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Abstract. In the discipline of graph theory, topological indices are extremely im-
portant. The M-polynomial is a powerful tool for determining a graph’s topological
indices. The use of M-polynomials to describe macro-molecules and biochemical
networking is a novel concept. Also, the M-polynomial of various micro-structural
allows us to calculate a variety of topological indices. The chemical substances and
biochemical networks are correlated with their chemical characteristics and bio-
active compounds using these findings. In this research, we use the M-polynomial
to create special essential topological indices of inverse graphs on finite cyclic groups,
such as Randic, Zagreb, Augmented Zagreb, Harmonic, Inverse sum, and Symmet-

ric division degree indices.
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1. INTRODUCTION

Graph theory is a major sub-field in mathematics that analyses and dis-
cusses many configurations. Numerical methods are used to answer difficulties that
arise mostly during the study of features and combinations of different patterns in
this discipline. Graph theory is a new and easily grasped mathematical concept
with several implications in fields as diverse as biochemistry, medicine, computer
programming, and operations research. Graph theory explains the various charac-
teristics of networks [I].

The topological indices in graphs display the appropriate technical or orga-
nizational as well as a variety of other features. They depend heavily on vertex
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lengths, vertex degrees, or the structure described by the matrix. Several network
topological indices are crucial in computer-aided modeling, molecular chemistry,
and medicinal research. Polynomials appear in a variety of shapes and sizes, includ-
ing Hosoya polynomials, Pi-polynomials, and M-polynomials. The M-polynomial
is still the most comprehensive polynomial, including significantly more knowledge
on the graph in consideration [2]. The topological indices are often computed us-
ing the parameters, but they can alternatively be found using the derivatives and
integrals on M-polynomials of the specified network. The primary aspect of this
polynomial is that this could provide accurate representations for small molecules
with more than ten degrees of freedom. Onme can refer to transferring chemical
descriptors to algebraic structures in [38] [39, [40, [41].

Let G be a simple finite connected graph, V(G) is its vertex set and E(G) is
its edge set with |V (G)| = p and |E(G)| = ¢. The number of edges that are incident
to a graph’s vertex is called its degree. A vertex 9;’s degree is typified by dg(9;).

2. FUNDAMENTALS

To calculate topological indices (TIs) for the graphs under consideration,
the following criteria and theorems were utilised. Wiener index will be the first
topological index, which was created in 1947 [3]. Randic index (RI) was first
developed in [6], just after the effectiveness of the Wiener index [, 5]. The RI
formula is defined as:

1
RI(G) = |
ﬂmig;E(G) de(V:)de(Vi+5)

B. Bollobas [7] with D. Amic [§] created and described the broad Randic index
separately. Certain mathematicians and chemists have frequently used these due to
their favorable and essential conclusions throughout the field of cognitive chemistry.
See references [9], 10, 11l 12] for a survey of these findings. The generalized and
inverse Randic indexes are calculated as follows:

RI,(G) = Z (da(:)da(D541))",
994, E€EE(G)
1
RIR,(G) = Z _
991, €E(G) (de(Vi)de(Vits))

This must be the most comprehensive index yet, and it has been thoroughly
researched [0 [13]. The initial and subsequent Zagreb indices (ZIs) are mentioned
as follows in [I4]:

ZI;(G) = > da(¥:) +de(Vis;),
19ﬂ9.;+j EE(G)
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ZI(G) = Y de(¥i)dc(Vis;).
9i¥i4;€E(G)
We refer to [I5] [16] 17 18, 19] for more information on the implementations
of these indexes. The formula for the redefined ZI is as follows:

1
90,4, EE(G) da(V;)de (Vi )

The given graph’s symmetric division degree index has recently been implemented
[20]. It’s a major parameter [2I] that is applied to find the maximum contact
domain in chemistry,

SSD(G) = Z <mm(d6(1911)»d6(19i+j)) i max(dc(ﬂi),dg(ﬂiﬂ))).

