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Abstract. Let G = (V,E) be a graph of order n. A bijection f : V → {1, 2, . . . , n}
is called a distance magic labeling of G if there exists a positive integer k such that∑
u∈N(v)

f(u) = k for all v ∈ V, where N(v) is the open neighborhood of v. The

constant k is called the magic constant of the labeling f . Any graph which admits

a distance magic labeling is called a distance magic graph. In this paper we present

a survey of existing results on distance magic graphs along with our recent results,

open problems and conjectures.

Key words: Distance magic labeling, magic constant, fair incomplete tournament.

Abstrak. Misalkan G = (V,E) adalah graf dengan orde n. Suatu bijeksi f : V →
{1, 2, . . . , n} disebut sebuah pelabelan ajaib jarak dari G jika terdapat suatu bilangan

bulat positif k sehingga
∑

u∈N(v)

f(u) = k untuk semua v ∈ V , dengan N(v) adalah

tetangga buka dari v. Konstanta k disebut konstanta ajaib dari pelabelan f . Setiap

graf yang memiliki sebuah pelabelan ajaib jarak disebut graf ajaib jarak. Dalam

paper ini kami menyajikan sebuah survei tentang hasil-hasil yang telah diketahui

untuk graf ajaib jarak, hasil terakhir kami, masalah-masalah terbuka dan konjektur-

konjektur.

Kata kunci: Pelabelan ajaib jarak, konstanta ajaib, turnamen taklengkap fair.
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1. Introduction

By a graph G = (V,E) we mean a finite undirected graph with neither loops
nor multiple edges. The order and size of G are denoted by n and m respectively.
For graph theoretic terminology we refer to Chartrand and Lesniak [3].

Several practical problems in real life situations have motivated the study
of labelings of the vertices(edges) of graphs with real numbers or subsets of sets,
which are required to obey variety of conditions. There is an enormous literature
built up on several kinds of labelings of graphs over the past three decades or so.
For a survey of various graph labeling problems one may refer to Gallian [8].

As pointed out by Gallian in his dynamic survey [8], finding out what has
been done for any particular kind of labeling and keeping up with new discoveries
is difficult because of the sheer number of papers and because many of the papers
have appeared in journals that are not widely available. As a consequence for
any particular type of graph labeling, the same classes of graphs have been done
by several authors and in some cases the same terminology is used for different
concepts. Again the same concept has been investigated by different authors with
different terminology. One such concept is distance magic labeling which has been
investigated under different names such as sigma labeling and 1-vertex magic vertex
labeling. In this paper we present a survey of existing results on distance magic
graphs along with our recent results, open problems and conjectures.

2. Basic Results

The concept of distance magic labeling of a graph has been motivated by the
construction of magic squares. A magic square of side n is an n × n array whose
entries are an arrangement of the integers {1, 2, . . . , n2}, in which all elements in
any row, any column, or either the main diagonal or main back-diagonal, add to
the same sum r. Now if we take a complete n partite graph with parts V1, V2, . . . , Vn
with |Vi| = n, 1 ≤ i ≤ n and label the vertices of Vi with the integers in the ith

row of the magic square, we find that the sum of the labels of all the vertices in
the neighborhood of each vertex is the same and is equal to r(n− 1). Motivated by
this observation in 1994 Vilfred [23] in his doctoral thesis introduced the concept
of sigma labelings. The same concept was introduced by Miller et al. [16] under
the name 1-vertex magic vertex labeling. Sugeng et al. [22] introduced the term
distance magic labeling for this concept. In this paper we use the term distance
magic labeling.

Definition 2.1. [23] Distance magic labeling of a graph G of order n is a bijection
f : V → {1, 2, . . . , n} with the property that there is a positive integer k such that∑
y∈N(x)

f(y) = k for every x ∈ V. The constant k is called the magic constant of the

labeling f. The sum
∑

y∈N(x)

f(y) is called the weight of the vertex x and is denoted

by w(x).
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A natural generalization of the concept of magic square is the concept of
magic rectangle.

Definition 2.2. A magic rectangle A = (aij) of size m × n is an m × n array
whose entries are {1, 2, . . . ,mn}, each appearing once, with all its row sums equal
and with all its column sums equal.

The sum of all entries in the array is 1
2mn(mn+ 1); it follows that

m∑
i=1

aij =
1

2
n(mn+ 1) for all j and (1)

n∑
j=1

aij =
1

2
m(mn+ 1) for all i. (2)

Hence m and n must either both be even or both odd. It has been proved in [11, 12]
that such an array exists whenever m and n have the same parity, except for the
impossible cases where exactly one of m and n is 1, and for m = n = 2. We state
the result formally here.

