∈ Iq for 1 ≤ i ≤ 4

and j = 0, 1, 2, . . . , n− 1, we have

x1 = (c10, c11, c12, . . . , c1n−1),

x2 = (c20, c21, c22, . . . , c2n−1),

x3 = (c30, c31, c32, . . . , c3n−1)

and
x4 = (c40, c41, c42, . . . , c4n−1).

It is important that L is a y-constacyclic code having length n overS ⇐⇒ σy(c) =
(ycn−1, c0, c1, . . . , cn−2) ∈ L for any c = (c0, c1, c2, . . . , cn−1) ∈ L.

ycn−1 = y

4∑
i=1

cin−1Pi

=

4∑
i=1

ycin−1Pi

=

4∑
i=1

ℓic
i
n−1Pi.
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Consequently, σy(c) = (ycn−1, c0, c1, . . . , cn−2) =
4∑

i=1

(ℓic
i
n−1, c

i
0, c

i
1, . . . , c

i
n−2)Pi.

Thus, σy(c) ∈ L if and only if σy(xi) = (ℓic
i
n−1, ci0, ci1, . . . , cin−2) ∈ Li for

1 ≤ i ≤ 4. Hence, L is a y-constacyclic codes of length n over S if and only if each
Li is ℓi-constacyclic codes of length n over Iq for 1 ≤ i ≤ 4.

□

The following theorem related to generators of y-constacyclic code having
length n over S.

Theorem 4.3. Let L = ⊕4
i=1PiLi be a y-constacyclic code with length n over

S, for y ∈ U(S) and li(ϑ) is the generator polynomial of a ℓi-constacyclic code Li,
which divide ϑn − ℓi for 1 ≤ i ≤ 4.

(i) L = ⟨l1(ϑ)P1, l2(ϑ)P2, l3(ϑ)P3, l4(ϑ)P4⟩ and |L| = q
4n−

4∑
i=1

deg(li(ϑ))
.

(ii) f(ϑ) =
4∑

i=1

li(ϑ)Pi is a divisor of ϑn − y such that L = ⟨f(ϑ)⟩.

Proof. (i) In view of Theorem 4.2, L
′

is are ℓi-constacyclic codes of length n over Iq
for 1 ≤ i ≤ 4. Since L = ⊕4

i=1PiLi is a y-constacyclic code of length n overS. Here
li(ϑ) is the monic generator polynomial of Li, we get Li = ⟨li(ϑ)⟩ ⊆ Iq[ϑ]/⟨ϑn−1⟩
for 1 ≤ i ≤ 4. Therefore, L = ⟨l1(ϑ)P1, l2(ϑ)P2, l3(ϑ)P3, l4(ϑ)P4⟩. Since the
Gray map S is bijective, we have |S (L)| = |L|. From Proposition 3.3, we get

|L| = |L1||L2||L3||L4|
= qn−degl1(ϑ) · qn−degl2(ϑ) · qn−degl3(ϑ) · qn−degl4(ϑ)

= q
4n−

4∑
i=1

degli(ϑ)
.

(ii) By part (i), L = ⟨l1(ϑ)P1, l2(ϑ)P2, l3(ϑ)P3, l4(ϑ)P4⟩. Suppose D = ⟨l1(ϑ)P1

+ l2(ϑ)P2 + l3(ϑ)P3 + l4(ϑ)P4⟩. Then it is obvious that D ⊆ L. Since P2
i = Pi

and PiPj = 0, where i ̸= j for i, 1 ≤ j ≤ 4. Hence, liPi = (l1(ϑ)P1 + l2(ϑ)P2 +
l3(ϑ)P3+ l4(ϑ)P4). This implies that L ⊆ D . Therefore, L = D = ⟨f(ϑ)⟩, where

f(ϑ) =
4∑

i=1

li(ϑ)Pi, for 1 ≤ i ≤ 4. Here, li(ϑ) is the monic generator polynomials of

Li for 1 ≤ i ≤ 4. Hence, li(ϑ) divides ϑ
n − ℓi such that ϑn − ℓi = hi(ϑ)li(ϑ), which



