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Abstract. In this paper, we introduces Narayana sequence in two parameters,
namely, (k,t)-Narayana sequence, which is generalization of classical Narayana se-
quence and provide some identities and matrix expressions. Further, we find rela-
tions between (k,t)-Narayana numbers and determinants and permanents of some
Hessenberg matrices. We study recurrence relations and the sum of the first n terms
of this sequence. We obtain some properties from matrices. Additionally, we define

(k,t)—Narayana sequence for negative subscripts and derive some relations.
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1. INTRODUCTION

Narayana sequence was introduced in the 14" century by the Indian mathe-
matician Narayana Pandita. He defined this sequence as the solution to the problem
of herd of cows and calves:“Every year a cow produces one calf. When its fourth
year begins, at the beginning of each year each calf produces one calf. The problem
is How many cows are there together after, for example, 20 years” [I].

This problem is solved in a similar manner as Fibonacci solved Rabbit problem [2].
As a solution to this problem, we get Narayana numbers, which are defined as

N, =N,,_1+N,_3 for alln>3
with the initial conditions
No=0, Ny =1, No =1.
Some of the terms are:
0,1, 1,1, 2, 3,4, 6,9, 13, 19,...
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Binet’s formula [3] for Narayana sequence is

g+l BnJrl :}/n+1
Ny = + = = - _
B-NB-a) F-a)F-BH)

(@ —B)a—7)

where &, B and 7 are the roots of char. equation 2% — 22 —1 = 0.

The Narayana sequence is defined by a third order recurrence relation, whereas
Fibonacci and Lucas sequences are defined by second order recurrence relations
respectively as follows:

Fn = Fn—l + Fn_g for all n > 2

with the initial conditions

Fo=0, =1
and

L,=L,_1+L,_o for alln>2

with the initial conditions

Lo=2, L1 =1.
Fibonacci and Lucas numbers have applications [4, [B] in many fields. Narayana
numbers are also used in fields [6] such as coding theory, cryptography, and commu-
nication systems. In [7] Kirthi et al. gave coding algorithms named Narayana uni-
versal codes using Narayana numbers. In [8] Das et al. gave second order Narayana
universal codes which is extension of codes given by Kirthi. They strengthen the

security in sending information due to the formation of straight lines.
Jose et al. [9] defined k-Narayana sequence as

bin = kbrpn—1+bgn_3 for alln >3
with the initial conditions
bro=0, b1 =1, bpo=k.

The authors [9] studied recurrence relations, Binet’s formula and some other prop-
erties of this sequence. Binet’s formula is

~n+1 pn+1 ~n+1
ap P e @

- =— — t = — e+ — —— =
(= Bi)(ak — k) (Be —ar)(Bx — ) (& — ax)(Gk — Br)
where ay, Bk and 7 are the roots of the equation 2% — kz? — 1 = 0.
They related this sequence to determinants of Hessenberg matrices.

bk:,n =

Goy [10] studied Toeplitz-Hessenberg determinants with entries for Fibonacci-Narayana
numbers or Narayana numbers. He established connections between determinants

of Toeplitz-Hessenberg matrices with entries of Fibonacci-Narayana numbers and
Fibonacci, Tribonacci numbers.



Generalized (k,t)—Narayana sequence 123

In [I3] 14}, 15}, [16] Mishra and Bala studied Fibonacci sequence in circulant matrices,
in Diophantine equations and matrix form of classical Narayana sequence.
The present paper is organized in a total of 7 sections.

2. (k,t)—NARAYANA SEQUENCE

In this section, we introduces a generalization of Narayana sequence in two
parameters, i.e. (k,t)— Narayana sequence. Here k and ¢ are non zero real num-
bers. We find sum of first n terms of Narayana and k-Narayana sequence and also
sum of n terms having subscripts of the form 3m, 3m + 1, 3m + 2.