Theorem 2.3. An m × n magic rectangle exists if and only if m,n > 1,mn > 4,
and m ≡ n (mod 2).

A simpler construction is given in [10]. As in the case of magic squares, we
can construct a distance magic complete m partite graph with each part size equal
to n by labeling the vertices of each part by the columns of the magic rectangle.
While there is no 2× 2 magic rectangle, notice that the partite sets of K2,2 can be
labeled {1, 4} and {2, 3}, respectively, to obtain a distance magic labeling.

Theorem 2.4. [16] Let m,n > 1. The complete m partite graph with each part of
size n is distance magic if and only if n is even or both n and m are odd.

We now present some basic results on distance magic graphs, which have been
independently discovered.

The following lemma gives a necessary condition for the existence of distance
magic labeling.

Lemma 2.5. [13, 16, 19, 23] Let f be a distance magic labeling of a graph G = (V,E).
Then

∑
x∈V (G)

deg(x)f(x) = kn, where n is the number of vertices of G and k is the

magic constant.

Corollary 2.6. [13, 16, 19, 23] Let G be a r-regular distance magic graph on n

vertices. Then k = r(n+1)
2 .

Corollary 2.7. [13, 16, 19, 23] No r-regular graph with r-odd can be a distance
magic graph.

Theorem 2.8. [16]
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(i) The path Pn of order n is a distance magic graph if and only if n = 1 or
n = 3.

(ii) The cycle Cn of length n is a distance magic graph if and only if n = 4.
(iii) The complete graph Kn is a distance magic graph if and only if n = 1.
(iv) The wheel Wn = Cn +K1 is a distance magic graph if and only if n = 4.
(v) A tree T is a distance magic graph if and only if T = P1 or T = P3.

Theorem 2.9. [22] If G is a nontrivial distance magic graph and δ(G) = 1, then
either G is isomorphic to P3 or G contains exactly one component isomorphic to
P3 and all other components are isomorphic to K2,2 = C4.

Let G be a nontrivial distance magic graph with distance magic labeling f
and magic constant k. Obviously k ≥ n and a characterization of graphs for which
k = n is given in [13, 23]. We give an alternative proof of this result, which is more
elegant than the earlier proofs.

Theorem 2.10. Let G be a nontrivial distance magic graph with labeling f and
magic constant k. Then the following are equivalent.

(i) k = n.
(ii) δ = 1.

(iii) Either G is isomorphic to P3 or G contains exactly one component isomorphic
to P3 and all other components are isomorphic to K2,2 = C4.

Proof. Suppose k = n. Then any vertex which is adjacent to n has degree 1 and
hence (i) implies (ii). It follows from Theorem 2.9 that (ii) implies (iii). We now
prove that (iii) implies (i).

If G = P3 then G is a distance magic graph with k = n = 3, as shown in
Figure 1. s ss

1 3 2

Figure 1

Suppose G = P3 ∪ tC4.

Let P3 = (v1, v2, v3) and let the ith copy of C4 be (vi1, vi2, vi3, vi4, vi1). Now
define f : V (G)→ {1, 2, . . . , 4t+ 3} as follows:

f(v1) = 1,

f(v2) = 4t+ 3,

f(v3) = 4t+ 2,

f(vi1) = 4t− 2(i− 1) + 1,

f(vi2) = 4t− 2(i− 1),

f(vi3) = 2i and

f(vi4) = 2i+ 1, where 1 ≤ i ≤ t.
Clearly f is a distance magic labeling of G with magic constant k = 4t + 3 = n.
Further if g is any distance magic labeling of G with magic constant k, then the
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unique nonpendant vertex of P3 must receive the label n and hence it follows that
k = n. �

The following theorem gives a characterization of distance magic graphs of
order n with magic constant k = n+ 1. This has been stated without proof in [13].

Theorem 2.11. A graph G of order n is a distance magic graph with magic con-
stant k = n+ 1 if and only if G = tC4.

Theorem 2.12. [22] If G is distance magic, deg(x) = deg(y) = deg(z) = 2 and y
is adjacent to x and z then either G is isomorphic to C4 or G contains a component
isomorphic to C4.

Theorem 2.13. [22] If G is a complete multipartite graph and G has a distance
magic labeling then G = Ks1,s2,...,sr with 1 ≤ s1 ≤ s2 ≤ · · · ≤ sr and si ≥ 2, i =
2, 3, . . . , r.

Acharya et al. [1] obtained a characterization of all complete bipartite graphs
which are distance magic by proving the following two results.

Let θ(n) be the largest value of s such that 1 + 2 + · · ·+ s = s(s+1)
2 ≤ n(n+1)

4 .

