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Abstract. In this paper we show that for any spatial dimension, the renormal-

ized self-intersection local times of a certain Gaussian process defined by indefinite

Wiener integral exist as Hida distributions. An explicit expression for the chaos de-

composition in terms of Wick tensor powers of white noise is also obtained. We also

study a regularization of the self-intersection local times and prove a convergence

result in the space of Hida distributions.
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Abstrak. Di dalam makalah ini dibuktikan bahwa untuk sebarang dimensi spasial

renormalisasi dari waktu lokal perpotongan-diri dari sebuah proses Gaussian yang

didefinisikan melalui integral Wiener tak tentu merupakan distribusi Hida. Dekom-

posisi chaos dari distribusi Hida tersebut juga diberikan secara eksplisit. Studi

terhadap sebuah regularisasi dari waktu lokal perpotongan-diri juga dilakukan dan

dibuktikan sebuah hasil terkait kekonvergenan dari regularisasi tersebut di ruang

distribusi Hida.

Kata kunci: proses Gaussian-b, analisis white noise, waktu lokal perpotongan-diri.

1. Introduction

As an infinite-dimensional stochastic distribution theory, white noise analy-
sis provides a natural framework for the study of local times and self-intersection
local times of Gaussian processes, see e.g. [4]. The concept of self-intersection local
times itself plays important roles in several branches of science. For example, it is
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used in the construction of certain Euclidean quantum field [10]. In the Edwards
polymer theory self-intersection local times appeared in the path integral to model
the excluded volume effects of the polymer formations [3]. The first idea of analyz-
ing local times and self-intersection local times using a white noise approach goes
back at least to the work of Watanabe [11]. He showed that as the dimension of
the Brownian motion increases, successive omissions of lowest order chaos in the
Wiener-Itô decomposition are sufficient to ensure that the truncated local time is
a white noise distribution. A further investigation was given by Da Faria et al in
[1]. They gave the chaos decomposition in terms of Wick tensor powers of white
noise. Their results were later generalized to fractional Brownian motion for any
Hurst parameter H ∈ (0, 1) by Drumond et al [2]. In the present paper we pro-
vide another direction of generalization of some results in [1] to a certain class of
Gaussian process defined by indefinite Wiener integrals (in the sense of Itô).

First of all, let us fix 0 < T < ∞. The space of real-valued square-integrable
function with respect to the Lebesgue measure on [0, T ] will be denoted by L2[0, T ].
Let f ∈ L2[0, T ] and B = (Bt)t∈[0,T ] be a standard one-dimensional Brownian mo-
tion defined on some complete probability space (Ω,F ,P). It is a fundamental fact
from Itô’s stochastic integration theory that the stochastic process X = (Xt)t∈[0,T ]

defined by the indefinite Wiener integral Xt :=
∫ t

0
f(u) dBu is an L2(P)- continuous

martingale with respect to the natural filtration of B. It is also a centered Gaussian

process with covariance function E (XsXt) =
∫ s∧t

0
|f(u)|2 du, s, t ≥ 0, see e.g. [7].

Here E denotes the expectation with respect to the probability measure P. In this
work we further assume that f is bounded and never takes value zero on [0, T ]. We
call the corresponding stochastic process as b-Gaussian process. By choosing f to
be the constant function 1, we see that our new class of Gaussian processes contains
Brownian motion as an example. Moreover, by d-dimensional b-Gaussian process
we mean the random vector

(
X1, . . . , Xd

)
where X1, . . . , Xd are d independent

copies of a one-dimensional b-Gaussian process. Motivated by similar works on
self-intersection local times of Brownian motion and fractional Brownian motion,
see e.g. da Faria et al [1], Drumond et al [2] and Watanabe [11], we consider the
self-intersection local time of b-Gaussian process X, which is informally defined as∫ T

0

∫ T

0

δ (Xt −Xs) ds dt, (1)

where δ denotes the Dirac delta distribution at 0. The (generalized) random vari-
able (1) is intended to measure the amount of time in which the sample path of a
b-Gaussian process X spends intersecting itself within the time interval [0, T ]. A
priori the expression (1) has no mathematical meaning since Lebesgue integration
of Dirac delta distribution is not defined. One common way to give a mathemati-
cally rigorous meaning to such an expression, as in [1] and [2], is by approximation
using a Dirac sequence. More precisely, we interpret (1) as the limiting object of the
approximated self-intersection local time LX,ε(T ) of b-Gaussian process X defined
as

LX,ε(T ) :=

∫ T

0

∫ t

0

pε (Xt −Xs) ds dt, ε > 0,
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as ε → 0, where pε is the heat kernel given by

pε(x) :=
1√
2πε

exp

(
−x2

2ε

)
, x ∈ R.

