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Abstract. Given an n-normed space X for n ≥ 2, we investigate the completeness

of Y (as a subspace of X) with respect to a new norm that correspond to this new

inner product on Y . Next, we introduce the angle on a subspace Y of n-normed

space X.
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1. INTRODUCTION

An inner product is an important functional in mathematical analysis. On
this functional in vector space, we can introduce the orthogonality, the norm, the
angle between two subspaces, the n-norm, and the n-inner product (see [8, 10, 16,
19]). Now let X be a real vector space. We recall that an inner product on X is a
mapping ⟨·, ·⟩ : X2 → R such that satisfying

(1) ⟨x, x⟩ ≥ 0 for all x ∈ X; x = 0 if and only if ⟨x, x⟩ = 0;
(2) ⟨x, y⟩ = ⟨y, x⟩ for all x, y ∈ X;
(3) ⟨γx, y⟩ = γ ⟨x, y⟩ for all x ∈ X and for any scalars γ ∈ R;
(4) ⟨x+ x′, y⟩ = ⟨x, y⟩+ ⟨x′, y⟩, for all x, x′, y ∈ X .

A pair (X, ⟨·, ·⟩) is called an inner product space. For instance on Rn, we introduce

⟨x, y⟩Rn :=

n∑
j=1

xjyj (1)

for every x, y ∈ Rn. Of course, the functional ⟨·, ·⟩Rn satisfies 1-4. We can measure

”the length” of x ∈ Rn using ∥x∥Rn =
√
⟨x, x⟩Rn . It is called a norm of x. In
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general, we now recall a norm on X and explain its properties. It is a function
∥ · ∥ : X → R which satifies

(1) ∥x∥ ≥ 0, for all x ∈ X; ∥x∥ = 0 if and only if x = 0 ∈ X;
(2) ∥γx∥ = |γ| ∥x∥, for all x ∈ X and for all scalar γ ∈ R;
(3) ∥x+ x′∥ ≤ ∥x∥+ ∥x′∥ for all x, x′ ∈ X.

We call that a pair of (X, ∥ · ∥) is a normed space.

A normed space is the inner product space if it satisfies the parallelogram
law (see [16]). There have been many researchers’ efforts in formulating ”the inner
product” in normed space. See [15, 20] for a new inner products with a weighted
on ℓp. Related results inner product and semi-inner product may also be found in
[1, 7, 21, 22].

Here we shall formulate a new inner product using n-norm on a real vector space X
(dim(X) ≥ n). Recall that an n-norm on X is a function ∥·, . . . , ·∥ : X×· · ·×X −→
R which satisfies the following four properties:

(1) a1, . . . , an are linearly dependent if and only if ∥a1, . . . , an∥ = 0;
(2) ∥a1, . . . , an∥ invariant under permutation;
(3) ∥γa1, . . . ,n ∥ = |γ|∥a1, . . . , an∥ for any any a1, . . . , an ∈ X and for every

γ ∈ R;
(4) ∥a1, . . . , an−1, b + c∥ ≤ ∥a1, . . . , an−1, b∥ + ∥a1, . . . , an−1, c∥ for every b, c

a1,...,an−1 ∈ X.

Now we call that the pair (X, ∥·, . . . , ·∥) is an n-normed space. Usually, the interpre-
tation of ∥x1, · · · , xn∥ is the volume of the n-dimensional parallelepiped spanned
a1, ..., an ∈ X. The development of the theory of 2-normed spaces was started since
the late 1960’s. Gähler had an idea to generalize an area in a real vector space.
The theory of n-normed spaces for n ≥ 2 was developed in the late 1960’s [4, 5, 6].
Recent results can be found, for instance, in [2, 9, 13, 11, 17].

In this article, we will define an inner product on a subspace of (X, ∥·, · · · , ·∥).
We also discuss the completeness of the subspace that equipped with the inner
product. Motivated by this fact, we want to have a simple and good definition of
angle on a subspace of n-normed space.

2. MAIN RESULTS

In this part, we can define an inner product on a subspace of (X, ∥·, · · · , ·∥).
Next, we also discuss the completeness of the subspaces that equipped with this
inner product.