Lemma 2.14. [1] If the complete bipartite graph Kn1,n2 is distance magic graph,

then n ≡ 0 or 3(mod 4) and
⌈

n√
2

⌉
− 2 ≤ θ(n) <

⌈
n√
2

⌉
, where n = n1 + n2.

Theorem 2.15. [1] The complete bipartite graph Kn1,n2
is a distance magic graph

if and only if n ≡ 0 or 3(mod 4) where n1 + n2 = n and n
2 ≤ n1 ≤ θ(n).

The same results were obtained in an alternative form in [2].

Theorem 2.16. [2] Let m and n be two positive integers such that m ≤ n. The
complete bipartite graph Km,n is a distance magic graph if and only if

(i) m+ n ≡ 0 or 3(mod 4) and

(ii) either n ≤
⌊

(1 +
√

2)m− 1
2

⌋
or 2(2n+ 1)2 − (2m+ 2n+ 1)2 = 1.

Definition 2.17. [21] Let G and H be two graphs where {x1, x2, . . . , xp} are ver-
tices of G. Based upon the graph G, an isomorphic copy Hj of H replaces every
vertex xj , for j = 1, 2, . . . , p in such a way that a vertex in Hj is adjacent to a
vertex in Hi if and only if xjxi was an edge in G. Let G[H] denote the resulting
graph.

Theorem 2.18. [16, 21] Let r ≥ 1, n ≥ 3, G be an r-regular graph and Cn the
cycle of length n. Then G[Cn] admits a distance magic labeling if and only if n = 4.

Miller at al. [16] proved the following result.

Theorem 2.19. [16] Let G be an arbitrary regular graph. Then G[Kn] is distance
magic for any even n.

Shafiq et al. [21] considered distance magic labeling for disconnected graphs
and obtained the following theorems.
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Theorem 2.20. [21] Let m ≥ 1, n > 1 and p ≥ 3. mCp[Kn] has a distance magic
labeling if and only if either n is even or mnp is odd or n is odd and p ≡ 0(mod 4).

Theorem 2.21. [21]

(i) If n is even or mnp is odd, m ≥ 1, n > 1 and p > 1, then mKp[Kn] has a
distance magic labeling.

(ii) If np is odd, p ≡ 3(mod 4) and m is even, then mKp[Kn] does not have a
distance magic labeling.

Froncek et al. [7] strengthened the existence part of Theorem 2.20, part (i)
of Theorem 2.21 and complemented Theorem 2.19 by proving the following.

Theorem 2.22. [7] Let G be an arbitrary r-regular graph with k vertices, where k
is an odd number, and n be an odd positive integer. Then r is even and the graph
G[Kn] is distance magic.

For k ≡ r ≡ 2 (mod 4) they proved the non-existence of distance labeling for
such graphs (see Theorem 4.9). The remaining cases are still open.

Froncek at al. [7] also solved the case of p ≡ 1 (mod 4) which was not covered
by part (ii) of Theorem 2.21 by proving the non-existence of such labeling. We list
the result separately later as Theorem 4.8. Their result along with Theorem 2.21
then gives a necessary and sufficient condition.

Theorem 2.23. [7, 21] The graph mKp[Kn], where np is odd and m is even,
p > 1,m ≥ 2, is distance magic if and only if p ≡ 3 (mod 4).

For complete multipartite graphs that are not necessarily regular, Miller at
al. [16] proved the following result.

Theorem 2.24. [16] Let 1 ≤ a1 ≤ · · · ≤ ap where 2 ≤ p ≤ 3. Let si =
i∑

j=1

aj . There

exists a distance magic labeling of the complete multipartite graph Ka1,a2,...,ap if and
only if the following conditions hold.

(i) a2 ≥ 2
(ii) n(n+ 1) ≡ 0(mod 2p), where n = sp = |V (Ka1,a2,...,ap)| and

(iii)
si∑
j=1

(n+ 1− j) ≥ in(n+1)
2p for 1 ≤ i ≤ p.

3. Embedding Theorems

Vilfred [23] proved the following theorem.

Theorem 3.1. [13, 23] Every graph is a subgraph of a distance magic graph.

Acharya [1] proved the following stronger theorem.

Theorem 3.2. [1] Every graph H is an induced subgraph of a regular distance
magic graph.



Distance Magic Graphs—A Survey 17

Corollary 3.3. [1] There is no forbidden subgraph characterization for distance
magic graph.

In the following theorem we obtain a stronger version of Theorem 3.2. The
result and its proof were communicated to the first author by Rao [20].

Theorem 3.4. Given any graph H there is an Eulerian distance magic graph G
with chromatic number same as that of H such that H is an induced subgraph of
G.