o0, en \Mar(da(V:),de(Vivy)) — min(da(9:), de(Vivs))

Other notable TIs include harmonic index (HI) [22], which seems to be a
version of RI and has the following mathematical model:

2
HI(G) = N
ﬂ,,ﬁj_HZeE(G) dG (ﬁl)dG (7“914‘])

The way of describing the inverse sum index is as follows [23]:

1s1G) = Y |
904+, €EE(G) dG(ﬁz) + dG(ﬂiJrj)

The heat of production of alkanes is best approximated by the augmented
Zagreb index [24] 25]. It’s written as [20]:

- dg(V;)dc (Vi ;) ’
AZI6) = mmge:E(G) (dc(ﬁi) + de(isj) — 2) .

The topological indexes mentioned above are significant for chemical researchers
[27, 28, 29, B0, BI], and computing these indices requires a lot of computer work
[32). M-polynomial was created to save computing work [33], and this basic poly-
nomial may be used to obtain practically every degree-dependent index [34]. This
polynomial’s mathematical model is

MGrwl = Y  (rhliylu)
19131913+]'€E(G)
= Z mg (T°w?).
S<s<t<A
Definition 2.1. [35] 36, B7] Let (T, *) be a finite group and S = {u € T|u #
pu~t}. The inverse graph Gg(T) associated with T is the graph with set of vertices

corresponds Y so that two vertices are different p and v are adjacent iff yv € S
(or) vu € S.
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Since T is taken as the cyclic group Z,, S will be the non self-invertible
set elements of Z,. Then the inverse graph obtained from Z, will be typified by
G = Gg(Z,,). The inverse graph G = Gg(Z11) is illustrated in Figure 1.

FIGURE 1. Gg(Z11)

3. MAIN RESULTS

The goal of this study is to compute the M-polynomial for Gg(Z,). The
important mathematical models on several topological indices for Gs(Z,,) via M-
polynomial are presented in this section.

Theorem 3.1. If Gg(Z,,) with p (> 3) be an odd integer , then M[Gg(Z,,); T,w] =
(p— 1) (792w 1) + (%) (r9=2we=2).

Proof. 1) Let p > 3 be an odd integer, then the inverse graph Gg(Z,,) associated
with a finite cyclic group Z, has the only self-invertible element 0. Let V(G) =
{190,’(91,192...,19@_1} and E(G) = {1921914_] : 0 < ) < O — 1,1 < j < O — 1 andj 75
o — 2i}. Note that 9,9,_; ¢ E(G) for each ¢ so that 0 <7 < p — 1. Since g is odd,
vertex’s degree in Gg(Z,) is dg(¥9) = p—1 and dg(¥;) = p—2, here 1 <i < p—1;
it # 0. Now |V(Gg(Z,))| = g and by the fundamental theorem of graph theory,
Zfz_ol de(9;) = 2q. We have,

p—1 p—1
> de(9:) = de(Vo) + Y do(vs)
i=0

i=1
=p-D+-1p-2)
=(p—-1)"
Hence, we recognise that 2¢ = (p — 1) and we obtain that |E(Gs(Z,,))| =

(p—1)

5 We now consider these two cases separately:
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Case (i) If ¥y is adjacent to ¥; with 0 <1 < j < p—1, then dg(Vy) = p—1
and dg(¥;) = p—2 for j # 0. In the inverse graph, ¥y is adjacent to p — 1 vertices,
ie. |E1(Gs(Zy))| = p — 1.