150 Shakir Ali, Pushpendra Sharma

implies that (ϑn − ℓi)Pi = hi(ϑ)li(ϑ)Pi for 1 ≤ i ≤ 4. Then, we have

ϑn − y = ϑn

(
4∑

i=1

Pi

)
−

(
4∑

i=1

ℓi

)

=

4∑
i=1

(ϑn − ℓi)Pi

=

4∑
i=1

hi(ϑ)li(ϑ)Pi

=

(
4∑

i=1

hi(ϑ)Pi

)(
4∑

i=1

li(ϑ)Pi

)

ϑn − y =

4∑
i=1

(hi(ϑ)Pi)f(ϑ).

Hence, f(ϑ) divides ϑn − y. □

Consider L as a linear code of length n over S, given by L = ⊕4
i=1PiLi.

According to Proposition 3.3, the dual code L⊥ = ⊕4
i=1PiL

⊥
i is also a linear code

of length n over S. It is worth noting that the dual of a y-constacyclic code of
length n over S corresponds to a y−1-constacyclic code of the same length and
over the same ring S. Exploiting this duality property, we present the following
insightful results regarding the dual y-constacyclic codes.

Corollary 4.4. Let L = ⊕4
i=1PiLi be a y-constacyclic code of length n over S

such that y =
4∑

i=1

ℓiPi ∈ S is a unit. We have

(i) The dual L⊥ = ⊕4
i=1PiL

⊥
i is a y−1-constacyclic code of length n over S and

L⊥
i are γ−1

i -constacyclic codes with length n over Iq, where 1 ≤ i ≤ 4 respectively.
(ii) Let li(ϑ) is the monic generator polynomials of ℓi-constacyclic code Li which
divides ϑn − ℓi for 1 ≤ i ≤ 4. Then,

(a) L⊥ = ⟨l∗1(ϑ)P1, l∗2(ϑ)P2, l∗3(ϑ)P3, l∗4(ϑ)P4⟩ and |L⊥| = p

4∑
i=1

degli(ϑ)
.

(b) L⊥ = ⟨h′
(ϑ)⟩, where h

′
(ϑ) =

4∑
i=1

h∗
i (ϑ)Pi.

Here ϑn − ℓi = hi(ϑ)li(ϑ) for some hi(ϑ) ∈ Iq[ϑ] and hi(ϑ) = β0 + β1ϑ + · · · +
βn−rϑ

n−r. Then h∗
i (ϑ) = βn−r + βn−r−1ϑ+ · · ·+ β0ϑ

n−r and h∗
i (ϑ) generates the

dual ℓ−1
i -constacyclic code L⊥.

Consider L as a linear code of length n over S, given by L = ⊕4
i=1PiLi. Let

y be a unit, represented as y =
4∑

i=1

yiζi =
4∑

i=1

ℓiPi. Based on Proposition 3.3, we

find that L is self-dual if and only if each Li is self-dual. Furthermore, in view of
Proposition 4.1 and Corollary 4.4, we can deduce that L can possess self-duality if
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ℓi takes values of ±1 for 1 ≤ i ≤ 4.

Proposition 4.5. Let L = ⊕4
i=1PiLi be a y-constacyclic code of length n over S.

Then
(i) L is cyclic code of length n over S if and only if each Li is cyclic code of length
n over Iq for 1 ≤ i ≤ 4.
(ii) L is negacyclic code of length n over S if and only if each Li is negacyclic code
of length n over Iq for 1 ≤ i ≤ 4.

Proof. (i) Let L be a cyclic code of length n over S. Let p ∈ L1, q ∈ L2, r ∈
L3, s ∈ L4 such that

p = (p0, p1, p2, . . . , pn−1),

q = (q0, q1, q2, . . . , qn−1),

r = (r0, r1, r2, . . . , rn−1),

and

s = (s0, s1, s2, . . . , sn−1).