Proof. First we prove that H can be embedded as an induced subgraph of an r-
regular graph G of degree r = ∆(H) such that χ(G) = χ(H). Let H1 be the graph
obtained from H by attaching at each vertex u of H, ∆(H)− deg u pendant edges.
In H1 the degree of each vertex of H is ∆(H). Clearly χ(H) = χ(H1).

Now take ∆(H) copies of this H1 and identify the corresponding ∆(H) pen-
dant vertices of the same new pendant vertex of these copies to a single vertex to
get the graph G which is ∆(H) regular. Clearly H is an induced subgraph of G.
Since χ(H) coloring of each of these ∆(H) copies of H1 gives a χ(H) coloring of
G, we have χ(H) = χ(H1) = χ(G). Now proceeding as in Theorem 3.2 we embed
G as an induced subgraph of the 2r-regular graph G[K2], which is Eulerian and
distance magic. Clearly χ(G) = χ(G[K2]) and hence the result follows. �

Corollary 3.5. The problem of deciding whether the chromatic number of an Euler-
ian distance magic graph is at least 3 is NP-complete.

Proof. The problem of deciding whether the chromatic number χ(H) is less than
or equal to k, where k ≥ 3 is NP-complete ([9], Page 191). Now, given an instance
(H, k) for the chromatic number problem, Theorem 3.4 gives an Eulerian distance
magic graph G such that χ(G) = χ(H). Hence the instance (H, k) has YES answer
for the chromatic number problem if and only if the corresponding problem has
YES answer for the instance (G, k). Hence the result follows. �

4. Graphs which are not Distance Magic

In this section we present several families of graphs which are not distance
magic. We start with following simple observation given in [13, 23] which is very
useful in this regard.

Theorem 4.1. [13, 23] Let u and v be vertices of a distance magic graph G. Then
|N(u)⊕N(v)| = 0 or ≥ 3 (Here A⊕B denotes the symmetric difference of the two
sets A and B).

Corollary 4.2. [13, 23] Let G be a graph of order n which has two vertices of
degree n− 1. Then G is not a distance magic graph.

Corollary 4.3. [13, 23] Any complete multipartite graph with two partite sets of
cardinality 1 is not a distance magic graph.

Corollary 4.4. [13, 23] If a graph G has a path (u, v, w, t, p) with deg(v) = deg(t) =
2, then G is not a distance magic graph.
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Corollary 4.5. [13, 23] If C is a cycle component of a distance magic graph G,
then C is a 4-cycle.

Lemma 4.6. [16] If G contains two vertices u and v such that |N(u) ∩ N(v)| =
deg(v)− 1 = deg(u)− 1, then G has no distance magic labeling.

Lemma 4.7. [16] Let G be a graph on n vertices with maximum degree ∆ and
minimum degree δ. If ∆(∆ + 1) > δ(2n − δ + 1) then G does not have a distance
magic labeling.

Theorem 4.8. [7] The graph mKp[Kn], where np is odd, m is even, p ≡ 1
(mod 4), and p > 1, is not distance magic.

Theorem 4.9. [6] Let n be odd, k ≡ r ≡ 2 (mod 4), and G be an r-regular graph
with k vertices. Then G[Kn] is not distance magic.

5. Distance Magic Labeling and Cartesian Product

Jinnah [13] has proved that Pn2C3 and Pn2C4 are not distance magic graphs
by using Theorem 4.1. Hence the following problem arises naturally.

Problem 5.1. If G and H are two graphs, is the Cartesian product G2H distance
magic?

Rao [18] answered the above problem when G and H are both cycles or both
complete graphs by proving the following sequence of results.

Theorem 5.2. [18] Cn2Ck, n, k ≥ 3 is a distance magic graph if and only if
n = k ≡ 2(mod 4).

Theorem 5.3. [18] Km2Kn,m, n ≥ 3 is not a distance magic graph.

Beena [2] proved the following theorem regarding Cartesian products of graphs
with minimum degree 1.

Theorem 5.4. [2] The product of paths Pn2Pk is not a distance magic graph.

Theorem 5.5. [2] Let G1 and G2 be connected graphs with δ(Gi) = 1, |V (Gi)| ≥ 3
for i = 1, 2. Then G12G2 is not a distance magic graph.

6. Distance Magic Labelings of Bi-regular Graphs

A generalization of magic rectangles is useful in constructions of distance
magic graphs with vertices of two different degrees. The results below were in-
troduced by Sugeng et al. [22] with the use of Kotzig arrays (see [14]) and lifted
Kotzig arrays, which are a generalization of magic rectangles. We use their idea to
introduce a lifted magic rectangle, which in turn is a special case of the lifted Kotzig
array.