Definition 2.1. ((k,t)—Narayana Sequence): (k,t)-Narayana sequence is de-
fined as

Npi1(k,t) = kNp(k,t) + tNy—o(k,t) for allmn > 2 (3)
with the initial conditions
N0<kat):07 Nl(kat):]-v NQ(kat):ka (4)

where k and t are non zero real numbers.

Some of the initial terms of the sequence are given as
No(k,t) =0, Ni(k,t) =1, No(k,t) =k, N3(k,t) =k?, Ny(k,t) =k +t,
Ns(k,t) = k* 4 2kt, Ng(k,t) = k° + 3k*t, Ny(k,t) = kS +4k3t + 2, ...
In particular, if we take ¢t = 1, then (k,t)-Narayana sequence becomes k-Narayana
sequence
{bentoey =10, 1, k, K, K> +1, k" +2k, k° + 3k, KC+4K° +1, ..}.

If we take k = 1,¢ = 1, we get classical Narayana sequence
{Nn}ooo=10,1,1,1, 2 3,4, 6,9, 13, 19, 28, ...}.
Theorem 2.2. Sum of n terms of Narayana sequence i.e.

N+ No+Ns+ ...+ N, =Np13—1.

Proof. Npy1 = Ny + N, foralln > 2
Nn = Nn+1 - Nn—2
By substituting n = 2,3,4, ...

Ny = N3 — Ny
N3 =Ny — N
N, =Ns — N,

N5 = Ng — N3
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Ny s=N, o—N,_s

Npo=Np_1—Ny_4

N,_1 =N, — N,_3
Np = Npt1 — Np—o

S

Adding all the above inequalities, we get

No+N3+...+ Ny = Npyg—2
N+ No+Ng+...4+ Ny =Npi5—1

(I
Theorem 2.3. Prove the following:
(’L) N3+ Ng + Ng + ... + N3, = N3py1 — Ny
(11) Ny+ N7+ Nig + ... + N3pp1 = Napyo — No
(iii) N5+ Ng+ Ni1 + ... + N3pyo = Napi3 — Ns.
Proof. (i) By using equation (1)),
N3+ Ng+ Ng+...4 Nay, = %(d4+d7+d10+...+&3”“)
(a@—p)a-7)
1 34, 37 4 310 23n+1
b (B T fO .+
G-ag-»" 7o o
1 4 =7 | =10 ~3n+1
b (A At
(&—d)~—ﬂ)(7 7+ 7
It Y (et VI ;e
@-pa-y@-1 B-VE-aF-1) G-aGF-pF
:% 3n+2 52 + % 23n+2 22
hEn @ e O )
1 ~3n+2 ~2
+ _ _
GG )

d,Bﬁ are the roots of equation x> — %> —1=0

/N

s0d* —1=a%F 1= 5 —1=5?)
= N3py1 — N1
Similarly other two equalities can be proved. ([

Theorem 2.4. Sum of n terms of k-Narayana sequence i.e.

1

v (bk.n—1 + b + b1 — bro — b1 — br2)+bi 1.

br,1+bk,2+bi 34+bg a+...A+bg =
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Proof. Since by, p, = kby n—1 + bgn—3 for all n > 3,
80 bkn—1 = — (b,n — bgn—s) for all n >3
By substituting n = 3,4, 5, ...

1
bro = T (b3 — bro)
1
br3 = Z (bk,a —b1)
1
br,a = z (br,5 — br,2)
1
brs = T (br,6 — br,3)
1
brc = T (br,7 — bra)
1
bk,n—3 = % (bk,n—Z - bk,n—5)
1
bk,n—Q = % (bk,n—l - bk,n—4)
1
bk,n—l = % (bk,n - bk,n—S)
1
bk,n = E (bk,n+1 - bk,n—?)