Now again, c = (c0, c1, . . . , cn−1) ∈ L. By definition σ(c) ∈ L. Since ν1σ(p) +
ν2σ(q) + ν3σ(r) + ν4σ(s) = σ(c), we have ν1σ(p) + ν2σ(q) + ν3σ(r) + ν4σ(s) ∈ L.
Thus, σ(p) ∈ L1, σ(q) ∈ L2, σ(r) ∈ L3, σ(s) ∈ L4. This implies that L1, L2, L3

and L4 are cyclic codes of length n over Iq.

Conversely, for any c = (c0, c1, . . . , cn−1) ∈ L, we have write its components
as ci = ν1pi+ν2qi+ν3ri+ν4si, where pi, qi, ri, si ∈ Iq for 0 ≤ i ≤ n−1. Consider
p = (p0, p1, p2, . . . , pn−1), q = (q0, q1, q2, . . . , qn−1), r = (r0, r1, r2, . . . , rn−1)
and s = (s0, s1, s2, . . . , sn−1). Then p ∈ L1, q ∈ L2, r ∈ L3, s ∈ L4. Now suppose
that L1, L2, L3, L4 are cyclic codes over Iq. That is,

σ(p) = (pn−1, p0, . . . pn−2) ∈ L1,

σ(q) = (qn−1, q0, . . . qn−2) ∈ L2,

σ(r) = (rn−1, r0, . . . rn−2) ∈ L3,

and

σ(s) = (sn−1, s0, . . . sn−2) ∈ L4.

Thus, ν1σ(p) + ν2σ(q) + ν3σ(r) + ν4σ(s) ∈ L. It can be easily seen that ν1σ(p) +
ν2σ(q) + ν3σ(r) + ν4σ(s) ∈ L = σ(c). Hence, σ(c) ∈ L. Therefore, L is cyclic code
over S.

Proof of (ii) is similar as (i). □

We have established that L can be self-dual if ℓi = ±1 for 1 ≤ i ≤ 4. Conse-
quently, the corresponding values of y have exactly 24 = 16 different possibilities.
We now provide findings for certain conditions of y on y-constacyclic codes with
length n over S.
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Proposition 4.6. Consider the y-constacyclic code L = ⊕4
i=1PiLi of length n

over S. Then, the following results provide conditions under which L satisfies the
properties of a y-constacyclic code:

(i) If y = 1, then L is a cyclic code ⇐⇒ L1,L2,L3, and L4 are cyclic codes.
(ii) If y = −1, then L is a negacyclic code ⇐⇒ L1,L2,L3, and L4 are nega-

cyclic codes.
(iii) If y = αu, then L is a y-constacyclic code ⇐⇒ L1 and L2 are cyclic codes,

while L3 and L4 are negacyclic codes.
(iv) If y = αv, then L is a y-constacyclic code ⇐⇒ L1 and L3 are cyclic codes,

while L2 and L4 are negacyclic codes.
(v) If y = αuv, then L is a y-constacyclic code ⇐⇒ L1 and L4 are cyclic

codes, while L2 and L3 are negacyclic codes.
(vi) If y = 1

2 +
αu
2 + αv

2 − uv
2 , then L is a y-constacyclic code ⇐⇒ L1, L2, and

L3 are cyclic codes, while L4 is a negacyclic code.
(vii) If y = − 1

2 − αu
2 − αv

2 + uv
2 , then L is a y-constacyclic code ⇐⇒ L1, L2,

and L3 are negacyclic codes, while L4 is a cyclic code.