Definition 6.1. A lifted magic rectangle LMR(a, b; l) is an a × b matrix whose
entries are elements of {l + 1, l + 2, . . . , l + ab}, each appearing once, such that
the sum of each column is σ(a, b; l) = 1

2a(ab + 2l + 1) and the sum of each row is

τ(a, b; l) = 1
2b(ab+ 2l + 1).
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Consider LMR(a, b; 0) and a p-regular graph H which has n′ vertices with
n′ = b + d, where b = |V1(H)| and d = |V2(H)| for V1, V2 ⊂ V (H) such that
V1 = {x1, x2, . . . , xb} and V2 = {y1, y2, . . . , yd} form a partition of V (H).

Denote by G = H[b×a, d×c] a graph arising from H by expanding each vertex
xi ∈ V1(H) into a set Xi of a independent vertices {xi1, xi2, . . . , xia} and similarly
expanding each yj ∈ V2(H) into a set of c independent vertices {yj1, yj2, . . . , yjc}.
Further every edge xixj between two vertices of V1(H) will be replaced by a2 edges
of Ka,a while every edge yiyj between two vertices of V2(H) will be replaced by
c2 edges of Kc,c. Also any edge xiyj between a vertex in V1(H) and a vertex in
V2(H) will be replaced by ac edges of Ka,c. Denote V1(G) = X1 ∪X2 · · · ∪Xb and
V2(G) = Y1 ∪ Y2 ∪ · · · ∪ Yd.

Lemma 6.2. [22] Let a, b, c, d be positive integers such that a > c and both LMR(a, b; 0)

and LMR(c, d; ab) exist. Then σ(a, b; 0) = σ(c, d; ab) if and only if d = (a2b−2abc+a−c)
c2 .

Lemma 6.3. [22] Let a, b, c, d be positive integers such that both LMR(a, b; 0) and
LMR(2, d; ab) exist and σ(a, b; 0) = σ(2, d; ab). Then either a ≡ 2(mod 4) or a is
odd and a ≡ b(mod 4) and a ≥ 5.

Theorem 6.4. [22] Let H be a p-regular graph on b + d vertices and G = H[b ×
a, d× c] be a graph with a, b, c, d satisfying conditions

(i) a > c,
(ii) both LMR(a, b; 0) and LMR(c, d; ab) exist, and

(iii) d = a2b−2abc+a−c
c2 .

Then G is a distance magic graph.

7. Fair and handicap incomplete tournaments

So far we were looking at problems that can be in general stated as follows:
For a given class of graphs Γ(n, r, . . . ), find all values of parameters (n, r, . . . ) for
which a graph G ∈ Γ allows distance magic labeling f . Most typical parameters
were the number of vertices n and regularity r. We have seen above that for
any given family Γ(n, r) the spectrum of values of (n, r), for which the graphs are
distance magic, can be very sparse. However, sometimes we do not need a particular
class of graphs, but rather just any graphs with a distance magic vertex labeling
for a given pair (n, r).

Although the problem seems to be too random, there is a real life motivation
in sports tournament scheduling. Suppose we want to schedule a one-divisional
tournament, but do not have enough time to play the complete round robin tour-
nament. What format should we select? We want to schedule a fair incomplete
round robin tournament with the following properties:

(1) Every team plays the same number of opponents.
(2) The difficulty of the tournament for each team mimics the difficulty of the

complete round robin tournament.
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Condition 2 can be justified as follows. If we know the strength of each team
based on team standings in the previous year, the teams can be ranked from 1 to
n. Based on their rankings, we can define the strength of the i-th ranked team
(or just team i for short) in a tournament with n teams as sn(i) = n + 1 − i.
The total strength of opponents of team i in a complete round robin tournament
is then defined as Sn,n−1(i) = n(n + 1)/2 − sn(i) = (n + 1)(n − 2)/2 + i. We
observe that the total strengths form an arithmetic progression with difference one.
Therefore, we want the total strengths of opponents for respective teams in our
incomplete tournament to form such a progression as well. In general, we want to
find a tournament of n teams with each team playing k games in which the total
strength of opponents of the i-th ranked team is Sn,k(i) = (n+ 1)(n− 2)/2 + i−m
for some integer m.

Obviously, this is equivalent to finding the set of games that are left out of
the complete tournament with the property that the total strength of opponents
in the n− k− 1 left out games, S∗n,n−k−1(i), is equal to some constant m for every
team i.