Case (ii) If ¥; is adjacent to ¥;4; with 1 <i<p—1, 1 <j < p—1, then
de(¥;) = p—2and dg(¥iy;) = e —2 for i+ j # 0. In the inverse graph, ¥;, for
1 # 0, is adjacent to p — 2 vertices and

|E2(Gs(Zp))| = |E(Gs(Z))| — |EL(Gs (Zy))]

(p—1?
~o Dy
_ p*—4p+3
=—

From the above two cases, we obtain the edges based on the end vertices
degree:

E1(Gs(Ze) = {009 € Er(Gs(Zy)) : de(o) = p — 1,ds(V;) = p — 2},
Ey(Gs(Zy,) = {Vi¥ivj € Ea(Gs(Zy)) : da(Vs) = p — 2,dc(Vivj) = 9 — 2}
such that,

|E1(Gs(Zp))| = 9 — 1,
Bx(Gs(2,)) = — 2 F5,

Now, the concept of M-polynomial, we get the following value, and Figure 2
illustrates the M-polynomial with p = 5.

F1GURE 2. Graphical representation of M-polinomial with p =5

M[Gs(Zy);T,w] = Z mst(Tswt)
§<s<t<A
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= > Mpeye-n (TP

p—2<p—1

+ Y Mg (TP )
p—2<p—2

= |Ey(Gs(Z))| (172w Y) + | EalGs (Z,))| (792w )

= (p — 1)(7'@_2(,060_1)(%) (T@_2w@_2).

Corollary 3.2. If Gs(Z,) with p (> 3) be an odd integer, then
Z11(Gs(Zy)) = ° — 4p* + 6p — 3.

Proof. Let M[Gs(Z,); T,w] = f(T,w) = (p—1) (7972&)@71)_’_(@2_3@#}) (Tp72wp72)
then

D (f(7,0)) = (o~ Do~ 2)(r7 %) + (T2 (o - 9)(r0-20072).
Dulf(r0) = (0~ Do~ (2w ™) + (EE 50 (o 9) (r720072).

Hence, we have

ZIf(GS(ZKJ)) = D‘rf + Dwf ‘T:w:l
=(p-De—-2)+(—-Dp-1)+(p" —4p+3)(p—2)
= > — 49 + 6p — 3.

Corollary 3.3. If Gg(Z,,) with p (> 3) be an odd integer, then

Pt —6p° + 1507 — 18p + 8
— . .

Z15(Gs(Z))

Proof. Let M[Gs(Zy,); T,w] = f(T,w) = (p_l)(Tp_zwp_l)_'_(W) (ro=2we=2)

then

Du(f(r,w)) = (9= lp — (" 2w + <Mf”’) (9 — 2) (922,
D, Dy(f(r,w)) = (9 — D)o — D~ 2) (r*2w")

+(Z222E) - 20— 22 ?).

Hence, we have
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215(Gs(Zg)) = Dr D f [r=w=1

~ (o= Do 1(o-2+ (-1~ 1+ () (- 20 -2

ot — 83 +23p% —4p + 12
2

= (9" —4p* +5p - 2) +
* — 6p° + 150> — 18p + 8

2
(I
Corollary 3.4. If Gs(Z,,) with p (> 3) be an odd integer, then
2
P —2p—1
mZ1(Gs(Zy)) = ————.

Proof. Let M[Gs(Zy,);7,w] = f(T,w)= (p_l)(T@—QwKJ—l)+(p2_;1p+3)(Tp—2wp—2)
then

Su(f(r,w)) = %(T@—%p—l) + (W’> (o 2wo2),

0 2(p - 2)
p—1 o 0> —4p+3 o
S8 = =g )+ (g y) )
Hence, we have

" Z1(GS(Zg)) = SrSuf Irm
B p—1 @ —4p+3
Cp-Dlp-2) 20p—2)(p—2)
1 O —4p+3
-2 20p-2)(p—2)
_ p2 —2p—-1

202 —8p+ 8

Corollary 3.5. If Gg(Z,,) with p (> 3) be an odd integer then

Rl (Gs(Z) = (0 = )7 (o =27 + (Z5 250 ) (0 -2

Proof. Let M([Gg(Zy,); T,w| = f(T,w) = (p—1) (Tgo—2wp—1)+<92_§p+3> (T@—2WW—2)

then

DS(f(r,w) = (p—1)(p— 1)04(7-@72(*]@71)
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24
+ (@ 2@"‘3) (9_2)a(7_pf2wpf2).
DEDS(f(r,w)) = (p = 1)(p — 1) (p — 2)* (7972w )

24 3
+ (@ 2@"’ ) (@_ 2)20‘(7607200@72).

