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Abstract. One widely known risk measure is Tail Value-at-Risk (TVaR), which is

the average of the values of random risk that exceed the Value-at-Risk (VaR). This

classic risk measure of TVaR does not take into account the excess of another random

risk (associated risk) that may have an effect on target risk. Copula function ex-

presses a methodology that represents the dependence structure of random variables

and has been used to create a risk measure of Dependent Tail Value-at-Risk (DT-

VaR). Incorporating copula into the forecast function of the ARMA-GJR-GARCH

model, this article argues a novel approach, called ARMA-GJR-GARCH-copula

with Monte Carlo method, to calculate the DTVaR of dependent energy risks. This

work shows an implementation of the ARMA-GJR-GARCH-copula model in fore-

casting the DTVaR of energy risks of NYH Gasoline and Heating oil associated with

energy risk of WTI Crude oil. The empirical results demonstrate that, the simpler

GARCH-Clayton copula is better in forecasting DTVaR of Gasoline energy risk than

the MA-GJR-GARCH-Clayton copula. On the other hand, the more complicated

MA-GJR-GARCH-Frank copula is better in forecasting DTVaR of Heating oil en-

ergy risk than the GARCH-Frank copula. In this context, energy sector market

players should invest in Heating oil because the DTVaR forecast of Heating oil is

more accurate than that of Gasoline.
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1. INTRODUCTION

In risk management, a lot of measures of risk have been frequently suggested.
Perhaps the two most well-known and frequently used measures are Value-at-Risk
(VaR) and its competitor, the Tail Value-at-Risk (TVaR). Various expansions of
TVaR have also been promoted. Hürlimann [1] applied multivariate copulas to

2020 Mathematics Subject Classification: 62M10

Received: 26-06-2023, accepted: 02-11-2023.

382



Forecasting dependent tail value-at-risk by ARMA-GJR-GARCH-copula 383

calculate TVaR of aggregate risk. Landsman et al. [2] defined a risk measure called
Multivariate TVaR for multivariate risk distribution. Bernard et al. [3], Bairakdar
et al. [4], Wang and Wei [5], as well as Jadhav et al. [6] have restricted TVaR by
presenting particular upper bound, in place of infinitude, for values larger than the
lower bound (VaR). Particularly, Jadhav et al. This narrowed measure of risk is
called Modified TVaR (MTVaR) by Jadhav et al. [6]. In the meantime, Brahim
et al. [7] recommended a Copula TVaR (CTVaR) which is another expansion of
TVaR. Moreover, they introduced the terms target risk and associated risk.

According to Brahim et al. [7], dependence has begun to play an important
role in the world of risk recently. The increasing complexity of insurance and
financial activity products has led to increase actuarial and financial interest in
dependent risk modeling. Thus, they estimated the loss1 of target risk by entangling
another dependent or associated risk. Moreover, they claimed that CTVaR will
not be smaller than TVaR when both target and associated risks have a positive
quadrant dependency.2 They applied CTVaR to returns of major European stock
indices, namely UK FTSE, Germany DAX (Ibis), Switzerland SMI, and France
CAC, for a certain period of time. They found that the pair of returns (CAC,
FTSE) was the pair with the least risk.

Specifically, when we compute MTVaR forecast, it reduces the amount of
loss that is larger than VaR and cause this forecast lower than the TVaR forecast
accordingly. This is a nice characteristic in risk management, particularly when
dealing with returns that have high variations or data that contains outliers [6].
However, Josaphat et al. [9] argued that MTVaR forecast should be escorted by
an associated risk because this situation happens in practice.

Motivated by the work of [6] and [7], Josaphat and Syuhada [9] offered an-
other coherent measure of risk which is not solely ”allowing a specific upper bound
larger than VaR” but also ”considering an associated loss”, that is named Depen-
dent TVaR (DTVaR). This measure of risk is a copula-based expansion of TVaR.
The copula is a function which entirely depicts the dependency structure. It com-
prises all the information to connect the univariate distributions to their multi-
variate distribution. Using Sklar’s theorem [10], Josaphat and Syuhada [9] built
up a bivariate distribution of target and associated risks with arbitrary marginal
distributions. Furthermore, Josaphat et al. [11] offered a method of optimiza-
tion for DTVaR by employing a pair of metaheuristic algorithms: particle swarm
optimization (PSO) and spiral optimization (SpO).

This article combines ARMA-GJR-GARCH and copula to fit the returns
data and to provide a more adequate model in order to substitute the well-known
joint multivariate normal distribution. The ARMA-GJR-GARCH-copula model,
constructed for calculating the DTVaR of dependent risks, should be more plausible
and adequate. Our work analyzes dependent risks of Gasoline and Heating oil of
New York Harbor (NYH) and Crude oil of West Texas Intermediate (WTI) with

1We use the terms risk(s) and loss(es) interchangeably.
2For more details see [8].
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daily returns and then forecasts the one-day ahead DTVaR following the supple
model of copula.

This article is related to Huang et al. [12] and Han et al. [13], in which
they talked about the implementation of copula in forecasting the classical VaR of
a portfolio; as well as Nikusokhan [14], in which he talked over the application of
copula in forecasting the TVaR for portfolio optimization. However, unlike the three
literatures, we apply several copula entirely with different marginal distribution and
incorporate Monte Carlo method to forecast DTVaR of two different risks, NYH
Gasoline and Heating oil returns, which are condidered to be associated with WTI
Crude oil returns, respectively. This article shows that the GARCH-Clayton copula
model captures the DTVaR of Gasoline returns more succesfully, while the MA-
GJR-GARCH-Frank copula and the MA-GJR-GARCH-Gaussian copula models
forecast the DTVaR of Heating oil returns more succesfully.

The structure of this article is arranged as follows. Section 2 presents some
pertinent definitions and notions used in the subsequent sections. Section 3 presents
marginal model which is the ARMA-GJR-GARCH model and its specifications. In
addition, we explain the several risk measures for ARMA-GJR-GARCH model.
Section 4 presents the procedures of copula estimation and forecasting DTVaR.
Section 5 presents the empirical procedure and results, followed by a conclusion in
Section 6. Proofs are presented separately in Appendix.

2. Preliminaries

2.1. Copula concept. Copula is a method for constructing two or more distribu-
tions. Copula was first developed by Abe Sklar in 1959 through a theorem which
became known as Sklar’s theorem.

Theorem 2.1 ([15]). Let FX1,··· ,XN
denote a joint (multivariate) distribution func-

tion (d.f.) with FXi denote marginal or univariate distribution functions (d.f ’s.)
of Xi, i = 1, · · · , N. Then, there exists a copula C such that for all (x1, · · · , xN ) ∈
RN

,

FX1,··· ,XN
(x1, · · · , xN ) = C(FX1(x1), · · · , FXN

(xN ); θ), (1)

where θ denotes copula parameter (or vector of copula parameters). If all FX1 , · · · , FXN

all continuous, then C is unique. Alternatively, C is uniquely determined on
RanFX1

× · · · × RanFXN
, where RanFXi

= FXi
(R) for i = 1, · · · , N. Conversely,

if FX1
, · · · , FXN

are d.f ’s. and C is a copula, then the function F in (1) is a
N-dimensional distribution function (d.f.) with marginal d.f ’s. FX1

, · · · , FXN
.
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Henceforth, we assume the copula under consideration is differentiable. Con-
sequently, when X1, · · · , XN are continuous, Sklar’s theorem shows that any mul-
tivariate d.f. can be expressed by univariate distributions and a structure of de-
pendency, which is obtained as follows,

fX1,··· ,XN
(x1, · · · , xN ) =

∂NFX1,··· ,XN
(x1, · · · , xN )

∂x1 · · · ∂xN

= fX1(x1) · · · fXN
(xN )× ∂NC(FX1(x1), · · · , FX2(xN ); θ)

∂FX1
(x1) · · · ∂FXN

(xN )

= fX1(x1) · · · fXN
(xN ) c(FX1(x1), · · · , FXN

(xN ); θ), (2)

where c(FX1
(x1), · · · , FXN

(xN ); θ) denotes the copula density. Especially for N =
2, we obtain,

fX1,X2
(x, y) = fX1

(x)fX2
(y) c(FX1

(x), FX2
(y); θ), (3)

or

C(u, v; θ) = FX1,X2

(
F−1
X1

(u), F−1
X2

(v)
)

(4)

where u, v ∈ [0, 1], F−1
X1

dan F−1
X2

are distribution quantile functions of risks X1 and
X2.