A fair incomplete tournament of n teams with k rounds, FIT(n, k), is a tour-
nament in which every team plays k other teams and the total strength of the
opponents that team i plays is Sn,k(i) = (n + 1)(n − 2)/2 + i − m for every i
and some fixed constant m. The total strength of the opponents that each team
misses is then equal to m. Hence, we can view the games that are not played as
a complement of FIT(n, k), which is itself an incomplete tournament. In an equal-
ized incomplete tournament of n teams with r rounds, EIT(n, r), every team plays
exactly r other teams and the total strength of the opponents that team i plays
is S∗n,r(i) = m for every i. Notice that EIT(n, n − k − 1) is the complement of
FIT(n, k). Therefore, a FIT(n, k) exists if and only if an EIT(n, n− k − 1) exists.

One can notice that finding an EIT(n, r) is equivalent to finding a distance
magic labeling of any r-regular graph on n vertices. We also observe that the
complementary FIT(n, n− r − 1) is a distance antimagic graph.

Definition 7.1. A distance k-antimagic labeling of a graph G(V,E) with n vertices
is a bijection f̄ : V → {1, 2, . . . , n} with the property that there exists an ordering
of the vertices of G such that the sequence of the weights w(x1), w(x2), . . . , w(xn)
forms an arithmetic progression with difference k. When k = 1, then f̄ is called
just distance antimagic labeling. A graph G is a distance k-antimagic graph if it
allows a distance k-antimagic labeling, and distance antimagic graph when k = 1.

The weight w(x) of a vertex x in a FIT(n, k) or EIT(n, r) is equal to Sn,k(x)
or S∗n,r(x), respectively.

In the language of distance magic graphs, our observation can be stated as
follows.

Observation 7.2. If G is distance magic, then complement G is distance an-
timagic.
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It follows from Corollary 2.7 that if G is an r-regular distance magic graph,
then r is even. The remaining feasible values of r for r-regular distance magic
graphs with an even number of vertices were found in [6].

Theorem 7.3. [6] For n even an r-regular distance magic graph with n vertices
exists if and only if 2 ≤ r ≤ n − 2, r ≡ 0 (mod 2) and either n ≡ 0 (mod 4) or
r ≡ 0 (mod 4).

For graphs with an odd number of vertices, the existence question of regular
distance magic graphs was partially answered in [4].

Theorem 7.4. [4] Let n, q be odd integers and s an integer, q ≥ 3, s ≥ 1. Let
r = 2sq, q | n and n ≥ r + q. Then an r-regular distance magic graph of order n
exists.

When the maximum odd divisor of r does not divide n, somewhat weaker
result can be proved.

Theorem 7.5. [4] Let n, q be odd integers and s an integer, q ≥ 3, s ≥ 1. Let

r = 2sq, q - n and n ≥ 7r + 4

2
. Then an r-regular distance magic graph of order n

exists.

The proofs are based on an application of magic rectangles.

Although the fair incomplete tournaments mimic the structure of the com-
plete round-robin tournaments, they in fact favor the highest ranked team, because
the total strength of its opponents, Sn,k(1), is the lowest. Even in an equalized tour-
nament the highest ranked team has the best chance of winning, because all teams
face opponents with the same total strength. If we want to give all teams roughly
the same chance of winning, we need to schedule a tournament with handicaps.

A handicap incomplete tournament of n teams with k rounds, HIT(n, k), is a
tournament in which every team plays k other teams and the total strength of the
opponents that team i plays is Sh

n,k(i) = t− i for every i and some fixed constant
t. This means that the strongest team plays strongest opponents, and the lowest
ranked team plays weakest opponents. In terms of distance magic graphs this
restriction corresponds to finding a distance antimagic graph with the additional
property that the sequence w(1), w(2), . . . , w(n) (where team i is again the i-th
ranked team) is an increasing arithmetic progression with difference one. We call
this special case ordered distance antimagic graphs. The notions were introduced
by Froncek in [5].

Definition 7.6. An ordered distance antimagic labeling of a graph G(V,E) with

n vertices is a bijection ~f : V → {1, 2, . . . , n} with the property that ~f(xi) = i and
the sequence of the weights w(x1), w(x2), . . . , w(xn) forms an increasing arithmetic
progression with difference one. A graph G is an ordered distance antimagic graph
if it allows an ordered distance antimagic labeling.

Notice that this is an inverse ordering compared with the ordering of labeled
vertices in a complete distance antimagic graph, or any distance magic graph which
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is a complement of a regular magic graph. There we have w(1) > w(2) > · · · >
w(n), while in a graph with an ordered distance antimagic labeling we have w(1) <
w(2) < · · · < w(n).

So far, only a sparse class of graphs is known to allow an ordered distance
antimagic labeling.