Hence, we have

RIo(Gs(Zy)) = DIDGS [r=w=1

~ (o= D12 + (EZ ) (oo

2 _
(- 0o -2 (E ) ooz

Corollary 3.6. If Gs(Z,,) with p (> 3) be an odd integer, then
1 O —4p+3
(P—D*"Hp—-2)*  20p—20

Proof. Let M[Gg(Zy,); T,w] = f(T,w) = (p_l)(Tp—zwp—1)+<p2_3@+3> (r9=2w9=2)

then

RIR,(Gs(Zy)) =

_ 2

S5(7(rw) = P () 4 SR (o)
— 2

SIS = (o ag, —ge 0+ g ()

Hence, we have

RIR,(Gs(Zy)) = SrSuf |r=w=1
B p—1 p? —4p+3
C(p-1(p—-2)  2p-—2)%
1 e —4p+3
(p—1D>tp—-2)>  2(p—2)%"

Corollary 3.7. If Gg(Z,,) with p (> 3) be an odd integer, then
PP —4pP+5p—1
= p— )

SSD(Gs(Z,))
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Proof. Let M[Gs(Z,); T,w] = f(T,w) = (p—1) (Tp2wpl)+<92_42@+3> (Tp72wpf2)

then

Do (f(r,w)) = (p— 1)(p — 1) (1972w 1) + (@ - ;Lp . 3) (p — 2) (79 2w"2)
S, D, (f(r,w)) = (9 _p )jg— 1) (Tp—pr—l) + - — ‘;@—i— 3< o2 9—2)
Sw(f(TaW)) = g:i(Tp 208 1) + (pz(_le@;)— 3) ( p—2 9—2)
D, Su(f(rw)) = (p = 2 (r 2w ) 4 0 F3 (o2 p0-2)

Hence, we have

SSD(GS(ZW)) = (ST-Dwf + DTSwf) |‘r:w:1

(p-Dp-1) 9> —4p+3 02 —4p+3
= —2
2-2p0+1
=u+p2—3p+l
p—2
_ 9 —dpP+5p—1
_ = ,

Corollary 3.8. If Gs(Z,,) with o (> 3) be an odd integer then

_ 2 _
HI(Gs(Zy)) =2 (22 _13 + 92(2;? 1)3) '

Proof. Let M[Gg(Zy,); T,w] = f(T,w) = (p—1) (Tp—2wp—1)+(p2,z2m+3> (Tp—pr—Q)
then

5t = (o= 1) (7203 4 (£ A05DY (qaomsy

p—1 5 4 p2—4p—|—3 204
25._J w) =2 =——72% I )
SrJ(f(7,w) (2@ — ST 2(2p —4) T

Hence, we have

_ 2
HI(GS(ZQ))ZQSTJJCT=1:2<@ 1 e 4@+3>'

20— 3 2(2p —4)
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Corollary 3.9. If Gs(Z,,) with p (> 3) be an odd integer then

(p—1)*(p—2) N (9% — 49 +3)(p—2)*

1S1(Gs(Zy,)) = 2% -3 2(2p — 4)

Proof. Let M[Gg(Zy,);T,w] = f(T,w) = (p—1) (79*2w9*1)+(%> (19~2w#=2)
then

2 _
Du(f (7)) = (9~ Do~ (2w ) + (W) (- 2) (72w,

D, Du(f(r)) = (9 — D — D — 2)(r° 251 + (p‘”‘p”’) (-2

2
(p—2) (T@_pr_Q).