Adding all above equalities, we get

1
bro +bpz+bpa+ ... +bpn = T (bkyn—1 + bk + b g1 — bko — brr — br.2)
1

. (bkyn—1 + bk + b1 — bko — brer — br2) + bry

br,1 + b2 +br3+brat+ ... +brn =
O

Theorem 2.5. Prove the following:

. 1
(i) brpa+bp7+bgio+ ... +bpant1 = z (b 3n+2 — bi.2)

. 1
(i) brs+brs+bri1+ ... +brpsnt2 = T (bk,3n+3 — br,3)
(ZZ’L) bk73 + bk,6 + bk,Q + ...+ bkﬁgn = E (bk,?m—i-l — bk71) .

Proof. (i) By using equation (2)),

& +ad +atl +... 4 a®nt?
bra+brp7+brio+ ... +brsns1 = =
(a—pB)(a—7)
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BS+BS+511+..'+BSn+2 ,75_’_:)/8_’_,?11_*_'”_*_:)/371—1-2

(B—a)(B-7) (7-a)(F-B)
a*(@ — 1) B -1
(@-pa-N@ -1 F-aB -9 -1
n 30 (5% - 1)
F-a)F-/EF -1)
__a@n -1 B3 — 1) PE - 1)
(@—p)a—ka*  (B-a) B -7k (-7~ P)k7

(&, 8,7 are the roots of equation x> —kx* —1=0
s0a% —1=ka? B —1=kB%3° - 1= kﬁ/Q)

1 { 3n+3 _ 53 B3n+3 _ 53 F3n+3 53 }
= — = + — = + -

kl@-pga-3 B-9B-a GF-a)F-5H)
= % (bk,3n42 — br,2)

Similarly other two equalities can be proved. (I

3. MATRIX REPRESENTATION

This section gives matrix expression of (k,t)-Narayana sequence and some
identities, characteristic equation and Binet’s formula.

(k,t)— Narayana sequence can be expressed in matrix form as

Npy1(k,t) s 0t N, (k,t)
Np(k,t) | =11 0 0 Np—_1(k,t)
Np—1(k,t) 01 0 Np—a(k,t)
Npy1(k,t) N, (k,t)
Ny (k,t) | =P | Np_1(k,t)
Np—1(k,t) Np—a(k,t)
s 0 t
where P= |1 0 0] and det P =t.
01 0
By successive substitutions, we can obtain
Nit1(k,t) Na(k, t)
Np(k,t) | =P [ Ny(k,t)

Np—1(k,t) No(k,t)
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Theorem 3.1.
n-‘rl(k t) th—1<kat) (ka t)
P" = (k ) tNp_o(k,t) th 1(k,t) | for all n > 3. (5)
—1(k,t) tNp_3(k,t) tN,_o(k,t)

Proof. The proof can be done by induction on n

Ny(k,t) tNa(k,t) tNs(k,t)
For n=3, we will prove that P® = [ N3(k,t) tNy(k,t) tNa(k,t)
No(kt) tNo(k t) Ny (k.t)

(kat) tNQ(k;vt) (k7 )
So P3=| K2 t kt | = | Nz(k,t) tNy(k,t) tNa(k,t)
k0t (k,t) tNo(k,t) tNl(k:,)

Now suppose equation holds for n =k
Niv1(k,t) tNg_1(k,t) tNp(k

ie. PP = | Ng(k,t) tNp_o(k,t) tNp_1(
Nig—1(k,t) tNk_s3(k,t) tNg_of

1)
k,t)
k,t)
We will prove forn =k +1
Niyo(k,t)  tNg(k,t
ie. PRl k,
< k,

k
Niy1(k,t) tNp—1(
Nk<k7t> tNk,Q(

~ o~
N2
%
o
/—\
N2

Now

Pt =ptp

Nk_;,_l(k t) tNg_1(k,t) tNg(k,t
= | Ng(k,t) tNp_a(k,t) tNp_1(k,
Ni—1(k,t) tNg_s(k,t) tNg_o(k,
ENpiq(k,t) + tNg—1(k,t)  tNg(
= | EkNg(k,t)+tNi_o(k,t) tNp_1
kENp_1(k,t) + tNg_s(k,t) tNg_o
Niia(k,t)  tNg(k,t)  tNpia(k,