The copula family used here encompasses copulas of Gaussian, Clayton, Gum-
bel, and Frank, which are shown in the following:

(1) Gaussian copula
Gaussian copula is defined by,

CN(u, v; ρ) = Φρ(Φ
−1(u),Φ−1(v))

=

∫ Φ−1(v)

−∞

∫ Φ−1(u)

−∞

1

2π
√
1− ρ2

exp
(
− s2 − 2ρst+ t2

2(1− ρ2)

)
ds dt

where Φ−1 is the inverse of the d.f. of standard normal distribution and ρ ∈
(−1, 1). Moreover, the Gaussian copula density is given by,

cN(u, v; ρ) =
1

2π
√
1− ρ2

exp
(u2 + v2

2

)
exp

(
− u2 − 2ρuv + v2

2(1− ρ2)

)
where u = FX1(x1) and v = FX2(x2).

(2) Clayton copula
Clayton copula can be used to determine the joint d.f. of the bivariate lognor-
mal distribution. This copula is defined by the following,

CC(u, v; θ) = (u−θ + v−θ − 1)−
1
θ , θ ∈ [−1,∞)\{0}. (5)

(3) Gumbel copula
Gumbel copula is defined by the following,

CG(u, v; θ) = exp
(
−
[
(− lnu)θ + (− ln v)θ

]1/θ)
, θ ∈ [1,∞).



386 Josaphat

(4) Frank copula
Frank copula is defined as follows,

CF(u, v; θ) = −1

θ
ln
(
1 +

(e−θu − 1)(e−θv − 1)

e−θ − 1

)
, θ ∈ R\{0}.

2.2. The Dependent Tail Value-at-Risk. Let X and Y be two random risks
that are not always independently and identically distributed (i.i.d.) and have
marginal d.f’s. FX and FY . Given a probability level α ∈ (0, 1), usually close to 1,
the Value-at-Risk (VaR) of X at α is the quantile Qα of FX that corresponds to
α. Then, VaR is mathematically defined by,

Qα = F−1
X (α). (6)

While the formulation (7) defines the TVaR as follows,

TVaRα(X) = E[X|X ≥ Qα(X)] =
1

1− α

∫ 1

α

Qp(X)dp. (7)

As explained in Section 1, Josaphat and Syuhada [9] offered a different mea-
sure of risk as a copula-based expansion of TVaR that does not only consider the
magnitude of the risk X between lower and upper quantiles but also notices the
excess of any different risk Y which is associated with X. Formula (8) defines the
Dependent Tail Value-at-Risk (DTVaR).

DTVaR
(δ,d)
(α,a)(X|Y ) = E

[
X|Qα ≤ X ≤ Qα1

, Qδ ≤ Y ≤ Qδ1

]
, (8)

where α1 = α + (1 − α)1+a, δ1 = δ + (1 − δ)1+d, and a, d ≥ 0. Moreover, α and
δ express levels of probability and excess, a and d denote contraction parameters,
X denotes target risk, while Y associated risk. According to [9], we recall a lemma
related to DTVaR.

Lemma 2.2. [9] Suppose that X and Y represent two random risks with a joint
d.f. denoted by a copula C having parameter θ. Suppose that α, δ ∈ (0, 1) and
a, d ≥ 0 be certain numbers. Then, DTVaR of X provided values larger than its
lower quantile up to another specific value and an associated risk Y is given as
follows,

DTVaR
(δ,d)
(α,a)(X|Y ;C) =

∫ α1

α

∫ δ1
δ

F−1
X (u) c(u, v; θ) dv du

C(α1, δ1; θ)− C(α, δ1; θ)− C(α1, δ; θ) + C(α, δ; θ)
, (9)

where F−1
X represents the inverse of marginal d.f. of X, u = FX(x), v = FY (y),

α1 = α+ (1− α)a+1 and δ1 = δ + (1− δ)d+1.

Remark 2.3. Note that the denominator C(α1, δ1; θ)−C(α, δ1; θ)−C(α1, δ; θ) +
C(α, δ; θ) in (9) is the bivariate significance level (b.s.l.) for DTVaR.

Remark 2.4. When we presume that X and Y are independent and a = d = 0,
then DTVaR simplifies into TVaR given by,

TVaRα(X) =

∫ 1

α
Qu(X) du

1− α
. (10)
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3. Model for the Univariate Distribution

The GARCH model and its generalizations are very crucial in the analysis of data
of time series, in particular in financial applications when the objective is to analyze
and to forecast volatility. In general, volatility expresses the level of risk caused by
price oscillations. Moreover, the bigger the volatility, the bigger the risk.

There are several empirical properties that can be observed from volatility.
According to [16], one of the empirical properties of volatility is asymmetry. This
property states that the positive and negative values of returns have different ef-
fects on the amount of volatility. Engle and Patton [17] described that the good
volatility model is a model that can accommodate the empirical properties of re-
turns and volatility. Apparently, the classical GARCH model has not been able to
accommodate asymmetric property.

Mohammadi and Su [18] observed autocorrelation and heavy tails in stock
returns. The volatility of stock leans to climb more after a substantial decrease of
price than after a price increase of the same size, which is familiar as leverage effect.
Extended GARCH models such as EGARCH, TGARCH, GJR-GARCH, IGARCH,
and FIGARCH have been proposed for years to catch these stylish characteristics
of stock returns [19].

Here, we use the model of ARMA(1, 1)-GJR-GARCH(1, 1)-normal to fore-
cast the univariate distributions of series of returns. Let the returns of a commod-
ity, in general, be given by {Zt}, t = 1, · · · , T. The model of ARMA(1, 1)-GJR-
GARCH(1, 1) is as follows,

Zt = µ+ κ1Zt−1 + η1 ξt−1 + ξt, ξt = h
1/2
t εt,

ht = ω0 + ω1 ht−1 + ω2 ξ
2
t−1 + ϕIt−1 ξ

2
t−1, εt ∼ N (0, 1) ,

(11)

where ω0 > 0, ω1, ω2 ≥ 0, ω2 + ϕ ≥ 0, whilst function It−1 is given by,

It−1 =

{
1, if ξt−1 < 0,

0, if ξt−1 ≥ 0.

The model of ARMA(1, 1)-GJR-GARCH(1, 1) is a combination of two ran-
dom variables Zt and ξt, where Zt is modeled with ARMA(1, 1) while ξt is modeled
with GJR-GARCH(1,1). If κ1 → 0 and η1 → 0, then Eq. (11) becomes the model
of GJR-GARCH(1, 1), which is given by the following,

Zt = µ+ ξt, ξt = h
1/2
t εt,

ht = ω0 + ω1 ht−1 + ω2 ξ
2
t−1 + ϕIt−1 ξ

2
t−1, εt ∼ N (0, 1) ,

(12)

3.1. The stationarity of GJR-GARCH(1,1). In the following, we describe the
stationarity of the GJR-GARCH(1, 1) model. The explanation of the stationarity
of this model is used indirectly to explain the stationarity of a more general model,
ARMA(1,1)-GJR-GARCH(1,1). In the GJR-GARCH(1, 1) model, ht is given by,

ht = ω0 + ω1ht−1 + ω2ht−1ε
2
t−1 + ϕIt−1ht−1ε

2
t−1

= ω0 + (ω1 + ω2ε
2
t−1 + ϕIt−1ε

2
t−1)ht−1
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= ω0 + ω0(ω1 + ω2ε
2
t−1 + ϕIt−1ε

2
t−1) + (ω1 + ω2ε

2
t−1 + ϕIt−1ε

2
t−1)

× (ω1 + ω2ε
2
t−2 + ϕIt−2ε

2
t−2)[ω0 + (ω1 + ω2ε

2
t−3 + ϕIt−3ε

2
t−3)ht−3]

= ω0 + ω0

∞∑
k=1

k∏
j=1

(ω1 + ω2ε
2
t−j + ϕIt−jε

2
t−j).

Then, we find the expected value of ht,

E[ht] = ω0 + ω0

∞∑
k=1

k∏
j=1

(ω1 + ω2E[ε2t−j ] + φE[It−j ]E[ε2t−j ])

= ω0 + ω0

∞∑
k=1

k∏
j=1

(
ω1 + ω2 +

ϕ

2

)
= ω0

∞∑
k=0

(
ω1 + ω2 +

ϕ

2

)k

=
ω0

1− φ
, (13)

where φ = ω1 + ω2 +
ϕ
2 .