5. Quantum codes from y-constacyclic code over S

In this part, using the reliable Calderbank-Shor-Steane (CSS) construction
described in the reference [26], we set out to explore the fascinating field of quan-
tum codes. The CSS construction recognised for its effectiveness, allowing the use
of dual-containing constacyclic codes to construct quantum codes with extraordi-
nary properties. With the help of CSS construction, we are able to outperform the
capabilities of current codes and obtain quantum codes with better dimensions and
minimum distances. “We apply a necessary and sufficient condition over finite fields
to define the requirements to for constacyclic codes to contain their duals. It is im-
portant to note that the set of n-fold tensor product (Cq)⊗n = Cq ⊗Cq ⊗ · · · ⊗Cq

(n-times) represents a Hilbert space of dimension qn, where Cq denotes a Hilbert
space of dimension q over the complex field C. A quantum code appears in this
setting as a subspace of the Hilbert space (Cq)⊗n. In the finite field Iq, where q is a
power of prime, we identify a quantum code of length n as [[n, k, d]]q, where d is the
minimum distance and k is the dimension. It is interesting to notice that the single-
ton bound n−k+2 ≥ 2d, holds for all quantum codes. If a quantum code fulfils the
equality n−k+2 = 2d, it is said to be MDS (Maximum Distance Separable) code.”

Another focus of this study is on two key requirements to obtain quantum
codes that are more sophisticated than their predecessors:
Higher Dimension (k): To make a quantum code better, we can make it bigger,
represented by the letter “k”. This means we can store more special instructions
or pieces of information in the code. By creating a larger code than what’s already
out there, we can save more data using the same number of quantum bits, giving
us more storage space and making our quantum computer more powerful.
Larger Minimum Distance (d): A quantum code’s capacity to correct errors
is greatly influenced by its minimum distance, abbreviated as “d”. With a larger
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minimum distance, error detection and correction capabilities are improved. “A
quantum code [[n, k, d]]q is better to another quantum code [[n

′
, k

′
, d

′
]]q if either or

both the following conditions hold:

(i)
k

n
>

k
′

n′ , where d = d
′
(Larger code rate with the same distance).

(ii) d > d
′
where

k

n
=

k
′

n′ (Larger distance with the same code rate).”

We may generate quantum codes which are better to the ones that we already
have for these codes. CSS construction is given in the following lemma.

Lemma 5.1. [26] “(CSS Construction) If L is an [n, k, d] linear code with L⊥ ⊆
L over Iq , then there exists a quantum error correcting code with parameters
[[n, 2k − n, d]]q over Iq.”

The dual containing property, denoted as L⊥ ⊆ L, holds significant impor-
tance in the construction of quantum error correcting codes derived from linear
codes. This pivotal property plays a crucial role in ensuring the effectiveness and
reliability of quantum error correction.

Lemma 5.2. [3] “Let L be a y-constacyclic code with generator polynomial with
l(ϑ) over Iq. Then L contains its dual if and only if

ϑn − y ≡ 0 (mod (l(ϑ)l∗(ϑ)),

where l∗(ϑ) is the reciprocal polynomial of l(ϑ) and y = ±1.”

Theorem 5.3. Let L = ⊕
4∑

i=1

PiLi be a y-constacyclic code of length n over S

such that y =
4∑

i=1

ℓiPi with ℓi = ±1. Then L⊥ ⊆ L if and only if

ϑn − ℓi ≡ 0 (mod (li(ϑ)l
∗
i (ϑ)),

where l∗i (ϑ) is the reciprocal polynomial of li(ϑ), for 1 ≤ i ≤ 4.