2.1. A New Inner Product. Suppose that (X, ∥·, · · · , ·∥) is a n-normed space.
Now, take a fixed set of linearly independent vectors

A ={f1, · · · , fn} ⊂ X. (2)
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Then we have that

Y := span(A) (3)

is a subspace of X. For g ∈ Y , there is ag = (a1g, · · · , ang) ∈ Rn such that

g =
n∑

i=1

aigfi.

On a normed space, there are many notions of orthogonality [3]. Two of them
are Pythagorean orthogonality and isosceles orthogonality, as introduced by R.C.
James in [14]. Note that if the normed space is the inner product space, then the
two types of orthogonality coincide with the definition of orthogonality on the inner
product space. Moreover, we think that all the properties about orthogonality in
a normed space can be applied to an n-normed space. Now, we give a quadratic
formula on R.

Lemma 2.1. For every c1, · · · , cn, d1, · · · , dn ∈ R, we have

n∑
j=1

(cj + dj)
2 −

 n∑
j=1

c2i +

n∑
j=1

d2i

 = 2

n∑
j=1

cidi.

Proof. We give ci, di ∈ R for j = 1, · · · , n. First, we observe that

(cj + dj)
2 − c2j − d2j = c2j + d2j + 2cjdj − c2j − d2j = 2cjdj ,

where j = 1, · · · , n. Hence
n∑

j=1

(cj + dj)
2 −

(
n∑

j=1

c2j +
n∑

j=1

d2j

)
= 2

n∑
j=1

cjdj . □

In Lemma 2.1, if the real numbers above are viewed as vectors x = (c1, . . . , cn),

y = (d1, . . . , dn) in Rn and
n∑

j=1

cjdj = 0, then x and y are said to be orthogonal. As

a result, the two vectors form a right triangle with hypotenuse x+ y. One may say
that x and y are orthogonal (Pythagorean type). The above lemma will be used to
prove the following result.

Proposition 2.2. Let (X, ∥·, · · · , ·∥) be an n-normed space, (2) and (3). Then we
obtain

2

 n∑
j=1

ajgajh

 ∥f1, · · · , fn∥2 =
∑

{j2,··· ,jn}⊆{1,··· ,n}

∥g + h, fj2 , · · · , fjn∥
2

−
∑

{j2,...,jn}⊆{1,··· ,n}

∥g, fj2 , · · · , fjn∥
2

−
∑

{j2,··· ,jn}⊆{1,··· ,n}

∥h, fj2 , · · · , fjn∥
2

for every g, h ∈ Y.
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Proof. Let (X, ∥·, · · · , ·∥) be an n-normed space, (2) and (3). We observe
that for α, β ∈ R, we have ∥αf1 + βfj , f2, · · · , fn∥ = |α|∥f1, · · · , fn∥, for every
j = 2, · · · , n. Because Y := span{f1, · · · , fn} then for g ∈ Y , there is ag =

(a1g, · · · , ang) ∈ Rn such that g =
n∑

i=1

ajgfi. Moreover,

∥g, f2, · · · , fn∥ =

∥∥∥∥∥
n∑

i=1

aigfi, f2, · · · , fn

∥∥∥∥∥
= ∥a1gf1, f2, · · · , fn∥
= |a1g| ∥f1, f2, · · · , fn∥ .

Consequently, for every g, h ∈ Y we have∑
{j2,··· ,jn}⊆{1,··· ,n}

∥g, fj2 , · · · , fjn∥
2
=

n∑
j=1

a2jg ∥f1, · · · , fn∥
2
, (4)

∑
{j2,··· ,jn}⊆{1,··· ,n}

∥h, fj2 , · · · , fjn∥
2
=

n∑
j=1

a2jh ∥f1, · · · , fn∥
2
. (5)

and ∑
{j2,··· ,jn}⊆{1,··· ,n}

∥g + h, fj2 , · · · , fjn∥
2

=

n∑
j=1

(ajg + ajh)
2 ∥f1, · · · , fn∥2 . (6)

Using (4), (5), (6) and by Lemma 2.1,∑
{j2,··· ,jn}⊆{1,··· ,n}

(
∥g + h, fj2 , · · · , fjn∥

2 − ∥g, fj2 , · · · , fjn∥
2 − ∥h, fj2 , · · · , fjn∥

2
)

= 2

 n∑
j=1

ajgajh

 ∥f1, · · · , fn∥2

holds. The proof is complete. □

Another quadratic formula for real numbers is also presented in the following
lemma.