Since ht must be positive, we obtain 0 ≤ ω1 + ω2 +
ϕ
2 < 1. In order to fulfill

the stationarity assumption of the GJR-GARCH (1,1) model, the parameters must
be bounded, namely,

ω0 > 0, ω1, ω2 ≥ 0,

ω2 + ϕ ≥ 0, ω1 + ω2 +
ϕ

2
< 1.

(14)

3.2. The estimation of parameters of ARMA(1,1)-GJR-GARCH(1,1).
Recall model (11). Here, µ = E(Zt) = E(E(Zt|Gt−1)) = E(µt) = µ is the uncondi-
tional mean of return series (see [12]), ht = Var(Zt|Gt−1) is the conditional variance,
where Gt−1 is the σ-algebra at t−1. The parameters estimation method is the max-

imum likelihood estimation (MLE). Let ϑZt+1
=

(
µ, κ1, η1, ω0, ω1, ω2, ϕ

)T
be a vec-

tor of parameters of ARMA(1, 1)-GJR-GARCH(1,1). Suppose Gt = {z1, z2, · · · , zt}
is a σ-algebra at t. The joint probability function (p.f.) can be written as f(z2, · · · , zt+1) =
f(zt+1|Gt)f(zt|Gt−1) · · · f(z2|G1)f(z1). Furthermore, the conditional p.f. for ARMA(1,1)-
GJR-GARCH(1,1) is given by,

fZt+1|Gt
(zt+1;ϑ) =

1√
2πht+1

exp

{
− (zt+1 − µ)2

2ht+1

}
Moreover, the likelihood function is given in the following,

L(ϑZt+1
) =

n−1∏
t=1

fZt+1|Gt
(zt+1;ϑ)

=

{
n−1∏
t=1

(
2π(ω0 + ω1ht + ω2ξ

2
t + ϕItξ

2
t )
)−1/2

}
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× exp

{
−

n−1∑
t=1

(κ1zt + η1ξt + ξt+1)
2

2(ω0 + ω1ht + ω2ξ2t + ϕItξ2t )

}
.

Hence, the function of log-likelihood is given in the following,

l(ϑZt+1
) = lnL(ϑZt+1

)

= −1

2

{
(n− 1) ln 2π +

n−1∑
t=1

ln(ω0 + ω1ht + ω2ξ
2
t + ϕItξ

2
t )

}

−
n−1∑
t=1

(κ1µ+ κ2
1zt−1 + κ1η1ξt−1 + (κ1 + η1)ξt + ξt+1)

2

2(ω0 + ω1ht + ω2ξ2t + ϕItξ2t )
(15)

The MLE method estimates the parameter vector ϑZt+1
which maximizes the

above log-likelihood function using the first partial derivatives, i.e.,

∂l(ϑZt+1
)

∂µ
= 0,

∂l(ϑZt+1
)

∂κ1
= 0,

∂l(ϑZt+1
)

∂η1
= 0,

∂l(ϑZt+1)

∂ω0
= 0,

∂l(ϑZt+1)

∂ω1
= 0,

∂l(ϑZt+1)

∂ω2
= 0,

∂l(ϑZt+1)

∂ϕ
= 0

(16)

Note that it is difficult to obtain the estimate of the parameter vector ϑZt+1
=(

µ, κ1, η1, ω0, ω1, ω2, ϕ
)T

analytically. As a result, the log-likelihood function (15)
is maximized numerically.

3.3. The moment properties. Expectation and variance are important aspect
of a measure, which are called moments. This subsection also briefly describes the
stationarity and kurtosis of the ARMA(1,1)-GJR-GARCH(1,1) model.

ARMA(1,1)-GJR-GARCH(1,1). The unconditional expectation and variance
of ARMA(1,1)-GJR-GARCH(1,1) are given by the following proposition. Based
on the proposition, we can determine the weak stationarity of ARMA(1,1)-GJR-
GARCH(1,1).

Proposition 3.1. Suppose Zt follows the model (11). Then, the unconditional
expectation and unconditional variance of Zt are given in the following,

E[Zt] =
µ

1− κ1
, (17)

Var[Zt] =
2µ2κ1

(1− κ1)(1− κ2
1)

+
η21 + 2κ1η1 + 1

1− κ2
1

ω0

1− φ
. (18)

Stationarity. One of the conditions for forecasting is stationarity. According
to [20], stationarity is a behavior of data that does not change with time in a
time series process. If the time series data are not stationary, it will be difficult to
determine the behavior of the data and to forecast a value in the future. Time series
data are weakly stationary if the unconditional mean and unconditional variance
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are fixed. Therefore, based on (18) and (14), the stationarity of the ARMA(1,1)-
GJR-GARCH(1,1) model can be obtained if,

|κ1| < 1, 0 < φ < 1, ω0 > 0,

ω1, ω2 ≥ 0, ω2 + ϕ ≥ 0, ω1 + ω2 +
ϕ

2
< 1.

Kurtosis. Kurtosis is generally identical to the fourth moment of returns. Data
with large kurtosis relative to the normal distribution have sharper peak around
the mean and heavier tail, and conversely, data with small kurtosis relative to
the normal distribution have a more sloping peak around the mean and thinner
tail. Based on the nature of the returns (the kurtosis is greater than 3), it can
be said that the returns do not have normal distribution. The heavy tail also
indicates that the tail of distribution of the returns is slower to 0 when contrasted
to normal distribution. This is due to the extreme values in the returns series. The
formulas for unconditional kurtosis and conditional kurtosis for the MA(1)-GJR-
GARCH(1,1) model are given by the following proposition.

Proposition 3.2. Let Zt follow ARMA(1,1)-GJR-GARCH(1,1) in (11) where the
innovation εt is assumed to have the distribution N (0, 1). Then, the unconditional
kurtosis of Zt is given by,

κZ =

κ4
1µ

4

(κ1−1)4 +
4κ2

1µ
2(η2

1+1)
(κ1−1)2 h̄+ 6η21h̄

2 + 3(η41 + 1)υ(
κ2
1µ

2

(κ1−1)2 + (1 + η21)h̄
)2 , (19)

where

υ =
ω2
0 + 2ω0φh̄

1− γ
, h̄ =

ω0

1− φ
.

Remark 3.3. The closed form formula for the conditional kurtosis of Zt+v follow-
ing ARMA(1,1)-GJR-GARCH(1,1) cannot be obtained because it is complicated to
obtain the conditional distribution of Zt+v. This is caused by Zt+v which contains
the autoregressive component Zt+v−1.

MA(1)-GJR-GARCH(1,1). This model can be considered a simplification of
ARMA(1, 1)-GJR-GARCH(1, 1), given by,

Zt = µ+ η1 ξt−1 + ξt, ξt = h
1/2
t εt

ht = ω0 + ω1 ht−1 + ω2 ξ
2
t−1 + ϕIt−1 ξ

2
t−1.

(20)

Based on (11), since εt follows a standard normal distribution, the moment
generating function (m.g.f.) of εt is given as follows,

Mεt(s) = E(eεt s) = e
1
2 s

2

.

The m.g.f’s. of Zt and Zt+v|Gt are given by,

MZt
(s) = E

[
e(µ+η1h

1/2
t−1εt−1+h

1/2
t εt)s

]
= eµsE

[
eη1h

1/2
t−1εt−1s]E[eh

1/2
t εts

]
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= eµs+
1
2 (η

2
1ht−1+ht)s

2

MZt+v|Gt
(s) = E[e(µ+η1h

1/2
t+v−1εt+v−1+h

1/2
t+vεt+v)s|Gt ]

= eµsE
[
eη1h

1/2
t+v−1εt+v−1s

]
E
[
eh

1/2
t+vεt+vs

]
= eµs+

1
2 (η

2
1ht+v−1+ht+v)s

2

,

for v = 2, 3, · · · , n. Thus, Zt ∼ N (µ, η21ht−1 + ht) dan Zt+v|Gt ∼ N (µ, η21ht+v−1 +
ht+v).

Expectation and variance

• Unconditional expectation and variance

E[Zt] = E
[
µ+ η1h

1/2
t−1εt−1 + h

1/2
t εt

]
= µ+ η1E

[
h
1/2
t−1

]
E[εt−1] + E

[
h
1/2
t

]
E[εt] = µ,

Var[Zt] = Var
[
µ+ η1h

1/2
t−1εt−1 + h

1/2
t εt

]
= η21

(
E
[
ε2t−1

]
Var

[
h
1/2
t−1

]
+Var[εt−1]E[ht−1]

)
+
(
E[ε2t ]Var

[
h
1/2
t

]
+Var[εt]E[ht]

)
= η21E[ht−1] + E[ht] = (η21 + 1)

ω0

1− φ
.