Proof. Let L = ⊕
4∑

i=1

PiLi be a y-constacyclic code of length n over S, where

L1 = ⟨l1(ϑ)⟩, L2 = ⟨l2(ϑ)⟩, L3 = ⟨l3(ϑ)⟩, L4 = ⟨l4(ϑ)⟩. Now

ϑn − ℓi ≡ 0 (mod (li(ϑ)l
∗
i (ϑ)),

then L⊥
i ⊆ Li for 1 ≤ i ≤ 4. This implies that PiL

⊥
i ⊆ PiLi for 1 ≤ i ≤ 4. Hence,

P1L
⊥
1 ⊕P2L

⊥
2 ⊕P3L

⊥
3 ⊕P4L

⊥
4 ⊆ P1L

⊥
1 ⊕P2L

⊥
2 ⊕P3L

⊥
3 ⊕P4L

⊥
4 , that is L

⊥ ⊆ L.
Conversely, if L⊥ ⊆ L, then P1L

⊥
1 ⊕P2L

⊥
2 ⊕P3L

⊥
3 ⊕P4L

⊥
4 ⊆ P1L

⊥
1 ⊕P2L

⊥
2 ⊕

P3L
⊥
3 ⊕ P4L

⊥
4 . Since Li are the q-ary codes such that PiLi are the q-ary codes

such that PiLi is equal to L (mod )Pj for i, j = 1, 2, 3, 4 and i ̸= j. It follows that
L⊥
i ⊆ Li for 1 ≤ i ≤ 4. Therefore,

ϑn − ℓi ≡ 0 (mod (li(ϑ)l
∗
i (ϑ)).

□
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Corollary 5.4. Let L = ⊕
4∑

i=1

PiLi be a y-constacyclic code of length n over S

such that y =
4∑

i=1

ℓiPi with ℓi = ±1. Then L⊥ ⊆ L if and only if L⊥
i ⊆ Li for

1 ≤ i ≤ 4.

Theorem 5.5. Let L = ⊕
4∑

i=1

PiLi be a y-constacyclic code of length n over S,

where Li = ⟨li(ϑ)⟩ for i = 1, 2, 3, 4 and S (L) has the parameters [4n,
4∑

i=1

ki, dH ].

(i) If L⊥ ⊆ L, then there exists a quantum code [[4n,
4∑

i=1

ki−4n, dH ]]q over Iq.

(ii) If ϑn − ℓi ≡ 0 (mod li(ϑ)l
∗
i (ϑ)), where l∗i (ϑ) is the reciprocal polynomial

of li(ϑ), and i = 1, 2, 3, 4, then there exists a quantum code [[4n, 2
4∑

i=1

ki −

4n, dH ]]q over Iq.

Proof. (i) First, let us consider that L⊥ ⊆ L. By Proposition 3.2, S (L⊥) = S (L)⊥,
S (L)⊥ ⊆ S (L). Hence, S (L) is a dual containing linear code over Iq. By Lemma

5.1, there exists a quantum code [[4n, 2
4∑

i=1

ki − 4n, dH ]]q over Iq.

(ii) Let us consider that ϑn − 1 ≡ 0 (mod li(ϑ)l
∗
i (ϑ)) for i = 1, 2, 3, 4, where l∗i

denotes the reciprocal polynomial of li(ϑ). By Theorem 5.3, L⊥ ⊆ L. Hence, by

using part (i), there exists a quantum code [[4n, 2
4∑

i=1

ki − 4n, dH ]]q over Iq. □

6. Some Examples

In this section, we give examples of better and new quantum error correcting
codes from cyclic codes, αu-constacyclic codes and 1

2 + αu
2 + αv

2 − uv
2 -constacyclic

codes by Proposition 4.6, where L1,L2,L3,L4 are cyclic codes in part (i), L1,L2

are cyclic codes, L3,L4 are negacyclic codes in part (iii), and L1,L2,L3 are cyclic
codes, L4 is negacyclic code in part (vi), respectively. Here, we also obtain best
known linear codes as well as best dimension linear codes. All the calculations in
these examples were done using the Magma computation system [23].

Example 6.1. Let S = I3[u, v]/⟨u2−α2, v2−α2, uv−vu⟩ be a finite commutative
ring, n = 9, q = 3 and y = 1. Then,

ϑ9 − 1 = (ϑ+ 2)9 ∈ I3[ϑ].

Take

l1(ϑ) = (ϑ+ 2)4

l2(ϑ) = (ϑ+ 2)

l3(ϑ) = (ϑ+ 2)

l4(ϑ) = 1.
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Then, the cyclic code C is of length 9 over S and its Gray image is of length
36, dimension 30, and distance 3 over I3, i.e., [36, 30, 3]3. Moreover

t9 − 1 ≡ 0 (mod li(ϑ)l
∗
i (ϑ)),

for 1 ≤ i ≤ 4. Thus, L⊥ ⊆ L by Theorem 5.3. In view of Theorem 5.5, we conclude
that there exists a quantum code [[36, 24, 3]]3. This quantum code is better than the
known quantum code [[36, 22, 3]]3 obtained in [17].