2 _
IDLDLf(r) = (0= (o= Dl - D) + (T ) (o - 22,

S, IDDu(f(rw)) = = VO=2) (apmsy | 97 —dp+3

20 — 3 2(2p — 4) (9= 2)* (7).

Hence, we have

ISI<GS(ZP)) =S;JD;D,f |'r:1

_(p=1D%p—2)  (9*—4p+3)(p—2)°
2p -3 2(2p—4)

Corollary 3.10. If Gs(Z,) with p (> 3) be an odd integer, then

-1 4 —92 3 2 4 3 _9 6
AZ1(Gs(2y)) = s D

Proof. Let M[Gs(Z,); T,w] = f(T,w) = (p—1) (Tpf2wgo71)+<%> (1920 2)
then

Di(f(ﬂw)) =(p—1)(p— 1)3(7-@—2wgo—1)

+ <§)2_42@+3> (0 — 2% (r°~2w2).

DIDE(f(r,w) = (p = D(p = 1)*(p = 2)* (9 %w" )

(B o ap

TDEDY(f(r,w)) = (o~ V(o — 2)° (277
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2 _
" <@ 3@+3> (9 — 2)°(r2979).

(p— D p -2 (7%"7°)
i (@ —4@4—3) (p_2)6(7_2p76).
(p—1)%p—2)°

Dip—2)% o
(20— 5) (=)
P> —4p+3
2(2p — 6)3

Q—2JDID}(f(r,w)) =

S7Q-2JDID(f(r,w)) =

(0-2°().

Hence, we have

AZI(Gs(Zy)) = S*Q2J DEDEF |11

(e p—2)° | (p*—4p+3)(p—2)°
- (2p-5) 2(2p — 6)3 '

O

The following Figure 3 shows that, the graphical representation the M-
polynomial based topological indices for Gg(Z,,) with g is odd.

First Zagreb Index Second Zagreb Index Renamed Zagreb Index

777777

S0 s g0 25 s0 75 Erg
Generalized Randic Index Generalize

25 0o 25 so x o 75 50 25 0o 25 50
Harmonic Index inverse Sum Index Augmented Zagreb Index

FIGURE 3. Gg(Z,) with p is odd



458 K. MAGESHWARAN, S. GOPINATH, R. SILUVAIDASAN
Theorem 3.11. If Gs(Z,) with p (> 3) be an even integer, then

MI[Gs(Zy,);,w] = 2(p — 2) (797w ™?) + (W) (93P =8).

Proof. Let p > 3 is even, then Gg(Z,) associated with the finite cyclic group Z,
has the self-invertible elements are 0 and & . Let V(G) = {¥,01,72,...,Yp_1}
and E(G) = {¥0,4; : 0<i<p—-1,1<j<p—1andj# p—2i}. Note that
Ui¥p—; ¢ E(G) and ¥;9¢ ¢ E(G) for each i so that 0 <i < p— 1. As p is even,
vertex’s degree of Gg(Z ) is given by

-2 forie{0, £}
p—3 forig {0, §}and 1 <i<p—1.
From the above function, exactly two vertices of Gg(Z,,) has the degree p — 2 and
all of the rest p — 2 vertices of Gg(Z,,) has degree p — 3. Now, |V(Gs(Z,))| = p
and Zf;ol dg(9;) = 2q. We have

%71 —1
Z d6(9:) = dg(o) + > de(9:) +dc(Wg) + Y do(V;)
i=1 i=£+1

p—2 p—2
=p-2+-5—(p=3) +p-2+-——(p-3)

=p® —3p+2.

Hence, we know that 2¢ = p? — 3p + 2 implying
2
p°—3p+2

B(Gs(@y))| = L322

Case (i) If ¥o is adjacent to ¥; and ¥y is non-adjacent to all ¥ with 0 <
i<p-1,0<j<p-—1landj+#0,% then dg(dg) = p—2and dg(¥;) = 9 —3
for j # 0 and ¢ 2. In the inverse graph, Y is adjacent to @ — 2 vertices giving
|E1(Gs(Zp))| = 9 — 2.