Thus, we obtain Zt ∼ N
(
µ, (η21 + 1) ω0

1−φ

)
.

• Conditional expectation and variance
Perhaps the most important use of MA(1)-GJR-GARCH(1,1) is to forecast
the future values of {Zt}. The following theorem gives conditional moments
of returns for MA(1)-GJR-GARCH(1,1).

Theorem 3.4. The conditional expectation and variance of forward returns
that follow model (20) are given by,

E[Zt+v|Gt] = µ, (21)

V ar[Zt+v|Gt] = (η21 + 1)h̄+ (η21φ
v−2 + φv−1)(ht+1 − h̄), (22)

for v = 2, 3, · · · , n.

The conditional expectation E[Zt+v|Gt] simply states that, with a con-
stant conditional expectation equation, the conditional expectation of v
step ahead return over time t equals the constant unconditional expecta-
tion µ. The conditional variance of the return Var[Zt+v|Gt] indicates that
the conditional variance of the v step ahead return over time t equals a mul-
tiplication of the variance of steady state h̄, added with an exponentially
declining correction term that takes into account the difference between the
one step ahead variance ht+1 and the variance of stabile state h̄.

Remark 3.5. Especially for v = 2, we obtain,

Var[Zt+2|Gt] = (η21 + 1− φ)h̄+ η21ht+1.
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The limit of Var[Zt+v|Gt] is given by the following lemma.

Lemma 3.6. Suppose Zt follows the model (20). Let φ ∈ (0, 1). Then,

lim
v→∞

Var[Zt+v|Gt] = (η21 + 1)h̄. (23)

3.4. Selected risk measures. In the following, we describe several risk measures
associated with the ARMA(1, 1)-GJR-GARCH(1,1) model.

1. VaR
The VaR of Zt+v|Gt at t+ v (return from t+ v −∆t to t+ v) with probability
level α is defined as,

Qα,t+v = Qα(Zt+v|Gt) = inf{z : FZt+v|Gt
(zt+v) ≥ α}, (24)

where FZt+v|Gt
is the conditional d.f. of Zt+v at t+ v on Gt, Gt is σ−algebra at

time t, and we have Pr(Zt+v ≤ Qα,t+v|Gt) = α. It means that we have 100α%
confidence that the risk in the period ∆t is not greater than VaR.

2. TVaR
The TVaR is actually a conditional expectation. In this case, the condition is
Zt+v ≥ Qα(Zt+v|Gt) Therefore, TVaR of Zt+v|Gt is given by,

TVaRα,t+v = E[Zt+v|Zt+v ≥ Qα,t+v]

Note that,

Pr
(
(Zt+v ≤ z |Zt+v ≥ Qα,t+v)

∣∣Gt

)
=

Pr
(
(Qα,t+v ≤ Zt+v ≤ z)|Gt

)
Pr

(
(Zt+v ≥ Qα,t+v)

∣∣Gt

)
=

1

1− α

z∫
Qα,t+v

fZt+v|Gt
(zt+v)dzt+v.

Then, TVaRα,t+v is given by,

TVaRα,t+v =
1

1− α

∞∫
Qα,t+v

zt+vfZt+v|Gt
(zt+v)dzt+v.

3. DTVaR
We set a = d = 0. Similar to TVaR, the DTVaR of Zt+v|Gt is also a condi-
tional expectation of Zt+v ≥ Qα(Zt+v|Gt). However, Zt in DTVaR is not only
conditional on Zt+v ≥ Qα(Zt+v|Gt) but also conditional over another stochastic
process. Thus, the DTVaR of Zt associated with another stochastic process Wt

is given by,

DTVaR
(δ,0)
(α,0)(Zt+v|Wt+v;C) = E(Zt+v|Zt+v > Qα,t+v,Wt+v > Qδ,t+v)

=
1

Pr(Zt+v > Qα,t+v,Wt+v > Qδ,t+v|Gt)
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×
∞∫

Qα,t+v

∞∫
Qδ,t+v

zt+v c(F (zt+v), F (wt+v)|Gt)

× fWt+v|Gt
(wt+v) dwt+v dzt+v, (25)

where f·|Gt
(·) is the conditional p.f. of return at t + v on σ−algebra Gt. The

denominator of (25) or the bivariate significance level (b.s.l.) is given by,

Pr
(
Zt+v > Qα,t+v,Wt+v > Qδ,t+v|Gt

)
=

∫ ∞

Qα,t+v

∫ ∞

Qδ,t+v

c(F (zt+v), F (wt+v)|Gt)fZt+v|Gt
(zt+v)

× fWt+v|Gt
(wt+v) dwt+v dzt+v,

and Qα,t+v and Qδ,t+v satisfy

Pr(Zt+v ≤ Qα,t+v|Gt) =

∫ Qα,t+v

−∞
fZt+v|Gt

(zt+v) dzt+v,

Pr(Wt+v ≤ Qδ,t+v|Gt) =

∫ Qδ,t+v

−∞
fWt+v|Gt

(wt+v) dwt+v.

Remark 3.7. If a, d > 0, then it is difficult to compare the b.s.l.

Pr
(
Qα,t+v < Zt+v < Qα1,t+v, Qδ,t+v < Wt+v < Qδ1,t+v|Gt

)
(26)

and the number of violations related to DTVaR forecast. The b.s.l. corresponds
to the target and associated returns that are smaller than Qα1,t+v and Qδ1,t+v,
respectively (bounded above). While the number of violations usually corresponds
to the number of returns Zt+v that are larger than DTVaR forecast (unbounded
above).

4. The Procedures of Estimation and Forecasting

4.1. Copula estimation method. To estimate copula parameters, we use the
MLE method. Based on (3), we obtain,

fXt,Yt(xt, yt) = c(u1t, u2t; θ)fXt(xt)fYt(yt),

where θ denotes copula parameter. Thus, it is clear that the estimated copula
parameter relies on the estimate of marginal distribution of each component. The
number of parameters that must be estimated is the sum of the parameters of the
univariate distributions and the number of copula parameters. Furthermore, the
logarithmic function of the joint p.f. is given by,

ln
(
fXt,Yt(xt, yt)

)
= ln fXt(xt) + ln fYt(yt) + ln c(u1t, u2t; θ).

Suppose there are m i.i.d. observations. The log-likelihood function is given
in the following,

l =

m∑
t=1

ln
(
fXt,Yt

(xt, yt)
)
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=

m∑
t=1

ln fXt(xt) +

m∑
t=1

ln fYt(yt) +

m∑
t=1

ln
(
c(ut, vt); θ

)
= lXt

+ lYt
+ lC , (27)

where lXt
and lYt

are the log-likelihood functions for marginal distributions, while
lC for copula.

Let θXt
= (θX1 , · · · , θXm1

) and θYt
= (θY1 , · · · , θYm1

) be vectors of the marginal
parameters of Xt and Yt, respectively, to be estimated. The MLE method estimates

θ̂Xt
and θ̂Yt

which maximizes lXt
and lYt

with the first partial derivatives that
satisfy,

∂lXt

∂θXt

= 0 and
∂lYt

∂θYt

= 0.

Furthermore, in estimating the copula parameter, numerical calculation is required
as a result of the difficulty of maximizing the function lC .

4.2. Forecasting DTVaR. Suppose that returns Xt and Yt are associated with
return Zt, respectively. Thus, without losing generality, the DTVaR of Xt+v asso-
ciated with Zt+v for a = d = 0 is given by,

DTVaR
(δ,0)
(α,0)(Xt+v|Zt+v;C) = E(Xt+v|Xt+v > Qα,t+v, Zt+v > Qδ,t+v)

= Pr(Xt+v > Qα,t+v, Zt+v > Qδ,t+v|Gt)

=

∞∫
Qα,t+v

∞∫
Qδ,t+v

xt+v c(F (xt+v), F (zt+v)|Gt)fXt+v|Gt
(xt+v)

× fZt+v|Gt
(zt+v) dzt+v dxt+v, (28)

In the following, we show the empirical results of DTVaR on the energy
market, with commodities being Gasoline, Heating oil, and Crude oil. Accord-
ing to Remark 3.3, the conditional kurtosis of the ARMA(1,1)-GJR-GARCH(1,1)
model does not possess a closed form expression. This means that the first to
fourth central moments do not have closed form expressions. Therefore, the fore-
casting of DTVaR is not carried out on ARMA(1,1)-GJR-GARCH(1,1) model but
on the MA(1,1)-GJR-GARCH(1,1) model. As a comparison with the MA-GJR-
GARCH−copula method, DTVaR was also forecasted using the GARCH−copula
and GJR-GARCH−copula methods. Both GARCH and GJR-GARCH are specifi-
cations of the MA-GJR-GARCH.