Lemma 2.3. For every c1, · · · , cn, d1, · · · , dn ∈ R, we obtain
n∑

j=1

(
(cj + dj)

2 − (cj − dj)
2
)
= 4

n∑
j=1

cjdj .

Proof. Suppose that cj , dj ∈ R for j = 1, · · · , n. We know that

(cj + dj)
2 − (cj − dj)

2 = (c2j + d2j + 2cjdj)− (c2j + d2j − 2cjdj) = 2cjdj ,

j = 1, · · · , n. Consequently,
n∑

j=1

(
(cj + dj)

2 − (cj − dj)
2
)
= 4

n∑
j=1

cjdj . □
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Furthermore, like Lemma 2.1, the real numbers in the Lemma 2.3 can also be

seen as two vectors x = (c1, . . . , cn) and y = (d1, . . . , dn) in Rn. For
n∑

j=1

cjdj = 0,

we have
n∑

j=1

(cj + dj)
2 =

n∑
j=1

(cj − dj)
2

or we write that x and y are orthogonal isoceles. Next, in an n-normed space, we
use Lemma 2.3 to explain the following proposition.

Proposition 2.4. If (X, ∥·, · · · , ·∥) be an n-normed space, (2) and (3), then

4

 n∑
j=1

ajgaih

 ∥f1, · · · , fn∥2 =
∑

{j2,··· ,jn}⊆{1,··· ,n}

∥g + h, fj2 , · · · , fjn∥
2

−
∑

{j2,··· ,jn}⊆{1,··· ,n}

∥g − h, fj2 , · · · , fjn∥
2

for any g, h ∈ Y .

Proof. By the above assumptions and the property

∥αf1 + βfj , f2, · · · , fn∥ = |α|∥f1, · · · , fn∥,

with α, β ∈ R and for any j = 1, · · · , n, we obtain that

∥g, f2, · · · , fn∥ = |a1g| ∥f1, f2, · · · , fn∥

holds for every g ∈ Y . Now check that∑
{j2,··· ,jn}⊆{1,··· ,n}

∥g + h, fj2 , · · · , fjn∥
2

=

n∑
j=1

(ajg + ajh)
2 ∥f1, · · · , fn∥2 , (7)

for every g, h ∈ Y , and∑
{j2,··· ,jn}⊆{1,··· ,n}

∥g − h, fj2 , · · · , fjn∥
2

=

n∑
j=1

(ajg − ajh)
2 ∥f1, · · · , fn∥2 . (8)

for every g, h ∈ Y . Next, we use (7), (8), and Lemma 2.3 to obtain∑
{j2,··· ,jn}⊆{1,··· ,n}

(
∥g + h, fj2 , · · · , fjn∥

2 − ∥g − h, fj2 , · · · , fjn∥
2
)

= 4

 n∑
j=1

ajgajh

 ∥f1, · · · , fn∥2

for any g, h ∈ Y . □
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Now, recall (2) and (3) to define

⟨g, h⟩A :=
1

4

∑
{j2,··· ,jn}⊆{1,··· ,n}

(
∥g + h, fj2 , · · · , fjn∥

2 − ∥g − h, fj2 , . . . , fjn∥
2
)

=

 n∑
j=1

ajgajh

 ∥f1, · · · , fn∥2 . (9)

for every g, h ∈ Y . The above functional is defined using Proposition 2.4. It is
also similar to polarization law, while we want to check a norm (derived by an
inner product or not). Another way, one may use Proposition 2.2 to obtain (9).
Now, note that the coefficients of the linear combination of the vectors in Y can be
viewed as an element of Rn. For example, the coefficients of g ∈ Y can be seen as
ag = (a1g, · · · , ang) ∈ Rn. Thus, the relation between (1) and (9) is expressed as
follows

⟨g, h⟩A = ⟨ag, ah⟩Rn ∥f1, · · · , fn∥2 , (10)

for every g, h ∈ Y . Furthermore using (1), we shall prove that (10) is an inner
product as follows.

Theorem 2.5. If (X, ∥·, · · · , ·∥) is a n-normed space, (2) and (3), then the mapping
⟨·, ·⟩A is an inner product on Y .

Proof. Using all of the assumptions of this proposition, ⟨·, ·⟩A will be checked
that it satisfies the properties of inner product.