Case (ii) If 195 is adjacent to ¥; and 19% is non-adjacent to ¥ with 0 < i <
p—1,0<j5< pfl and j # 0,2, then dg(ﬁ‘%) = p—2and dg(¥;) = p—

3 for j # 0, §. In the inverse graph, Ug is adjacent to p — 2 vertices giving

[E2(Gs(Zp))| = p — 2.
Case (iii) If ¥; is adjacent to ¥;4; with 1 <i < p—1,0 < j <p-—1landj#
0, %, then dg(¥;) = p 3 and dg(¥i4,) = p—3fori+j #0, £. In the inverse

graph, 9;, for i # 0, § is adjacent to p — 3 vertices and hence

|5(Gs (o ))| = |E(Gs(Zo)| ~ |1 (G5(Zy))| — |Ba(Gs(Z,)
Spas. A
@ Tp+10

2
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Hence, we know that 2¢ = (p — 1)? and we obtain that [E(Gg(Z,))| =
—1)2
M. Now, the concept of M-polynomial, we get the following value, and

2
Figure 4 illustrates the M-polynomial with o = 10.

FIGURE 4. Graphical representation of M-polinomial with p = 10

M[Gs(Zy);T,w] = Z mst(TSwt)
5<s<t<A

= > Mpsy(p-2) (17w )
p—3<p—2

+ Y mpea ey (7 ?)
p—3<p—2

+ Y Mg s (7P T)
o 3<p3

= |E1(Gs(Zp)) (7772w ™2) + | E2(Gs(Zp))| (792w ?)
+|E5(Gs(Zy))| (192w ™?)

2 _
=2(p-—2) (Tpfgwpfz) + <p 72@ + 1O> (T@*3wP*3).

O
Corollary 3.12. If Gg(Z,,) with p (> 3) is even then
Z17(Gs(Zy,)) = 9* — 6p° +13p — 10.

Proof. Let M(Ggs(Z,); T,w] = f(T,w) = 2(p—2) (Tp_?’wp%)—l-(iptépﬂo) (T973wo™3)
then
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2 _
D, (f(rw)) = 2(p — 2)(p — 3) (19 2w"2) + (W) (9 — 3) (r" 3w 9).

2
D (f(r,w)) = 2(p — 2)(p — 2) (7% %w"2) + (W) (= 3)(r3w"3).

Hence, we have

ZIf(GS(ZKJ)) = DTf + Dwf |T:w:1
=2(p—2)(p—3) +2(p—2)(p — 2) + (p* — Tp + 10)(p — 3)
= > — 69 + 13p — 10.

Corollary 3.13. If Gg(Z,,) with p (> 3) is even then

ot —9p% + 33p% — 59p + 42
- : ,

Z14(Gs(Zy))

Proof. Let M[Ggs(Zy,); T,w] = f(T,w) = 2(p—2) (79_30.)@_1)—1—(W) (T973wo™3)
then

D, (f(r,w)) =2(p—2)(p —2) (TP_?’w@_z) + (W) (p—3) (TP_3wP_3).
D, D,(f(r,w)) =2(p —2)(p — 2)(p — 3) (T@—Swp—z)

+ (@ — 75 s 10) (9 = 3)(p = 3)(T7w? 7).

Hence, we have

Z215(Gs(Zg)) = DDy f |r=w=1

~ 2090~ 2o -3+ (T (- 3)0-3)

p* — 1393 + 61p? — 123p + 90)
2

=2(p* — Tp* + 16p — 12) + (

o' —9p% + 3302 — 590 + 42
- ; _

Corollary 3.14. If Gs(Z,) with p (> 3) is even then

p° —3p —2

"Z1(Gs(Zy)) = 207 120+ 18"
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Proof. Let M(Gg(Z,); T,w] = f(T,w) = 2(p—2) (Tp_?’wp_z)—l-(iptzp“o) (T973wo™3)
then