= Nk+1( ,t) tNp—1(k,t)  tNg(k
Ni(k,t)  tNk—o(k,t) tNg_1(

~ o~ —
NN
O = o
= o O
T OO ~+
\—/

— =

\o??‘ -

So by induction equation holds for all n > 3. (]

Theorem 3.2. N2 | (k,t)+N,1(k,t)N2_o(k,t)— 1
+ N2(k,t)N,,_3(k, t) 2N, (k,t)N,_1(k, t)Nn_Q(k,t) :t"— :
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Proof. From equation , we get

Nn+1(k7t> thfl(kﬂt) ( ) )
P*=| Np(k,t) tN,_2(k,t) th 1(k,t) | foralln>3 (6)
Np—_1(k,t) tNn_3(k,t) tN,_a(k,t)

Now taking determinant on both sides,

t" = N1 (k, t)(82N2_5(k,t) — 2Ny 1 (k, t)Np_3(k,t) — tNp_1 (t Ny Ny_o(k, t)
—tN?_ (k,t)) + tN, (k, t) (tN,, (k, )Ny _3(k, t) — tNp_1(k, t) Ny _o(k, 1))
=t*(N3_ (k,t) + Npy1(k, t)N2_5(k,t) — Npy1(k, )Ny 1 (k, t) Ny (k, 1)
+N2(k: t)Ny_3(k,t) — 2N, (k, )N, 1 (k, )Ny _o(k, 1))

t" 2 = N3 (k,t) + Nyy1(k,t)N2_o(k,t) — Npy1 (b, t) Ny 1 (E, )Ny 3 (k, t)
+ N2(k,t)Ny_3(k,t) — 2N, (ky )Ny 1 (K, )N,y (k, 1)

O
Theorem 3.3.
Np(k,t) = m+1(k‘ Ny —m (b, )+t N1 (K, t) Npy— i —1 (ky )+t Ny (K, t) Ny —2 (K, T)
Np(k,t) = Ny (ky ) Np— a1 (B, )+t N —o (b, €) Ny (B, €) FE Ny —1 (K, ) Np— i —1 (K, ).

Proof. P™ = pPmpr—m™
Npi1(k,t) tNp—1(k,t)  tN,(k, )
Np(k,t)  tNp_ao(k,t) tN,_1(k,t) | =
Ny—1(k,t) tNp_3(k,t) tN,_o(k,t)
<Nm+1(k,t) tNm—1(k,t)  tNm(k,t) > (Nnmﬂ(k, t) tNp—m-1(k,t)  tNp_m(k,t) >
No(k,t)  tNm_2(k,t)  tNpo1(k,t) Nocm(k,t)  tNp—m—2(k,t)  tNp_mo1(k, 1)
Npm—1(k,t) tNm—3(k,t) tNm_2(k,t) Np—m—1(k,t) tNp—m—3(k,t) tNp_m—2(k,t)
By comparing the (1,3)*" and (2,1)*" elements, we obtain
Ny (k,t) = Nppg1(kyt) Np—m (K, t) + t Ny 1 (ks t) Npp—m—1 (K, t) + t N (K, £) Npp—m—2(k, t)
No(kyt) = Npp(ky ) Npp—mg1 (K, t) + tNp—2 (ky t) Npp— i (K, ) + t Ny 1 (ky t) Npp—m—1 (K, )
O

Characteristic equation:
Characteristic equation of the sequence is given by 2% — k22 —t = 0.

Theorem 3.4. (Binet’s formula):
L
~(Oé-ﬁ)(oz—“Y) B-NB-a (G-a)F-5)

where &, B and 7 are the roots of characteristic equation x> — kx? — t.