(1) (non negative) Take g ∈ Y . We have ⟨ag, ag⟩Rn ≥ 0 and ∥f1, · · · , fn∥ > 0,

so we obtain ⟨g, g⟩A = ⟨ag, ag⟩Rn ∥f1, · · · , fn∥2 ≥ 0.

(⇒) We give ⟨g, g⟩A = ⟨ag, ag⟩Rn ∥f1, · · · , fn∥2 = 0. Since ∥f1, · · · , fn∥ >
0, then

⟨ag, ag⟩Rn =

(
n∑

i=1

a2ig

)
= 0.

Consequently, we obtain ajg = 0 for every j = 1, · · · , n. So, g =
n∑

j=1

ajgfj =

0 holds.
(⇐) Suppose that g = 0. Since ag = 0 ∈ Rn, then ⟨ag, ag⟩Rn = 0 holds.

We obtain ⟨g, g⟩A = 0.
(2) (commutative) Take g, h ∈ Y . Check that

⟨g, h⟩A = ⟨ag, ah⟩Rn ∥f1, · · · , fn∥2 = ⟨ah, ag⟩Rn ∥f1, · · · , fn∥2 = ⟨h, g⟩A .

(3) (homogen) Take g, h ∈ Y and α ∈ R. We have

⟨αg, h⟩A = ⟨αag, ah⟩Rn ∥f1, · · · , fn∥2

= α ⟨ag, ah⟩Rn ∥f1, · · · , fn∥2

= α ⟨g, h⟩A .
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(4) (distributive) Take g1, g2, h ∈ Y . We observe that

⟨g1 + g2, h⟩A = ⟨ag1 + ag2 , ah⟩Rn ∥f1, . . . , fn∥2

= ⟨ag1 , ah⟩Rn ∥f1, · · · , fn∥2 + ⟨ag2 , ah⟩Rn ∥f1, · · · , fn∥2

= ⟨g1, h⟩A + ⟨g2, h⟩A .

Hence, ⟨·, ·⟩A is an inner product on Y . □

We also give a norm that is inducted by the inner product on Y .

Corollary 2.6. Lets g ∈ Y . The following

∥g∥A :=
√

⟨ag, ag⟩Rn ∥f1, · · · , fn∥ = ∥ag∥Rn ∥f1, · · · , fn∥ (11)

defines the norm on Y .

Because Y = span (A) with A = {f1, · · · , fn} then we have the following
corollary.

Corollary 2.7. In (Y, ⟨·, ·⟩A), set A = {f1, · · · , fn} is an orthogonal set respect to
⟨·, ·⟩A.

2.2. The Completeness of subspaces of n-Normed Space. We have that
(Y, ⟨·, ·⟩A) is an inner product space. Using (10), all of the properties of (Rn, ⟨·, ·⟩Rn)
can be delivered to (Y, ⟨·, ·⟩A). Note that each norm definition in Rn is equivalent.
Meanwhile, Rn as a normed space is a complete space. The completness of Y of
n-normed Space X as follows.

Theorem 2.8. The subspace (Y, ∥·∥A) is a complete space.

Proof. Let (wk) be a Cauchy sequence in Y . Hence,

wk = a1wk
f1 + · · ·+ anwk

fn.

It means that for any ϵ > 0, there is an n′
ϵ ∈ N such that for every k, l > n′

ϵ, we
have

∥wk − wl∥A = ∥awk
− awl

∥Rn ∥f1, · · · , fn∥ < ϵ.

As consequence, we obtain

∥awk
− awl

∥Rn <
ϵ

∥f1, · · · , fn∥
= ϵ′.

We say that awk
∈ Rn is also a Cauchy sequence. Because Rn is a complete space

respect to ∥·∥Rn , then awk
∈ Rn is a convergence sequence. Clearly, (wk) in Y is

also a convergence sequence. Hence, (Y, ∥·∥A) is a complete space. □

By Theorem 2.8, we also conclude that (Y, ∥·∥A) is a Banach space. Moreover,
here ∥·∥A is induced by ⟨·, ·⟩A, so (Y, ⟨·, ·⟩A) is a Hilbert space. On (Y, ⟨·, ·⟩A), several
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functionals can be defined (see some books of functional analysis). In particular,
to define the m-inner product, we have to use m < n.