Example 6.2. n = 30, q = 5, and take y = 1
2 +

αu
2 + αv

2 − uv
2 . S = I5[u, v]/⟨u2−

α2, v2 − α2, uv− vu⟩
ϑ30 − 1 = (ϑ+ 1)5(ϑ+ 4)5(ϑ2 + ϑ+ 1)5(ϑ2 + 4ϑ+ 1)5 ∈ I5[ϑ]

ϑ30 + 1 = (ϑ+ 2)5(ϑ+ 3)5(ϑ2 + 2ϑ+ 4)5(ϑ2 + 3ϑ+ 4)5 ∈ I5[ϑ])

l1(ϑ) = (ϑ+ 1)2(ϑ2 + ϑ+ 1), l2(ϑ) = (ϑ+ 1), l3(ϑ) = 1, and l4(ϑ) = (ϑ+ 2)2(ϑ2 +
2ϑ+4). Hence L1,L2,L3 are the cyclic codes with the parameters [90, 85, 3] over I5
and L4 are the negacyclic codes with the parameters [30, 26, 3] over I5. Then Gray
image of L having the parameters [120, 111, 3]5 by Preposition 3.2. Since li(ϑ)l

∗
i (ϑ)

divides ϑ30 − 1 and lj(ϑ)l
∗
j (ϑ) divides ϑ30 + 1, where i = 1, 2, 3 and j = 4. Then

using by Theorem 5.3, L⊥ ⊆ L. Hence, there exists a quantum error correcting
code having the parameters [[120, 102, 3]]5 by Theorem 5.5. This quantum code is
better than the known quantum code [[120, 96, 3]]5 obtained in [18].

Example 6.3. n = 35, q = 5, y = αu, and S = I5[u, v]/⟨u2 − α2, v2 − α2, uv− vu⟩
ϑ35 − 1 = (ϑ+ 4)5(ϑ6 + ϑ5 + ϑ4 + ϑ3 + ϑ2 + ϑ+ 1)5 ∈ I5[ϑ]

ϑ35 + 1 = (ϑ+ 1)5(ϑ6 + 4ϑ5 + ϑ4 + 4ϑ3 + ϑ2 + 4ϑ+ 1)5 ∈ I5[ϑ])

l1(ϑ) = l2(ϑ) = (ϑ+4)2(ϑ6+ϑ5+ϑ4+ϑ3+ϑ2+ϑ+1), l3(ϑ) = l4(ϑ) = (ϑ+1)2(ϑ6+
4ϑ5+ϑ4+4ϑ3+ϑ2+4ϑ+1). Hence L1,L2 are the cyclic codes with the parameters
[35, 27, 4]5 over I5 and L3,L4 are the negacyclic codes with the parameters [35, 27, 4]
over I5. Then Gray image of L having the parameters [140, 108, 4]5 by Preposition
3.2. Since li(ϑ)l

∗
i (ϑ) divides ϑ35 − 1 and lj(ϑ)l

∗
j (ϑ) divides ϑ35 + 1, where i = 1, 2

and j = 3, 4. Then using by Theorem 5.3, L⊥ ⊆ L. Therefore, by Theorem 5.5,
there exists a quantum error correcting code having the parameters [[140, 76, 4]]5.

Example 6.4. Let S = I3[u, v]/⟨u2−α2, v2−α2, uv−vu⟩ be a finite commutative
ring, n = 3, q = 3, and y = 1. Then,

ϑ3 − 1 = (ϑ+ 2)3 ∈ I3[ϑ].

Take

l1(ϑ) = (ϑ+ 1)2

l2(ϑ) = (ϑ+ 2)

l3(ϑ) = (ϑ+ 2)

l4(ϑ) = 1.