Theorem 7.7. [5] Let a, b be positive integers such that a, b > 1, ab > 4, and a ≡ b
(mod 2). Let n = ab and d = n− a− b+ 1. Then there exists a d-regular ordered
distance antimagic graph with n vertices.

A proof of Theorem 7.7 is based on magic rectangles. Recall that by Theo-
rem 2.3 an a× b magic rectangle exists when the assumptions of Theorem 7.7 on a
and b are satisfied. Let G = Ka2Kb with V (G) = {vij |1 ≤ i ≤ a, 1 ≤ j ≤ b} and
E(G) = {vijvil|1 ≤ i ≤ a, 1 ≤ j < l ≤ b} ∪ {vijvlj |1 ≤ i < l ≤ a, 1 ≤ j ≤ b} and
Rij be an a× b magic rectangle with row sums s and column sums t. The labeling
f̄(vij) = rij is obviously a distance 2-antimagic labeling, for when f̄(vij) = rij = q,
then wG(vij) = s+ t− 2q. Hence, the following observation holds.

Observation 7.8. [5] The graph G = Ka2Kb is distance 2-antimagic when a, b >
1, ab > 4, and a ≡ b (mod 2).

The proof of Theorem 7.7 then follows easily. We show that G, the com-

plement of G, has an ordered antimagic labeling ~f . We define ~f(vij) = f̄(vij).

For vij with ~f(vij) = q we have wG(vij) + wḠ(vij) = n(n + 1)/2 − q and because
wG(vij) = s+ t− 2q, we have wḠ(vij) = n(n+ 1)/2− s− t+ q. The values of q are

1, 2, . . . , n and G has an ordered antimagic labeling.

8. Matrix Representation

Definition 8.1. Let G = (V,E) be a graph of order n with V = {v1, v2, . . . , vn}.
Let A = (aij) be the adjacency matrix of G. Let f : V → {1, 2, . . . , n} be a bijection,
which gives a labeling of the vertices of G. The matrix Af = (bij) of the labeling f
is defined as follows.

bij =

{
aij if aij = 0
f(vj) if aij = 1.

We observe that the matrix Af is not symmetric. Also the matrix Af is
obtained from the adjacency matrix A by multiplying the ith column of A by f(vi)
for i = 1, 2, . . . , n.

Further, if f is a distance magic labeling of G with magic constant k, then k
is an eigenvalue of the matrix Af . It is worth investigating whether the matrix Af

has any further property when f is a distance magic labeling of G.

9. Some Variants of Distance Magic Labelings

Acharya et al. [1] studied a variant of distance magic labeling in more general
way, which they called neighborhood magic graph.
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Definition 9.1. A graph G = (V,E) is said to be a neighborhood magic graph if
there exists an injection f : V → R satisfying the condition

∑
v∈N(u)

f(v) = Q(f),

for all u ∈ V (G). The constant Q(f) is called the neighborhood magic index of f
and the function f is called neighborhood magic labeling.

Remark 9.2. If f is a bijection from V (G) to N = {1, 2, . . . , |V |}, then the above
definition coincides with the definition of distance magic graphs.

Jinnah [13] considered another variant of distance magic labelings which he
called Σc-labeling.

Definition 9.3. Let G be a graph on n vertices. Then a labeling f : V (G) →
{1, 2, . . . , n} is said to be a Σc-labeling if

∑
u∈N [v]

f(u) is constant for each vertex v

of G, where N [v] is the closed neighborhood of u. The constant sum is denoted by
sc. We allow isolated vertices.

The following are some basic results on this labeling which are given in Jin-
nah [13] and Beena [2].

Theorem 9.4. [13] Let G = (V,E) be a graph on n vertices and f : V →
{1, 2, . . . , n} be a labeling. Then f is a distance magic labeling for G with magic
constant k if and only if f is a

∑c
labeling for the complement Gc with sum

sc = n(n+1)
2 − k.

Theorem 9.5. [13] Let G be a
∑c

labeled graph with labeling f and sum sc. Then∑
u∈V (G)

f(u)(deg(u) + 1) = nsc.

Theorem 9.6. [13] Let G be a
∑c

labeled graph with labeling f and sum sc. Then∑
u∈V (G)

f(u)(deg(u)− 1) = n(sc − (n+ 1)).

Theorem 9.7. [13] Let G be a graph on n vertices. Then the vertex sum S = n(n−1)
2

if and only if G has a vertex of degree n− 1 in which case n ≡ 1(mod 2).

Theorem 9.8. [13] A graph G on n vertices is a
∑c

graph with vertex sum S =
(n−2)(n+1)

2 if and only if G is (n− 2) regular.