5. Empirical Results

5.1. Data. This study intends to examine the accomplishment of the ARMA-GJR-
GARCH-copula methodology on energy risk for the period from January 2, 2001
to December 31, 2009 with 2,251 daily observations. Energy risk is the returns of
energy commodities. To investigate interactions in the energy market, three im-
portant commodities are selected, namely Crude oil from West Texas Intermediate



Forecasting dependent tail value-at-risk by ARMA-GJR-GARCH-copula 395

(WTI), Heating oil and Gasoline from New York Harbor (NYH). The data are ob-
tained from [21]. The market returns of Gasoline, Heating oil, and Crude oil are
shown in Fig. 1. All figures and computations in this article are generated using
Matlab software.

We give definition for returns Zt in the following,

Zt = − ln
( Pt

Pt−1

)
, (29)

where Pt expresses the daily closing price for trading day t. Furthermore, we name
the returns Zt energy risk. In Fig. 1, it is clear that there is volatility clustering
in the three commodity returns. Therefore, we examine if the squared returns are
serially correlated, which is called the ARCH effects and displayed in Table 1.

Table 1. Descriptive statistics and Engle tests.

Statistics Gasoline Heating oil Crude oil
Sample size 2,252 2,252 2,252
Mean 4.3595× 10−4 3.8029× 10−4 4.7553× 10−4

Standard deviation 0.0310 0.0252 0.0263
Skewness 0.0770 -0.1092 -0.1344
Excess of kurtosis 3.9962 1.1700 4.1198
Engle test Q-statistic-Q p-value Q-statistic p-value Q-statistic p-value
LM(4) 423.5103 0.0000 77.4134 0.0000 261.8488 0.0000
LM(6) 425.8648 0.0000 106.6309 0.0000 289.5009 0,0000
LM(8) 429.9366 0.0000 116.4914 0.0000 298.5928 0.0000
LM(10) 430.5990 0.0000 125.9035 0.0000 320.9760 0.0000

Table 2 displays statistical summary of energy risks and statistics tests for
the ARCH effect. It can be seen that Gasoline has a positive skewness (0.0770),
while Heating oil and Crude oil have a negative skewness (-0.1092 and -0.1344).
The LM(K) statistic expressly accounts that the ARCH effects tend to be found in
the returns of Gasoline, Heating oil, and Crude Oil. We consider the ARMA-GJR-
GARCH model (including the MA-GJR-GARCH and GARCH) introduced on p.
387 to match the data of time series to generate i.i.d. observations to estimate
the parameters of copula. In addition, the kurtosis is significant if it is larger than
3. It implies that the empirical observation of returns shows heavier tail than the
normal distribution.

5.2. The marginal distribution. Since the return series possesses volatility clus-
tering, we need to consider univariate distribution for adapting the empirical return
distribution. Therefore, we take into consideration the univariate model presented
in Section 3, the ARMA-GJR-GARCH model and its specifications, namely the
MA-GJR-GARCH and the classic GARCH. We fit the three models for the return
series of the three energy commodities as the initial models with normal distribu-
tion.

Tables 2, 3 and 4 show the maximum likelihood results of the model param-
eters, the Bayesian Information Criterion (BIC) and Akaike Information Criterion
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Figure 1. Daily returns of Gasoline, Heating oil,
and Crude oil.

Table 2. Parameter estimates of GARCH model and statistic test.

Gasoline Heating oil Crude oil
Parameter Value Std Value Std Value Std
µ 0,0012 0,0006 0,0010 0,0005 0,0011 0,0005
ω0 5, 6101× 10−5 1, 1063× 10−5 1, 2525× 10−5 3, 4717× 10−6 1, 1277× 10−5 2, 9417× 10−6

ω1 0,8478 0,0168 0,9238 0,0109 0,9219 0,0103
ω2 0,0914 0,0084 0,0564 0,0078 0,0596 0,0069
FLL 4.753,8 5.180,4 5.238,9
AIC -9.499,6 -10.353 -10.470
BIC -9.476,8 -10.330 -10.447
Lag p-value Q-statistic p-value Q-statistic p-value Q-statistic
Uji Ljung-Box
QW(1) 0,2723 1,2051 0,1892 4,7727 0,1347 8,4172
QW(3) 0,1392 2,1873 0,4489 2,6493 0,5918 3,7103
QW(5) 0,3624 10,8295 0,6354 1,7069 0,4584 4,6628
QW(7) 0,8335 0,0442 0,8079 0,9725 0,6122 3,5741
Uji Engle
LM(4) 0,0014 17,6520 0,0012 21,9942 0,0026 23,7204
LM(6) 0,2500 5,3850 0,3147 7,0672 0,4924 7,4165
LM(8) 0,2649 5,2258 0,3963 6,2451 0,5708 6,6866
LM(10) 0,0648 8,8564 0,0895 10,9632 0,1576 11,8586

(AIC) for model selection. For Gasoline returns, based on the smallest AIC and
BIC values, the most suitable model is GARCH(1,1). As for Heating oil and Crude
oil returns, the most suitable model according to the smallest AIC value is the
ARMA(1,1)-GJR-GARCH(1,1), but that in accordance with the smallest BIC value
is the GARCH(1,1). In Fig. 2, it can be seen that the volatilities of Gasoline and
Crude oil returns are greater than that of Heating oil return in the three volatility
models.
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Table 3. Parameter estimates of MA-GJR-GARCH model.

Gasoline Heating oil Crude oil
Parameter Value Std Value Std Value Std
µ -0,0012 0,0006 -0,0009 0,0005 -0,0008 0,0005
η1 0,0200 0,0224 -0,0332 0,02206 -0,0269 0,0217
ω0 5, 6680× 10−5 1, 2191× 10−5 1, 4185× 10−5 3, 8395× 10−6 1, 1502× 10−5 2, 6801× 10−6

ω1 0,8465 0,0206 0,9210 0,0115 0,9257 0,0096
ω2 0,0944 0,0188 0,0667 0,0108 0,0805 0,0093
ϕ -0,0050 0,0203 -0,0212 0,0141 -0,0524 0,0118
FLL 4.754,2 5.182,6 5.244,7
AIC -9.496 -10.353 -10.477
BIC -9.462 -10.319 -10.443

Table 4. Parameter estimates of ARMA-GJR-GARCH model.

Gasoline Heating oil Crude oil
Parameter Value Std Value Std Value Std
µ -0,0014 0,0014 -0,0015 0,0008 -0,0032 0,0020
κ1 -0,1720 1,0633 -0,7091 0,1488 -0,9884 0,0066
η1 0,1918 1,0599 0,6837 0,1542 0,9891 0,0072
ω0 5, 6637× 10−5 1, 2239× 10−5 1, 4434× 10−5 3, 9142× 10−6 6, 7910× 10−5 2, 0815× 10−5

ω1 0,8466 0,0207 0,9199 0,0117 0,9209 0,0129
ω2 0,0944 0,0188 0,0681 0,0111 0,0598 0,0117
ϕ -0,0051 0,0203 -0,0225 0,0145 -0,0137 0,0134
FLL 4.754,3 5.183,9 5.246,6
AIC -9.494,6 -10.354 -10.479
BIC -9.454,5 -10.314 -10.439

Table 2 provides that the Ljung-Box test employed to residuals of the GARCH(1,1)
does not refuse the H0 of autocorrelations at lags 1, 3, 5, and 7, at significance level
5%. The square of series of residuals examined by the Engle test does not reject the
null hypothesis of ARCH effects either at lags 6, 8, and 10, at significance level 5%.
However, for lag 4, the Engle test refuse the H0 of ARCH effect. On the other hand,
Brooks [22] asserted that ”the GARCH(1,1) model is adequate to catch volatility
clustering in the data, and it is rare for higher-order models to be estimated in the
academic finance literature”. Therefore, order 1 in the three GARCH models is
still selected. Furthermore, more complex models such as MA-GJR-GARCH(1,1)
and ARMA-GJR-GARCH(1,1) are also applied for the three energy risks.