Proof. Take
A~n+Bﬂ~n+C’?n (7)
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where &, 8 and 4 are the roots of Characteristic equation x> — ka? —

Now by using initial conditions from equation and operations of linear algebra,
the values of A, B and C can be found as

A: ~O[
G- B)a-2)
B=— B~
(G- a)
C= il ~
G-aG -7

Now from Equation @,
antl Bn+1 N ,~yn+1
(54*5)(54*5) B-NPF-a GF-a)F-H)

where @, 3 and #4 are the roots of Characteristic equation x> — k2?2 —

we get N, =

aops \/2k3 + 27t + 3/81#2 4+ 12k3¢ 2
3 2 2k3 4 27t + 3+/8112 + 12k3t
-1 2% +2 V812 4 12k3 2
51 k+w§/k+7t+3 81¢2 + kt+ 5
3 2 2k3 + 27t + 3v/8112 + 12k31

ol hyw? 72/&” + 27t + 38142 + 12k3¢ 2

773 2 2k3 + 27t 4 3+/81t2 + 12k3¢

where w is cube root of unity. O

Alternatively we can prove Binet’s formula with diagonalization of generating
matrix.

Proof. Generating matrix for (k,¢)—Narayana sequence is P =

S =

0 ¢
00
10
Eigen values of P are given by the characteristic equation det(P — xI) =0 i.e.

k—x o t
det 1 —x 0 =0
0 1 —

23—k —t=0
Let its roots be &, 57 and 7.

Now eigen vector (u v w)T corresponding to eigenvalue & is given by solution
of
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k—a 0 t U 0

1 —-a 0 v|=10

0 1 —a w 0
That is

(k—a&)u+tw=0
u—aoav=>0
v—aw =0

Take w = c. Then we get v = c&, u = c&>.

In particular, if we consider c=1, then w =1, v =&, u = &> g
a? B2
So eigen vectors corresponding to eigen values are | & B
1 1
&2 BQ ,?2 & Q 0
LetQ=(a B 5 |andD 0 8 0
1 1 1 0 0 #
B—-% ¥-5> BIB-7)
et (5-a &% #(G-a)
(@—B)(a=9)(B-7) a—pB a*-p2 dB(d—B)
P=QDQ™' = P"=QD"Q"!
1 a* 7 3%\ (a0 0\ [F-7
pr=—7 — [ a 3§ 7 0 3 o] l~5-a
(@-0)@E-9B-9\1 1 1/\o o 5/ \a-3
By using theorem equation @,
Npt1(k,t) tNp_1(k,t)  tNu(k,t)
Np(k,t)  tNp_ao(k,t) tN,_1(k,t)
Nn—l(kat) th—3(k7t) th—Q(kat)
! dn+2 @n+2 ,.~yn+2 ﬂ _ 5/ ;5/2 _
= — — — - antl 5n+1 ,yn-i-l ,7 —a a2
(@—B)a—-9)(B-7) an Bn An d—B a2 —
Comapring (2,1)*" element from both sides, we get
&n+1 BnJrl ;YnJrl
Nn(kat): ~ N7 ~ = + = PN ~
(0475)(04*7) B-NPB-a G-a)F-h)

4. HESSENBERG MATRICES AND (k,?)—NARAYANA NUMBERS

The notions of Hessenberg matrix, permanent of a matrix and contraction
of matrix are introduced in this section. Then, these notions gives elegant rela-
(k, t)-Narayana number and permanent of a Hessenberg type

tion between the nt"
matrix.

Herein, we introduce some of important definitions as Hessenberg matrix,

Permanent of a matrix and Contraction of matrix [IT], [12].