Sw(f(T,w)) = M(TW*WP*?) + (p—7p—|—10> (7.@73(#@—3)'

p—2 2(p—3)
2(p —2) . @2 —Tp+10 e o
S = G2 )+ () )
Hence, we have
mZIS(GS(Zp)) = STSwf ‘T:wzl

o 2(p—2) > —Tp+10
(p—=2)(p—3) 2(p—3)(p—3)

2 ©* —Tp+ 10

S p—-3 2(p-3)(p—3)

PP —3p—2
202 — 12p + 18"

Corollary 3.15. If Gg(Z,,) with p (> 3) is even then

(p? — Tp + 10)(p — 2)2
2

RI,(Gs(Z)) =2(p — 2)* (p — 3)* +

Proof. Let M[Ggs(Zy,); T,w] = f(T,w) = 2(p—2) (TpBwp2)+(W> (79730‘1973)

then

DS(f(r,w)) =2(p — 2)(p — 2)* (79w ?) + (W) (p — 3)* (13w 3).
DIDS(f(,w) =2(p — 2)(p — 2)*(p — 3)* (17w ?)

+(EEEED) )

Hence, we have

RIo(Gs(Zy)) = DIDS S |r=w=1
— 2= 2o~ 203" + (TG ) (o -3

(p? — Tp+10)(p — 2)>*
. .

=2(p =2 (p-3)" +
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Corollary 3.16. If Gs(Z,) with p (> 3) is even then
2 ©* —Tp+10
(p—2)2"p—3)  2Ap—3)>

RIR,(Gs(Z,)) =

Proof. Let M[Gs(Zp), T, OJ] = f(T, w) = 2(p_2) (7-()—3w60—2)+ (W) (TKJ—?)wgJ—?))

then

o 29 —=2) o3 o 2 —Tp+10, o _
Sw(f(va)) - W(Tp 3w@ 2) + W(TKJ Sw" 3).
xS f(r = 20p—2) T3, 92 9° = Tp+10 93,93
STSw(f( 7w)) (@—2)0‘(@—3)0‘( w )+ 2(?_3)206 ( w )
Hence, we have
RIRO((GS(ZQ)) = STSwf |T:w:1
2(p —2) 02— Tp+10
C(p-22(p -3 2(p—3)*
_ 2 ©* —Tp+ 10
S (p-2)0 M p—3)  2p—3)%
O

Corollary 3.17. If Gs(Z,) with p (> 3) is even then
PP 6P+ 1lp—4

S5D(Gs(Z,)) -
Proof. Let M[Gs(Z,,); T,w] = f(T,w) = 2(p—2) (7-@3(”@2)_'_(@72“10) (79*3(,0"*3)
then
2 - -
Du(f(r.w)) = 2(p — 2)(p — 2) (93w ~2) + <W§’+10> (9 — 3) (r"3w9).
_ _ 2 _
_2Ap=2) FO—=3,,9—2 w 793,63
Suf(rw) = 222 4 () ¢ )
2 _

D, S, (f(r,w)) = 2(p — 3)(r? 3w ~2) + W(Tw?’wwg)‘

Hence, we have

SSD(GS(ZKJ)) = (STDwf + DTSwf) |T=w=1
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200 —2)(p—2) > —Tp+10 ©* —Tp + 10
= 2 -
o3 + 5 +2p—3) + ————
202 — 8p + 8 9
== -5 4
P )
PP =6+ 11p—4
= 53 )

Corollary 3.18. If Gs(Z,) with p (> 3) is even then

4(@—2)+p2—7p+10

HI(Gs(Z,) = 505 + T

Proof. Let M[Ggs(Z,,); T,w] = f(T,w) = 2(p—2) (Tp—Bwp—2)+(W) (Tso—Swga—3)

then

J(f(r,w)) = 2(p —2)(7%7%) + (WWIO) (72975,

2
2(p — 2) 7205 o> —Tp+ 10T2p—6)