Then, the Gray image S (L) is also a Best Known Linear Code (BKLC) with the
parameters [12, 8, 3]3 over I3. This is also an optimal code according to the database
[5].
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Example 6.5. Let S = I3[u, v]/⟨u2−α2, v2−α2, uv−vu⟩ be a finite commutative
ring, n = 3, q = 3, and y = 1. Then,

ϑ3 − 1 = (ϑ+ 2)3 ∈ I3[ϑ].

Take

l1(ϑ) = (ϑ+ 1)3

l2(ϑ) = (ϑ+ 2)

l3(ϑ) = (ϑ+ 2)

l4(ϑ) = 1.

Then, the Gray image S (L) is also a Best Dimension Linear Code (BDLC) with
the parameters [12, 7, 3]3 over I3. This is also an optimal code according to the
database [5].

Table 1. Quantum Codes from Cyclic Codes Over S Over S

n l1(ϑ) l2(ϑ) l3(ϑ) l4(ϑ) ϕ(L) [[n, k, d]]q [[n
′
, k

′
, d

′
]]q

9 (ϑ + 2)4 ϑ + 2 ϑ + 2 1 [36, 30, 3] [[36, 24, 3]]3 [[36, 22, 3]]3[17]

10 (ϑ + 1)2(ϑ + 4) ϑ + 1 ϑ + 1 1 40, 35, 3 [[40, 30, 3]]5 [[40, 24, 3]]5[22]

15 (ϑ + 4)2(ϑ2 + ϑ + 1) ϑ + 4 ϑ + 1 1 [[60, 54, 3]]5 [[60, 48, 3]]5 [[60, 48, 2]]5[8]

20 (ϑ + 1)2(ϑ + 2) ϑ + 1 ϑ + 1 1 [80, 75, 3] [[80, 70, 3]]5 [[80, 56, 3]]5[17]

25 (ϑ + 1)6 ϑ + 4 ϑ + 4 1 [100, 92, 3] [[100, 84, 3]]5 [[100, 70, 3]]5[18]

80 (ϑ + 1)2(ϑ4 + 3) ϑ + 1 ϑ + 1 1 [320, 312, 3] [[320, 304, 3]]5 New quantum code

7 (ϑ + 6)3 ϑ + 6 ϑ + 6 1 [28, 23, 4] [[28, 18, 4]7 New quantum code

12 (ϑ + 2)(ϑ2 + 2) ϑ + 2 ϑ + 2 1 [48, 43, 3] [[48, 38, 3]]7 [[48, 36, 2]]7[16]

14 (ϑ + 1)3(ϑ + 6) ϑ + 1 ϑ + 1 1 [56, 50, 4] [[56, 44, 4]]7 [[42, 12, 4]]7[20]

21 (ϑ + 3)3(ϑ + 5)(ϑ + 6) ϑ + 3 ϑ + 3 1 [84, 77, 4] [[84, 70, 4]]7 [[84, 68, 3]]7[21]

28 (ϑ + 1)3(ϑ2 + 1) ϑ + 1 ϑ + 1 1 [112, 105, 4] [[112, 98, 4]]7 New quantum code

Table 2. Quantum Codes from 1
2 + αu

2 + αv
2 − uv

2 -Constacyclic
Code Over S

n l1(ϑ) l2(ϑ) l3(ϑ) l4(ϑ) ϕ(L) [[n, k, d]]q [[n
′
, k

′
, d

′
]]q

5 (ϑ + 4)2 ϑ + 4 1 (ϑ + 1)2 [20, 15, 3] [[20, 10, 3]]5 New quantum code

10 (ϑ + 1)2(ϑ + 4) ϑ + 1 1 (ϑ + 2)(ϑ + 3) [40, 34, 3] [[40, 28, 3]]5 [[40, 24, 2]]5[7]

30 (ϑ + 1)2(ϑ2 + ϑ + 1) ϑ + 1 1 (ϑ + 2)2(ϑ2 + 2ϑ + 4) [[120, 111, 3]]5 [[120, 102, 3]]5 [[120, 96, 3]]5[25]