Here, we note that Y = span (A) and an orthogonal set A = {f1, . . . , fn}
on (X, ∥·, . . . , ·∥) respect to ⟨·, ·⟩A (see Corollary 2.7). Now, we give a linearly
independent set B = {g1, . . . , gn} on Y . One may form

g1 =

n∑
i=1

ai g1fi

g2 =

n∑
i=1

ai g2fi

...

gn =

n∑
i=1

ai gnfi

or B = KA, where B =


g1
g2
...
gn

 , K =


a1 g1 a2 g1 · · · an g1

a1 g2 a2 g2 · · · an g2
...

...
. . .

...
a1 gn a2 gn · · · an gn

 and A =


f1
f2
...
fn

 .

It is obvious that K is an invertible matrix, so K−1B = A holds. It means that
set A can also be developed by set B. With an initial ḡ1 = g1

∥g1∥A
, we obtain an

orthonormal set B̄ = {ḡ1, ḡ2, · · · , ḡn} by using the Gram-Schmidt process respect
to ⟨·, ·⟩A. Consequently,

Y = span (A) = span (B) = span (B̄).

3. FURTHER RESULTS

Here, we recall (Y, ⟨·, ·⟩A). For any p, q ∈ Y , we write p =
n∑

j=1

aj pfj and

q =
n∑

j=1

aj qfj where ap = (a1 p, · · · , an p), aq = (a1 q, · · · , an q) ∈ Rn. Next, we have

the angle between p and q (ϕ(p, q)) of (Y, ⟨·, ·⟩A) as follows.

cos2 ϕ(p, q) =
⟨p, q⟩2A

∥p∥2A ∥q∥2A
=

⟨ap, aq⟩2Rn ∥f1, · · · , fn∥4

∥ap∥2Rn ∥aq∥2Rn ∥f1, · · · , fn∥4
=

⟨ap, aq⟩2Rn

∥ap∥2Rn ∥aq∥2Rn

. (12)

Hence, the angle ϕ between two vectors p and q in (Y, ⟨·, ·⟩A) is equivalen to
the angle between two vectors ap and aq in (Rn, ⟨·, ·⟩).

Moreover, we can formulate angle ϕ between two subspaces on Y . The result
is shown as follows.
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See in [12] and now let P = span{p1, · · · , pn1
} and Q = span{q1, · · · , qn2

} be
subspaces of Y , with 1 ≤ n1 ≤ n2 and {p1, · · · , pn1

}, {q1, · · · , qn2
} are orthogonal

sets. Now, we have the angle ϕ between P dan Q

cos2 ϕ(P,Q) = det(MTM) (13)

where

MT =


⟨p1,q1⟩A

∥p1∥A∥q1∥A

⟨p1,q2⟩A
∥p1∥A∥q2∥A

· · · ⟨p1,qn2⟩A
∥p1∥A∥qn2∥A

...
...

. . .
...

⟨pn1 ,q1⟩A
∥pn1∥A

∥q1∥A

⟨pn1
,q2⟩

A

∥pn1∥A
∥q2∥A

· · · ⟨pn1
,qn2⟩A

∥pn1∥A
∥qn2∥A

 .

Since
⟨pj ,qk⟩A

∥pj∥A∥qk∥A
=

⟨apj
,aqk⟩Rn∥f1,··· ,fn∥2

∥apj∥Rn∥aqk∥Rn
∥f1,··· ,fn∥2 =

⟨apj
,aqk⟩Rn

∥apj∥Rn∥aqk∥Rn
where j : 1, · · · , n1

and k : 1, · · · , n2, then

MT =


⟨ap1 ,aq1⟩Rn

∥ap1∥Rn∥aq1∥Rn

⟨ap1 ,aq2⟩Rn
∥ap1∥Rn∥aq2∥Rn

· · · ⟨ap1 ,aqn2
⟩Rn

∥ap1∥Rn∥aqn2
∥Rn

...
...

. . .
...

⟨apn1
,aq1⟩Rn

∥apn1
∥Rn∥aq1∥Rn

⟨apn1
,aq2⟩Rn

∥apn1
∥Rn∥aq2∥Rn

· · · ⟨apn1
,aqn2

⟩Rn
∥apn1

∥Rn∥aqn2
∥Rn

 .

We know that (12) is a spesial case of (13).
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