28, J(f(r,w)) =2 ( 20— 5 2(2¢p — 6)

Hence, we have

HI(Gs(Zy,)) = 25T f |r=1
_2<2(p—2) pz—7p+10>

20 —5 2(2p — 6)
 4A(p—2) @ —Tp+10
205 20—6

Corollary 3.19. If Gs(Z,) with p (> 3) is even then

2(p—2%(p—3) | (9> —Tp+10)(p —3)?
20— 5 2(2p — 6) '

ISI(Gs(Z,)) =

Proof. I@tﬂ4{G5(Z@);T,w]—-f(7¢u)—-2(p2)(Tp3wp2)%(g%!_’§9+_10> (79=3u93)

then
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2 _
I <@ 72@ + 10> (9 —3)(p — 3)(r"3w"3).

ID;Dy(f(,w)) = 2(p = 2)(p — 2)(p — 3)(7277°)

. (@2 - 72@ + 10) (0= 3 (2°-9).

89D, D) = WS IAED (o) 4 £ IO gy,

Hence, we have

ISI(Gs(Z,)) = Sy D Dy f |7=1

_2Ap=2%p=3)  (9* = Tp+10)(p —3)*
20— 5 2(2p — 6) '

O

The following Figure 5 shows that, the graphical representation the M-
polynomial based topological indices for Gg(Z,,) with g is even.

First Zagreb Index Second Zagreb Index Renamed Zagreb Index
12000
500 4 o
10000
0 —200
8000 -
—500 | 6000 —400
P, 4 4000
1000 =a0n
2000 +
—1500
—800
o4
-10 =5 ] 5 10 -10 -5 0 5 10 -10 =5 0 5 10
Generalized Randic Index Generalized Inverse Randic Index Symmetric Division Degree Index
01 125
80001 100
=200 1
75
6000
—400 4,
4000 1 25
—600 1 o
20004
=25
o] —800 1 -
=10 =5 0 - ¢ 10 =10 =5 o 5 10 -10 -5 0 5 10
Harmonic Index Inverse Sum Index Augmented Zagreb Index
30 100 - 2500
20 04 o
—=2500
101 —-100 4
—5000
0 20077 ~7500
—10 ] —300 4 -10000
-12500
— —400
-15000
=10 =5 0 - ¢ 10 =10 =5 o 5 10 -10 -5 0 5 10

FIGURE 5. Gg(Z,,) with p is even
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Corollary 3.20. If Gs(Z,) with p (> 3) is even then

2p—2)*(p—3)°  p*—Tp+10
(20 —T7)3 2(2p - 8)3

AZI(Gs(Z,)) = (9 —3)°.

Proof. Let M[Ggs(Zy,); T,w] = f(T,w) = 2(p—2) (Tp—3wga—2)+(502_72m)) (TKJ—?)wgJ—?))

then

+ (WQ B 72@ + 10 ( 3)3<Tga—3wga—3)
DIDZ(f(r,w)) =2(p — 2)(p — 2)*(p — 3)* (17 °w¥™?)

Hence, we have

AZI(Gs(Zy)) = S*Q2J DEDEf |,y

_2p-2)'p—-3)° ©*-Tp+10
=TG- o O

4. CONCLUSION

In this research, we focused on M-polynomial-based topological indices for a
fresh category of graphs, Gg(Z,). The limitations for M-polynomial-based topo-
logical indices of the inverse graph from n ordered finite cyclic groups are obtained
by making generalizations. The index’s boundaries are crisp, and the issues are
closely related to science features, which is a unique feature of this study. However,
finding M-polynomial-based topological indices for inverse graphs from quaternion,
symmetric, and dihedral groups in general remains a major challenge. Additionally,
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the degree-focused topological indices of inverse graphs from arbitrary finite groups,
and the eccentricity and distance-focused topological indices of inverse graphs from
arbitrary finite groups are being investigated.
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