However, in this article, the forecast of DTVaR using the ARMA-GJR-
GARCH-copula method is only carried out on the specifications of the method,
namely MA-GJR-GARCH-copula and GARCH-copula. This is due to the diffi-
culty of obtaining a conditional distribution of the ARMA-GJR-GARCH model
(see Remark 3.3 on p. 390). Next, we divide the data into 2 groups, namely data
of sample-in and data of sample-out to verify whether the forecasted DTVaR is
sufficient. The data of sample-in comprise the first 1,400 observations, and the
remaining 851 observations are data of sample-out for testing. All distributions of
univariate models and copula functions are estimated applying the sample-in data
containing 1,400 return observations.
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Figure 2. Generated volatilities of the returns of Gasoline, Heating
oil, and Crude oil in the three volatility models.

5.3. Copula modeling. Shortly after estimating the parameters of the univariate
distribution FXi

, we then carry out the estimation of the copula parameters as
described previously on p. 394. Four Copula functions are applied in this study:
Clayton, Gumbel, Frank, and Gaussian. Under the method of MLE, the picked
copula functions will be matched to these series of residuals. The results of the
Copula modeling are shown in Table 5, where the results are estimated using the
method of MLE.

Table 5. Copula parameter estimates.

Copula Return Parameter MA-GJR-GARCH GARCH
Clayton Gasoline θC(Xt, Zt) 1.3635 1.2852

Heating oil θC(Yt, Zt) 1.9419 2.1471
Gumbel Gasoline θG(Xt, Zt) 1.8355 1.9506

Heating oil θG(Yt, Zt) 2.2503 2.2331
Frank Gasoline θF(Xt, Zt) 7.2748 6.8273

Heating oil θF(Yt, Zt) 1.6767 1.7283
Gaussian Gasoline θN(Xt, Zt) 0.6938 0.6625

Heating oil θN(Yt, Zt) 0.7815 0.7743

5.4. Forecasting DTVaR. We have followed the algorithm developed by [12] for
forecasting VaR. Initially, this article applies the sample-in data containing 1,400
return observations to forecast VaR1,401 at time t = 1, 401, and at every novel
observation we re-forecast VaR, because of the level of conditional probability and
the VaR forecasting formula. It implies that we forecast VaR1,402 by utilizing
observations t = 2 to t = 1, 401 and forecast VaR1,403 by utilizing observations
t = 3 to t = 1, 402 till the sample-out observations we renew are applied.

The following is a DTVaR forecasting algorithm using the ARMA-GJR-
GARCH−copula method wih Monte Carlo method:

(1) Estimate the ARMA-GJR-GARCH model parameters for the energy risks
of Gasoline (Xt), Heating oil (Yt), and Crude oil (Zt).

(2) Transforms each returns to a Uniform distribution U(0, 1) employing the
distribution function,

ut = FX(xt), vt = FY (yt), wt = FZ(zt),
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t = 1, 2, · · · , 1, 400.
(3) Estimate copula parameters from paired return data of {(ut, wt)}, and

{(vt, wt)}, for t = 1, · · · , 1, 400.
(4) Generate paired data {(u′

t, w
′
t)} and {(v′t, w′

t)}, with each component whose
value is in the interval (0, 1), based on the Copula parameter estimate in
Step 3.

(5) Retransform each element of the paired data in Step 4 to the original dis-
tribution using the inverse of the distribution function,

x′
t = F−1

X (u′
t), y′t = F−1

Y (vt), z′t = F−1
Z (w′

t).

(6) Forecast VaR of Xt+1 and VaR of Yt+1 at probability level α and VaR of
Zt+1 at excess level δ for t = 1, · · · , 1, 400.

(7) Calculate DTVaRs of Gasoline returns (Xt) and Heating oil returns (Yt)
associated with Crude oil returns (Zt) for t = 1, · · · , 1, 400, taking into
account: the values of xt+1 and zt+1 that satisfy xt+1 > VaRα(Xt+1) and
zt+1 > VaRδ(Zt+1); yt+1 and zt+1 that satisfy yt+1 > VaRα(Yt+1) and
zt+1 > VaRδ(Zt+1).

(8) Repeat Steps 1-7 as many times as m = 100 (Monte Carlo method).
(9) Calculate the mean of the forecasted values of the DTVaR generated in

Step 8.

The numbers of DTVaR forecast violations calculated using four copula func-
tions are shown in Tables 6-9. In this context, the number of violations is the num-
ber of sample observations beyond the critical value, which are larger than the DT-
VaR forecast. Table 6 shows that the DTVaR forecast of Gasoline returns, which are
associated with Crude oil returns using MA(1)-GJR-GARCH(1,1)-Clayton copula
method, has the lowest distinction between the bivariate significance level (b.s.l.)
and percentage of violations (0.67%, 1.37%, 1, 50%, 0.21%). Thus, this shows that
the Clayton copula is the most precise copula to describe the bivariate distribution
of Gasoline returns and Crude oil returns for the MA(1)-GJR-GARCH(1,1) model.
Moreover, based on Table 7, the DTVaR forecast of Heating oil returns, which are
associated with Crude oil returns using MA(1)-GJR-GARCH(1,1)-Frank copula
method, has the smallest difference between b.s.l. and the percentage of violations
(1.30%, 0.57%, 1.51%, 1.04%). This shows that Frank copula is the most precise
copula to describe the bivariate distribution of Heating oil returns and Crude oil
returns.

Table 8 shows that the DTVaR forecast of Gasoline returns, which are associ-
ated with Crude oil returns using the GARCH(1,1)-Clayton copula, has the smallest
difference between b.s.l. and the percentage of violations (0.62%, 1, 26%, 1.42%, 0.13%).
Hence, this shows that the Clayton copula is the most precise copula to describe the
joint distribution of Gasoline returns and Crude oil returns for the GARCH(1,1)
model. Meanwhile, based on Table 9, the DTVaR forecast of Heating oil returns,
which are associated with Crude oil returns using Frank copula, has the smallest dif-
ference between b.s.l. and the percentage of violations (1.33%, 0.62%, 1.55%, 0.97%).
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Table 6. The bivariate significance level (b.s.l.) and the number

of violations of the forecast of DTVaR
(δ,0)
(α,0) of Gasoline returns

using MA(1)-GJR-GARCH(1,1)-copula.

Copula Parameter
Clayton α = δ = 0.90 α = δ = 0.85 α = 0.90, δ = 0.85 α = 0.85, δ = 0.90

(θ̂C = 1.3635) Cθ(0.90, 0.90) Cθ(0.85, 0.85) Cθ(0.90, 0.85) Cθ(0.85, 0.90)
b.s.l. 2.08 4.42 3.03 3.03

No. violations 12 26 13 24
% violations 1.41 3.05 1.53 2.82
Difference 0.67 1.37 1.50 0.21

Copula Parameter
Gumbel α = δ = 0.90 α = δ = 0.85 α = 0.90, δ = 0.85 α = 0.85, δ = 0.90

(θ̂G = 1.8355) Cθ(0.90, 0.90) Cθ(0.85, 0.85) Cθ(0.90, 0.85) Cθ(0.85, 0.90)
b.s.l. 5.75 8.89 6.95 6.95

No. violations 13 26 17 19
% violations 1.53 3.05 2.00 2.23
Difference 4.22 5.84 4.95 4.72

Copula Parameter
Frank α = δ = 0.90 α = δ = 0.85 α = 0.90, δ = 0.85 α = 0.85, δ = 0.90

(θ̂F = 7.2748) Cθ(0.90, 0.90) Cθ(0.85, 0.85) Cθ(0.90, 0.85) Cθ(0.85, 0.90)
b.s.l. 4.28 8.01 5.79 5.79

No. violations 8 26 12 16
% violations 0.94 3.05 1.41 1.88
Difference 3.34 4.96 4.38 3.91

Copula Parameter
Gaussian α = δ = 0.90 α = δ = 0.85 α = 0.90, δ = 0.85 α = 0.85, δ = 0.90

(ρ̂ = 0.6938) Cθ(0.90, 0.90) Cθ(0.85, 0.85) Cθ(0.90, 0.85) Cθ(0.85, 0.90)
b.s.l. 4.63 7.75 5.89 5.89

No. violations 9 19 11 13
% violations 1.06 2.23 1.29 1.53
Differencea 3.57 5.52 4.60 4.36

a
Difference denotes absolute difference between bivariate significance level (b.s.l) and percentage of violations.

Thus, this shows that Frank copula is the most precise copula to describe the joint
distribution of Heating oil and Crude oil returns.

Note that for Gasoline returns, the difference between b.s.l. and the percent-
age of violations for the GARCH-Clayton copula method is always smaller than the
difference for the MA-GJR-GARCH-Clayton copula method. This shows that the
simpler GARCH-Clayton copula is better in forecasting DTVaR. An illustration
of the DTVaR forecast of Gasoline returns using the GARCH-copula method is
presented in Fig. 3. We can see the DTVaR forecast are almost always greater
than Gasoline returns.
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Table 7. The b.s.l. and the number of violations of the fore-
cast of DTVaR

(δ,0)
(α,0) of Heating oil returns using MA(1)-GJR-

GARCH(1,1)-copula.