O -

[o}}

NN

2 T

N

S

— -

NN

Sl

[o}}

2

O 2t T

I
o R =
S
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Definition 4.1. (Hessenberg matriz): Define matriz A = [a;;] of order n, where
ai; =0 wheni—j>1orj—i>1, then A is known as Hessenberg matriz.

a1 air2 a3 ... QAinp-1 0A1n
a1 agz2 a3 ... AaA2p-1 0AdA2n
. asz aszsz ... : as,n
je. A =
a4.3
0 Unn—1 QAnn

Hessenberg matrices of order n are defined as

K2t Kkt 0
1 k 0 ¢t
1 k 0 ¢
Ak, 1) = (8)
1 kE 0 ¢t
1 kE 0
0 1 k
nxn
E 0t 0
-1 k 0 t
-1 k t
B(k,) = (9)
-1 kE 0 t
-1 &k
0 71 k nxn
E 0 t 0
1 k& 0 ¢
1 k t
C(k,t) = (10)
1 k 0 t
1k
0 1k
nxn

Definition 4.2. (Permanent of a matriz): Permanent of a square matriz A = [a;;]
is defined as

perA = ZUES“ H?:l @ig(iy, where the summation extends over all permutations o
of the symmetric group S, .

Definition 4.3. (Contraction of matriz): Let A = [a;;] be a square matriz of order
n and its column k contains exactly 2 non zero entries a;i; 7# 0 and aj, # 0 and
i # j. Then the matriz of order n — 1 obtained from matrix A by replacing row
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i with ajrr; + air; and deleting row j and column k is called contraction of A on
column k relative to row i and row j. Similarly matriz can be contracted on row k.
Also if A is non negative matriz and B is a contraction of A then per A = perB.

Theorem 4.4. Let A(k,t) be a square matriz of order n defined as in equation @
Then per(A(k,t)) = Nui2(k,t), where Nyyo(k,t) is the (n + 2)1" (k,t)-Narayana
number.

Proof. Let A,(k,t) be the r*" contraction of matrix A(k,t).
Here A, (k,t) is of order (n —r X n —r)
After contracting A(k,t) on first column

K>+t kt k%t 0
1 k 0 t
1 k 0 ¢
Ay (kv t) = -
1 k 0 ¢
1k
0 1 n—1xn—1
Again contracting A; (k,t) on its first column
kY 42kt K*t Kt 42 0
1 k 0 t
1 k 0
AQ(kaﬂ = N .
1k 0 t
kE 0
0 1 n—2xXn—2
After contracting As(k,t) on first column
kS +3k%t K3t +t% kYt + 2kt? 0
1 k 0
1 k t
Ag(k,ﬂ = -
0 t
1 Kk 0
0 1

n—3xXn—3
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No(k,t) tNy(k,t) tNs(k, 1) 0
1 k 0 t
1 k 0 t
1 k 0 ¢
1 k0
0 1 k n—3xn—3
Continuing in this way, r* contraction of A(k,t) is
Nyys(k,t)  tNpga(k,t)  tNryo(k,t) 0
1 k 0 t
1 k 0 t
Ar(kﬂ t) = -
1 k 0 ¢
1 k
0 1
n—rxXxn—r

Hence (n — 3)'" contraction is

Nu(k,t) tNn_o(k,t) tNn_1(k,t)
Ap_s(k,t) = 1 k 0
0 1 k

Ap_3(k,t) can be contracted on column first

Nyoy(kot) N, (k. t
Ana(k,t) = < “1( ) ,i( )>
So per(A(k,t)) = kNpy1(k,t) + tNp—1(k,t) = Npia(k, t) O

Theorem 4.5. Let C(k,t) be a square matriz of order n as defined in @)
Then per(C(k,t)) = Npy1(k,t), where Ny i1(k,t) is the (n + 1) (k,t)-Narayana
number.

Proof. Proof is similar to Theorem [4.4] O

Theorem 4.6. Let B(k,t) be a square matriz of order n as defined in @
Then per(B(k,t)) = Nyy1(k,t), where N, (k,t) is the nt" (k,t)-Narayana number.

5. SUM OF n TERMS OF (k,t) NARAYANA NUMBERS

In this section a new sequence S, (k,t) sum of the first n terms of the (k,t)-
Narayana sequence is introduced. Its recurrence relation, generating function and
matrix relations are given.