35 (ϑ + 1)2 ϑ + 4 ϑ + 4 ϑ + 4 [140, 129, 3] [[140, 118, 3]]5 [[140, 112, 2]]5[7]

(ϑ6 + ϑ5 + ϑ4+

ϑ3 + ϑ2 + ϑ + 1)

40 (ϑ + 4)2(ϑ2 + 2) ϑ + 4 1 ϑ4 + 2 [160, 151, 3] [[160, 142, 3]]5 [[150, 140, 2]]5[19]

Table 3. Quantum Codes from αu-Constacyclic Code Over S

n l1(ϑ) = l2(ϑ) l3(ϑ) = l4(ϑ) ϕ(L) [[n, k, d]]q
15 (ϑ + 4)2(ϑ2 + ϑ + 1) (ϑ + 1)2(ϑ2 + 4ϑ + 1) [60, 44, 3] [[60, 28, 3]]5
21 (ϑ + 3)2(ϑ + 5) (ϑ + 1)2(ϑ + 2) [84, 72, 3] [[84, 60, 3]]7
28 (ϑ + 1)3(ϑ2 + 1) (ϑ2 + 3ϑ + 1)3(ϑ2 + 4ϑ + 1) [112, 86, 4] [[112, 50, 4]]7
22 (ϑ + 1)3(ϑ + 10) (ϑ2 + 1)3 [88, 68, 4] [[88, 48, 4]]11
33 (ϑ + 10)3(ϑ2 + ϑ + 1) (ϑ2 + 10ϑ + 1)(ϑ + 1)3 [132, 112, 4] [[132, 92, 4]]11
17 (ϑ + 16)6 (ϑ + 1)6 [68, 44, 7] [[68, 20, 7]]17
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Table 4. Gray Images of Cyclic Codes of Length n Over S

n l1(ϑ) l2(ϑ) l3(ϑ) l4(ϑ) ϕ(L) optimal

3 (ϑ + 2)2 ϑ + 2 ϑ + 2 1 [12, 8, 3]3 BKLC

3 (ϑ + 2)3 ϑ + 2 ϑ + 2 1 [12, 7, 4]3 BDLC

4 (ϑ + 1)(ϑ2 + 1) (ϑ + 1) (ϑ + 1) 1 [16, 11, 4]3 BKLC & BDLC

5 ϑ4 + ϑ3 + ϑ2 + ϑ + 1 (ϑ + 2) (ϑ + 2) 1 [20, 14, 4]3 BKLC

8 (ϑ2 + 1)(ϑ2 + 2ϑ + 2) (ϑ + 2) (ϑ + 2) 1 [32, 26, 4]3 BKLC

10 ϑ4 + ϑ3 + ϑ2 + ϑ + 1 ϑ + 1 ϑ + 1 ϑ + 1 [40, 33, 4]3 BKLC

In Tables 1, 2, and 3, we present better and new quantum error correcting

codes obtained from cyclic codes and constacyclic codes L = ⟨⊕
4∑

i=1

Pili(ϑ)⟩ of

length n over S, where Li = ⟨li(ϑ)⟩, such that ϑn − 1 ≡ 0 (mod li(ϑ)l
∗
i (ϑ)) for

i = 1, 2, 3, 4. It should be emphasized that our QEC codes [[n, k, d]]q are better to

the old quantum codes [[n
′
, k

′
, d

′
]]q gathered from the many reference listed in this

article. In Table 4, we obtain BKLC as well as BDLC codes L = ⟨⊕
4∑

i=1

Pili(ϑ)⟩ of

length n over S for i = 1, 2, 3, 4.

7. Conclusion

This paper focuses on the investigation of constacyclic codes over the ring
S = Iq[u, v]/⟨u2−α2, v2−α2, uv−vu⟩. By leveraging the self-orthogonal property
of these constacyclic codes, we explored their potential for generating new and
better quantum codes. Moreover, we also study the Best Known Linear Codes
(BKLC) as well as Best Dimension Linear Codes (BDLC).
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