Copula Parameter
Clayton α = δ = 0.80 α = δ = 0.85 α = 0.80, δ = 0.85 α = 0.85, δ = 0.80

(θ̂C = 1.9419) Cθ(0.90, 0.90) Cθ(0.85, 0.85) Cθ(0.90, 0.85) Cθ(0.85, 0.90)
b.s.l. 2.47 5.14 3.55 3.55

No. violations 9 28 13 25
% violations 1.06 3.29 1.53 2.93
Difference 1.41 1.85 2.02 0.62

Copula Parameter
Gumbel α = δ = 0.90 α = δ = 0.85 α = 0.90, δ = 0.85 α = 0.85, δ = 0.90

(θ̂G = 2.2503) Cθ(0.90, 0.90) Cθ(0.85, 0.85) Cθ(0.90, 0.85) Cθ(0.85, 0.90)
b.s.l. 6.64 10.16 7.92 7.92

No. violations 11 24 19 21
% violations 1.29 2.82 2.23 2.46
Difference 5.35 7.34 5.69 5.46

Copula Parameter
Frank α = δ = 0.80 α = δ = 0.85 α = 0.80, δ = 0.85 α = 0.85, δ = 0.80

(θ̂F = 1.6767) Cθ(0.90, 0.90) Cθ(0.85, 0.85) Cθ(0.90, 0.85) Cθ(0.85, 0.90)
b.s.l. 1.77 3.74 2.57 2.57

No. violations 4 27 9 13
% violations 0.47 3.17 1.06 1.53
Difference 1.30 0.57 1.51 1.04

Copula Parameter
Gaussian α = δ = 0.90 α = δ = 0.85 α = 0.90, δ = 0.85 α = 0.85, δ = 0.90

(ρ̂ = 0.7815) Cθ(0.90, 0.90) Cθ(0.85, 0.85) Cθ(0.90, 0.85) Cθ(0.85, 0.90)
b.s.l. 5.43 8.86 6.79 6.79

No. violations 9 23 11 20
% violations 1.06 2.70 1.29 2.35
Difference 4.37 6.16 5.50 4.44
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Figure 3. DTVaR forecast of Gasoline returns associated with
Crude oil returns, using the GARCH(1,1)-copula method, compared
with VaR and TVaR forecasts.
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Table 8. The b.s.l. and the number of violations of the forecast
of DTVaR

(δ,0)
(α,0) of Gasoline returns using GARCH(1,1)-copula.

Copula Parameter
Clayton α = δ = 0, 90 α = δ = 0, 85 α = 0, 90, δ = 0, 85 α = 0, 85, δ = 0, 90

(θ̂C = 1, 2852) Cθ(0, 90, 0, 90) Cθ(0, 85, 0, 85) Cθ(0, 90, 0, 85) Cθ(0, 85, 0, 90)
b.s.l. 2,03 4,31 2,95 2,95

no. violations 12 26 13 24
% violations 1,41 3,05 1,53 2,82
Difference 0,62 1,26 1,42 0,13

Copula Parameter
Gumbel α = δ = 0, 90 α = δ = 0, 85 α = 0, 90, δ = 0, 85 α = 0, 85, δ = 0, 90

(θ̂G = 1, 9506) Cθ(0, 90, 0, 90) Cθ(0, 85, 0, 85) Cθ(0, 90, 0, 85) Cθ(0, 85, 0, 90)
b.s.l. 6.04 9.31 7.27 7.27

no. violations 14 25 16 19
% violations 1.64 2.93 1.88 2.23
Difference 4.40 6.38 5.39 5.04

Copula Parameter
Frank α = δ = 0, 90 α = δ = 0, 85 α = 0, 90, δ = 0, 85 α = 0, 85, δ = 0, 90

(θ̂F = 6.8273) Cθ(0, 90, 0, 90) Cθ(0, 85, 0, 85) Cθ(0.90, 0.85) Cθ(0, 85, 0, 90)
b.s.l. 4.12 7.76 5.59 5.59

no. violations 8 26 13 17
% violations 0.94 3.05 1.53 2.00
Difference 3.18 4.71 4.06 3.59

Copula Parameter
Gaussian α = δ = 0, 90 α = δ = 0, 85 α = 0, 90, δ = 0, 85 α = 0, 85, δ = 0, 90

(ρ̂ = 0, 6625) Cθ(0, 90, 0, 90) Cθ(0, 85, 0, 85) Cθ(0, 90, 0, 85) Cθ(0, 85, 0, 90)
b.s.l. 4,37 7,39 5,60 5,60

no. violations 10 19 12 13
% violations 1,17 2,23 1,41 1,53
Difference 3.20 5.16 4,19 4.07

For Heating oil returns, the difference for the MA-GJR-GARCH-Frank copula
method is always smaller than the difference for the GARCH-Frank copula method.
This shows that the more complicated MA-GJR-GARCH-Frank copula is better in
forecasting DTVaR. An illustration of the DTVaR forecast of Heating oil returns
using the MA-GJR-GARCH-copula method is presented in Fig.4.
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Table 9. The b.s.l. and the number of violations of the forecast
of DTVaR

(δ,0)
(α,0) of Heating oil returns using GARCH(1,1)-copula.

Copula Parameter
Clayton α = δ = 0.90 α = δ = 0.85 α = 0.90, δ = 0.85 α = 0.85, δ = 0.90

(θ̂C = 2.1471) Cθ(0.90, 0.90) Cθ(0.85, 0.85) Cθ(0.90, 0.85) Cθ(0.85, 0.90)
b.s.l. 2.66 5.48 3.80 3.80

No. violations 8 27 12 25
% violations 0.94 3.17 1.41 2.93
Difference 1.72 2.31 2.39 0.87

Copula Parameter
Gumbel α = δ = 0.90 α = δ = 0.85 α = 0.90, δ = 0.85 α = 0.85, δ = 0.90

(θ̂G = 2.2331) Cθ(0.90, 0.90) Cθ(0.85, 0.85) Cθ(0.90, 0.85) Cθ(0.85, 0.90)
b.s.l. 6.61 10.12 7.88 7.88

No. violations 11 26 19 21
% violations 1.29 3.05 2.23 2.46
Difference 5.32 7.07 5.65 5.42

Copula Parameter
Frank α = δ = 0.90 α = δ = 0.85 α = 0.90, δ = 0.85 α = 0.85, δ = 0.90

(θ̂F = 1.7283) Cθ(0.90, 0.90) Cθ(0.85, 0.85) Cθ(0.90, 0.85) Cθ(0.85, 0.90)
b.s.l. 1.80 3.79 2.61 2.61

No. violations 4 27 9 14
% violations 0.47 3.17 1.06 1.64
Difference 1.33 0.62 1.55 0.97

Copula Parameter
Gaussian α = δ = 0.90 α = δ = 0.85 α = 0.90, δ = 0.85 α = 0.85, δ = 0.90

(ρ̂ = 0.7743) Cθ(0.90, 0.90) Cθ(0.85, 0.85) Cθ(0.90, 0.85) Cθ(0.85, 0.90)
b.s.l. 5.36 8.76 6.71 6.71

No. violations 9 23 11 21
% violations 1.06 2.70 1.29 2.46
Difference 4.30 6.06 5.42 4.25
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Figure 4. DTVaR forecast of Heating oil returns associated with
Crude oil returns, using the MA(1,1)-GJR-GARCH(1,1)-copula
method, compared with VaR and TVaR forecasts.
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Furthermore, if we compare the differences between b.s.l. and the percentage
of violations of the forecasts of DTVaR of Gasoline returns using GARCH-Clayton
copula (1.30%, 0.57%, 1.51%, 1.04%) and those of the forecasts of DTVaR of Heat-
ing oil returns using MA-GJR-GARCH-Frank copula (0.62%, 1, 26%, 1.42%, 0.13%),
then we find that the forecasts of DTVaR of Heating oil returns using MA-GJR-
GARCH-Frank copula is more accurate than those of Gasoline returns using GARCH-
Clayton copula. Consequently, in this context, energy commodities market players
should invest in Heating oil. However, different results could occur if, for example,
we increase or decrease daily observations.