Let Sp(k,t) = > o Ni(k,t) for all n > 1, where N;(k,t) are given by equations
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and
So So(k,t) =0, Si(k,t) =1, Sa(k,t) =k +1

Theorem 5.1. S, (k,t) satisfies the recurrence relation

Sn(k,t) = kSp—1(k,t) + tSp_3(k,t) +1 for all n >3 (11)
with the initial conditions

So(k,t) =0, Si(k,t) =1, So(k,t) =k+1, Ss(k,t) =k*+k+1. (12)

Proof. The proof is given by induction on n.
For n =3,

sSa(k,t) +tSo(k,t) +1=k(k+1)+0+1
=k +k+1
= N3(k7t) =+ NQ(kvt) + Nl(kat) + NO(k7t)
= SS(ka t)
Now suppose equation holds for n =m
ie. Sp(k,t) = kSpm—1(k,t) + tSpm—s(k,t) + 1
Now Theorem will be proved for n =m + 1
i.e. we prove Sp,11(k,t) = kS (k,t) + tSm—_2(k,t) + 1

Sm-l-l(ka t) = Sm(k7 t) + Nm+1(k7 t)
By using induction hypothesis, we get

Sm+1(/<?, t) = kJSm_l(]{), t) + tSm_g,(k‘, t) + 1+ Nyt (k‘, t)
= kSm—1(k,t) + tSm—3(k,t) + 1 + kN (k, t) + tNy—o(k, t)
= kS (k,t) + tSpm—a(k,t) + 1
So the equation holds for all n > 3. O

(1—kz—1t23)(1-2)

Theorem 5.2. (Generating function): > oo Sy(k,t) =

Matrices relations of S, (k1)

Sn(k,t) E 0 t 1\ [Sa1(k,t)
Spalk,t)| |1 0 0 0] [Sua(k,t)
Snak,t)y] 10 1 0 0] |Su_s(k,t)
1 00 01 1
Sn(k,t) Sp_1(k,t
Sp_1(k,1) _0 Sng(k,t))
Snalk,t) | — F | Suss(k,t) |
1 1
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E o0 t 1
1 0 0 0
where Q = 010 0
0 0 01
By successive substitutions, we get
Sn(kvt) SQ(kat)
Snca (k1) | _ guea [ Si01)
Sn—?(kvt) SO(kat)
1 1
E2 t st s+1
o | s 0 ¢ 1
Now@ =17 ¢ 0o o
0 0 0 1
B4+t kt k% E24+k+1
k2 t Kkt E+1
@= % o 1 (13)
0 0 0 1
E* 42kt k%t KSt4+t? KA4+t+ K2+ k+1
o' = K2+t kt k%t 4+ k+1
- k2 t kt k+1
0 0 0 1
Ns(k,t) tNs(k,t) tNy(k,t) Su(k,t)
| Nu(k,t) tNo(k,t) tNs(k,t)  Ss(k,t)
T | Ns(k,t) tNy(k,t) tNa(k,t) Sy(k,t)
0 0 0 1
Theorem 5.3.
Npi1(k,t) tNu_1(k,t)  tNu(k,t)  Sn(k,t)
" Np(k,t)  tNp_o(k,t) tNp_1(k,t) Sn—1(k,t) S
Q=N N (b t) Ny o(kit) tN, (b t) Sy o(kt) | O alln =3 (14)
0 0 0 1

Proof. Proof is done by induction on n.
For n = 3, from equation ,

B34+t kt E* kK2P+k+1
k2 t kt k+1
3 _
Q"= k 0
0 0 0
Ny(k,t) tN(k,t) tNg(k,t) Ss(k,t)
| Na(k,t) tNy(k,t) tNa(k,t) Sa(k,t)
T | Na(k,t) tNo(k,t) tNy(k,t) Si(k,t)
0 0 0 1
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Suppose equation holds for n = m
Now for n =m + 1,