Theorem 9.9. [13] A
∑c

graph on n vertices with vertex sum S = n(n+1)
2 −(n+2)

does not exist.

Theorem 9.10. [2] The graph Km ∪Kn is a
∑c

graph if and only if m + n ≡ 0

or 3(mod 4) and either n ≤
⌊

(1 +
√

2)m− 1
2

⌋
or 2(2n+ 1)2− (2m+ 2n+ 1)2 = 1.

Theorem 9.11. [2] Let u and v be vertices of a
∑c

graph G. Then |N [u]∆N [v]| = 0
or ≥ 3.

Corollary 9.12. [2] The cycle Cn is not a
∑c

graph for all n ≥ 4.

Corollary 9.13. [2] If two adjacent vertices of degree p of a graph G have exactly
p− 1 common neighbors, then G cannot be a

∑c
graph.
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Corollary 9.14. [2] If a graph G has a path (u, v, w, t) of length 3, where deg(v) =
deg(w) = 2, then G cannot be a

∑c
graph. In particular, if Cn is a component of

a
∑c

graph, then n ≤ 3.

Theorem 9.15. [2] Every graph H is an induced subgraph of a regular
∑c

graph.

Theorem 9.16. [2] The complete partite graph Km1,m2,...,mn
is a

∑c
graph if and

only if mi = 1 ∀i = 1, 2, . . . , n.

10. Conjectures and Open Problems

We present several open problems and conjectures on distance magic graphs.

Conjecture 10.1. [16] Let 1 ≤ a1 ≤ · · · ≤ ap, p > 1. Let si =
i∑

j=1

aj and n = sp.

There exists a distance magic labeling of the complete multipartite graph Ka1,a2,...,ap

if and only if the following conditions hold.

(i) a2 ≥ 2
(ii) n(n+ 1) ≡ 0(mod 2p) and

(iii)
si∑
j=1

(n+ 1− j) ≥ in(n+1)
2p for 1 ≤ i ≤ p.

Theorem 2.24 gives the validity of this conjecture when 2 ≤ p ≤ 3 and is open
for other values of p.

Conjecture 10.2. [22] If G is a distance magic graph different from K1,2,2,...,2

then the vertex set V can be partitioned into sets V1, V2, . . . , Vp such that for each
i, has |Vi| > 1 and Vi is independent.

Problem 10.3. [21] If G is non-regular graph, determine if there is a distance
magic labeling of G[C4].

Problem 10.4. [19] Characterize graphs G and H such that G2H is a distance
magic graph.

Problem 10.5. [19] Characterize 4-regular distance magic graphs.

Problem 10.6. Does there exist a distance magic graph whose magic constant is
a power of 2?

Problem 10.7. Does there exist an r-regular distance magic graph with n vertices
where n is odd and r is a power of 2?

Problem 10.8. Does there exist a distance magic graph with two different distance
magic labelings having different magic constants?

Conjecture 10.9. [1] For any even integer n ≥ 4, the n-dimensional hypercube
Qn is not a distance magic graph.
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11. Revision Note

Since the presentation of this paper in IWOGL 2010 by the first author,
several researchers have made significant contributions towards solving some of
the problems and conjectures stated above. Kovar et al. [15] have proved the
existence of 4-regular distance magic graphs with magic constant k = 2t for every
integer t ≥ 6, thus solving Problem 10.6. They have also obtained an affirmative
answer for Problem 10.7. O’Neal and Slater [17] have proved the uniqueness of
the magic constant by generalizing the problem to D-vertex magic labeling where
D ⊆ {0, 1, 2, . . .} and by showing that the D-vertex magic constant is unique and
can be determined by the fractional domination number of the graph, thus solving
Problem 10.8. Arumugam and Kamatchi have obtained the following much simpler
and elegant proof for the uniqueness of the magic constant.

Theorem 11.1. For any distance magic graph G, the distance magic constant is
unique.

Proof. Let G be a graph of order n with V (G) = {v1, v2, . . . , vn} and having two
distance magic labelings f and g. Let k, l be the respective magic constants. Let A
be the adjacency matrix of G. Let u be the vector with n entries each of which is
equal to 1. Let x = (f(v1), f(v2) . . . , f(vn)) and y = (g(v1), g(v2), . . . , g(vn)). Since
f and g are distance magic labelings with magic constants k and l respectively, it
follows that xA = ku and yA = lu. Since xAyT is a 1 × 1 matrix, we have the
following chain of implications:

xAyT = (xAyT )T = yAxT

⇒ ku yT = lu xT

⇒ k(1 + 2 + · · ·+ n) = l(1 + 2 + · · ·+ n)

⇒ k = l.

Thus the magic constant is unique. �
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