6. Conclusions

This article explains a model for forecasting a copula-based extension TVaR by
the ARMA-GJR-GARCH-conditional copula model combined with Monte Carlo
method. Firstly, we have derived analytical expressions for the unconditional mo-
ments of the returns that follow the ARMA(1,1)-GJR-GARCH(1,1) model. For the
MA(1)-GJR-GARCH model, we obtain the unconditional moments of the returns.
Moreover, we provide several risk measures for the ARMA(1, 1)-GJR-GARCH(1, 1)
model, such as VaR, TVaR, and DTVaR. Furthermore, the DTVaR forecasting al-
gorithm using the ARMA(1,1)-GJR-GARCH(1,1)- copula method accompanied by
Monte Carlo method is also proposed, in which the innovation is assumed to be
normally distributed.

Second, we find that this method is quite robust in forecasting DTVaR. The
ARMA-GJR-GARCH model allows for a highly supple bivariate distribution by
separating the marginal conducts from the dependence relationship. This article
estimates several copulas with distinct univariate marginal distributions. We obtain
that, for both GARCH(1,1) and MA(1)-GJR-GARCH(1,1) models, the Clayton
copula is the most precise copula to describe the joint distribution of the energy
risks of Gasoline and Crude oil, while Frank copula is the most precise copula for the
energy risks of Heating oil and Crude oil. However, the simpler GARCH-Clayton
copula is better in forecasting DTVaR of Gasoline energy risk than the MA-GJR-
GARCH-Clayton copula. On the other hand, the more complicated MA-GJR-
GARCH-Frank copula is better in forecasting DTVaR of Heating oil energy risk
than the GARCH-Frank copula. Furthermore, we find that the forecast of DTVaR
of Heating oil returns using MA-GJR-GARCH-Frank copula is more accurate than
that of Gasoline returns using GARCH-Clayton copula. Therefore, in this context,
energy sector market players should invest in Heating oil rather than in Gasoline.

We recognize that these empirical forecasts may differ using different datasets.
Moreover, the results are also likely to be influenced by the assumed distribution
of innovation. For future research, we will forecast DTVaR where innovation is
assumed to follow heavy tail distributions such as Student’s t or two-sided Weibull
and apply them to different data of returns. We will also use other copulas, namely
the Student’s-t copula and the Archimedean copula family such as Rotated-Clayton
copula, Plackett copula, and the Rotated-Gumbel copula.
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Appendix

Proof for Proposition 3.1. First, note that,

E[Zt] = E[µ+ κ1Zt−1 + η1h
1/2
t−1εt−1 + h

1/2
t εt] = µ+ κ1E[Zt−1] =

µ

1− κ1
.
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Next, we have E[Z2
t ] given by,

E[Z2
t ] = E[(µ+ κ1Zt−1 + η1ξt−1 + ξt)

2]

= E[(µ2 + κ2
1Z

2
t−1 + 2µκ1Zt−1) + (η21ξ

2
t−1 + ξ2t + 2η1ξt−1ξt)

+ 2µη1ξt−1 + 2µξt + 2κ1η1Zt−1ξt−1 + 2κ1Zt−1ξt]

= µ2 + κ2
1E[Z2

t ] + 2µκ1
µ

1− κ1
+ (η21 + 1)E[ht] + 2κ1η1E[Zt−1ξt−1].

Consider E[Zt−1ξt−1],

E[Zt−1ξt−1] = E[µξt−1 + κ1Zt−2ξt−1 + η1ξt−2ξt−1 + ξ2t−1] = E[htε
2
t−1] = E[ht].

Hence,

E[Z2
t ] =

µ2

(1− κ1)2
+

2µ2κ1

(1− κ1)(1− κ2
1)

+
η21 + 2κ1η1 + 1

1− κ2
1

E[ht]

=
µ2

(1− κ1)2
+

2µ2κ1

(1− κ1)(1− κ2
1)

+
η21 + 2κ1η1 + 1

1− κ2
1

ω0

1− φ
,

where φ = ω2 + ϕ
2
+ ω1. Therefore,

Var[Zt] =
2µ2κ1

(1− κ1)(1− κ2
1)

+
η21 + 2κ1η1 + 1

1− κ2
1

ω0

1− φ
.

□

Proof for Proposition 3.2. We know E[Zt] =
µ

1−κ1
, so that,

Zt − E[Zt] =
κ1µ

κ1 − 1
+ η1h

1/2
t−1εt−1 + h

1/2
t εt,

(Zt − E[Zt])
2 =

κ2
1µ

2

(κ1 − 1)2
+

2κ1µ

κ1 − 1
(η1h

1/2
t−1εt−1 + h

1/2
t εt)

+ η21ht−1ε
2
t−1 + htε

2
t + 2η1h

1/2
t−1εt−1h

1/2
t εt,

(Zt − E[Zt])
4 =

κ4
1µ

4

(κ1 − 1)4
+

4κ3
1µ

3

(κ1 − 1)3
(η1h

1/2
t−1εt−1 + h

1/2
t εt)

+
4κ2

1µ
2

(κ1 − 1)2
(η21ht−1ε

2
t−1 + 2η1h

1/2
t−1εt−1h

1/2
t εt + htε

2
t )

+ η41h
2
t−1ε

4
t−1 + 4η31h

3/2
t−1ε

3
t−1h

1/2
t εt + 4η21ht−1ε

2
t−1htε

2
t

+ 2η21ht−1ε
2
t−1htε

2
t + 4η1h

1/2
t−1εt−1h

3/2
t ε3t + h2

t ε
4
t

+
4κ1µ

κ1 − 1
(η21ht−1ε

2
t−1h

1/2
t εt + h

3/2
t−1ε

3
t + 2η1h

1/2
t−1εt−1htε

2
t

+ η31h
3/2
t−1ε

3
t−1 + η1h

1/2
t−1εt−1htε

2
t + 2η21ht−1ε

2
t−1h

1/2
t εt).

According to [23], we obtain,

E[ht] =
ω0

1− φ
= h̄, E[h2

t ] =
ω2
0 + 2ω0φh̄

1− γ
= υ,

where

γ = φ2 + 2
(
ω2 +

ϕ

2

)2
+

3

4
ϕ2, h̄ =

ω0

1− φ
.

Hence,

E[(Zt − E[Zt])
2] =

κ2
1µ

2

(κ1 − 1)2
+ (1 + η21)h̄

E[(Zt − E[Zt])
4] =

κ4
1µ

4

(κ1 − 1)4
+

4κ2
1µ

2(η21 + 1)

(κ1 − 1)2
h̄+ 6η21 h̄

2 + 3(η41 + 1)υ.
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Therefore,

κZ =

κ4
1µ

4

(κ1−1)4
+

4κ2
1µ

2(η2
1+1)

(κ1−1)2
h̄+ 6η21 h̄

2 + 3(η41 + 1)υ(
κ2
1µ

2

(κ1−1)2
+ (1 + η21)h̄

)2
.

□

Proof for Theorem 3.4. First, consider the return Zt+v ,

E[Zt+v |Gt] = E[(µ+ η1h
1/2
t+v−1εt+v−1 + h

1/2
t+vεt+v)|Gt]

= µ+ η1E[h
1/2
t+v−1|Gt]E[εt+v−1] + E[h

1/2
t+v |Gt]E[εt+v ]

= µ.

Note that,

Z2
t+v = µ2 + 2µη1ξt+v−1 + η21ξ

2
t+v−1 + 2µξt+v + 2η1ξt+v−1ξt+v + ξ2t+v

= µ2 + 2µη1h
1/2
t+v−1εt+v−1 + η21ht+v−1ε

2
t+v−1 + 2µh

1/2
t+vεt+v

+ 2η1h
1/2
t+v−1εt+v−1h

1/2
t+vεt+v + ht+vε

2
t+v ,

so that,

E[Z2
t+v |Gt] = µ2 + η21E[ht+v−1|h1/2

t ] + E[ht+v |h1/2
t ].

According to Theorem 1 in [23],

E[ht+v |h1/2
t ] = h̄+ φv−1(ht+1 − h̄).

Hence,

E[Z2
t+v |Gt] = µ2 + η21(h̄+ φv−2(ht+1 − h̄)) + (h̄+ φv−1(ht+1 − h̄))

= µ2 + (η21 + 1)h̄+ (η21φ
v−2 + φv−1)(ht+1 − h̄).

Thus, the conditional variance of the return is given by,

Var[Zt+v |Gt] = (η21 + 1)h̄+ (η21φ
v−2 + φv−1)(ht+1 − h̄).

□

Proof for Lemma 3.6. Consider Theorem 3.4. Taking the limit to infinity of v, we obtain

(21) and (22). □