Qm“:czmQ
m+1(k,t) tNp_1(k,t)  tNy,(k,t) Sm(k,t) k0 t 1
| Nw(k,t)  tNp—o(k,t) tNpo1(kt) Smei(k,t) 1 0 0 0
o 1( ,U) tNp—o(k,t) tNpy—s(k,t) Spm—a(k,t) 0 1 00
0 0 1 0 0 0 1
kNm+1(k,t)+tNm_1(k,t) tNm(k,t)  tNmy1(k,t)  Npgi(k,t) + Sm(k,t
| ENu(E,t) +tNp_2(k,t)  tNp—1(k,t)  tNm(k,t) N (k,t) + Sm—1(k, t
- k’Nmfl(k’,t)—FtNmfg(k‘,t) tNp— z(k,t) tNm71(k‘,t) Nm71( ,t)—&—Sm,z(
1

Hence by mathematical induction equation holds for all n > 3. ]
Corollary 5.4. det(P") = det(Q™).

6. (k,t)-NARAYANA SEQUENCE FOR NEGATIVE SUBSCRIPTS

We have to calculate terms backwards for negative subscripts. So, this section
introduces (k, t)-Narayana sequence for negative subscripts, their matrix expression
and Binet’s formula.

(k,t)—Narayana sequence for negative subscripts is defined as
N_pys(k,t) — kEN_p1o(k,t
N_,(k,t) = +3(k, ) +2(ks ) for all n >3

t
with the initial conditions No(k,t) =0, N_1(k,t) =0, N_o(k,t) =1
{N_(k, )}y =10, 0, t71, 0, —kt=2, t72, k273, —2kt=3, ..}

Matrix relations

N_, 0 —kt=t t1 N_pi1

N—n—i—l =1 0 0 N—7L+2

N_n+2 0 1 0 N—7l+3
0 —kt™t ¢!

where R= |1 0 0 | anddetR=1¢""1.
0 1 0
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By successive substitutions, we obtain

N_, N_o
N_opy1 | =R N,
N—7L+2 NO

tN—n—Q tN—n—S N—n—l
Theorem 6.1. R" = |tN_,_1 tN_,_ o N_, for alln > 1.
thn thnfl anJrl

Proof. We will prove by induction on n.

0 —kt=t t71 tN_3 tN_4, N_o
Forn=1, R=|1 0 0 | =|tN_o tN_3 N_;
0 1 0 tN_1 tN_, Ny

Assume result is true for n = m.

Now we prove for n = m + 1. That is to prove
thmfi’) thmfél N7m72

Rm™H1 = IN 2 tN_ ;3 N
tN—m—l tN—m—Q N—m

R™t = R™R

tN_pm—o tN_p—3 N_pm_1 0 —kt—! t71
=|tN_,,1 tN_,_o N_,, 1 0 0
tN_py  tN_pio1 N_py1/) \O 1 0

thmf.B _3N7m72 + mefl N7m72
= tN7m72 _Smefl + me mefl
thmfl _Sme +me+1 me
tN—m—B tN—m—4 N—m—2

= [tN_m—2 tN_;3 N_;p1

thmfl thm72 me

So theorem holds for all n > 1. O
Theorem 6.2. (Binet’s formula):
~—n+1 R—n+1 ;—n+1
_n:~a~~~+~ﬂ~~~+~’y~~~
(@-pg)a=5 B-NB-a) (G-a) -5

where &, B and 7 are the roots of the equation x® — kx? —t = 0.

Proof. Proof is similar to Theorem [3.4] O

7. CONCLUSION

This paper is devoted to the study of the (k,¢)-Narayana sequence a gener-
alization of both classical Narayana sequence and k-Narayana sequence and also,
provides a lot of identities. Relations between terms of this sequence and Hessen-
berg matrices are given. Hessenberg matrices are used in inverse iteration, which
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is a method to compute eigen vectors. In future, this sequence can be used in
applications areas like cryptography and in solution of Diophantine equations.
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