This approximation procedure will make the limiting object, which we denote by
LX(T ), more and more singular as the dimension of the processX increases. Hence,
we need to do a renormalization, i.e. cancelation of the divergent terms, to obtain
a well-defined and sufficiently regular object.

Now we describe briefly our main results. Under some conditions on the spa-
tial dimension of the b-Gaussian process X and the number of subtracted terms
in the truncated Donsker’s delta function, we are able to show the existence of the
renormalized (or truncated) self-intersection local time LX(T ) as a well-defined ob-
ject in some white noise distribution space. Moreover, we derive the chaos decompo-
sition of LX(T ) in terms of Wick tensor powers of white noise. This decomposition
corresponds to that in terms of multiple Wiener-Itô integrals when one works in
the classical stochastic analysis using Wiener space as the underlying probability
space and Brownian motion as the basic random variable. Finally, we also analyze
a regularization corresponding to the Gaussian approximation described above and
prove a convergence result. The organization of the paper is as follows. In section
2 we summarize some of the standard facts from the theory of white noise analysis.
Section 3 contains a detailed exposition of the main results and their proofs.

2. Basics of White Noise Analysis

In order to make the paper self-contained, we summarize some fundamental
concepts of white noise analysis used throughout this paper. For a more compre-
hensive explanation including various applications of white noise theory, see for
example, the books of Hida et al [4], Kuo [6] and Obata [9]. Let (S ′

d(R), C, µ) be
the Rd-valued white noise space, i.e., S ′

d(R) is the space of Rd-valued tempered
distributions, C is the Borel σ-algebra generated by weak topology on S ′

d(R), and
the white noise probability measure µ is uniquely determined through the Bochner-
Minlos theorem (see e.g. [6]) by fixing the characteristic function

C(f⃗) :=

∫
S′
d(R)

exp
(
i⟨ω⃗, f⃗⟩

)
dµ(ω⃗) = exp

(
−1

2
|f⃗ |20

)
for all Rd-valued Schwartz test function f⃗ ∈ Sd(R). Here |·|0 denotes the usual
norm in the real Hilbert space L2

d(R) of all Rd-valued Lebesgue square-integrable
functions, and ⟨·, ·⟩ denotes the dual pairing between S ′

d(R) and Sd(R). The dual
pairing is considered as the bilinear extension of the inner product on L2

d(R), i.e.⟨
g⃗, f⃗
⟩
=

d∑
j=1

∫
R
gj(x)fj(x) dx,
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for all g⃗ = (g1, . . . , gd) ∈ L2
d(R) and f⃗ = (f1, . . . , fd) ∈ Sd(R). We should remark

that we have the Gel’fand triple, i.e. the continuous and dense embeddings of
spaces

Sd(R) ↪→ L2
d(R) ↪→ S ′

d(R).
Let f be a function in the subset of L2[0, T ] consisting all real-valued bounded
functions on [0, T ] which has no zeros. In the white noise analysis setting a d-
dimensional b-Gaussian process can be represented by a continuous version of the
stochastic process X = (Xt)t∈[0,T ] with

Xt :=
(⟨
·,1[0,t]f

⟩
, . . . ,

⟨
·,1[0,t]f

⟩)
,

such that for independent d-tuples of Gaussian white noise ω⃗ = (ω1, . . . , ωd) ∈
S ′
d(R)

Xt(ω⃗) =
(⟨
ω1,1[0,t]f

⟩
, . . . ,

⟨
ωd,1[0,t]f

⟩)
,

where 1A denotes the indicator function of a set A ⊂ R.
Recall that the complex Hilbert space L2(µ) := L2(S ′

d(R), C, µ) is canonically
unitary isomorphic to the d-fold tensor product of Fock space of symmetric square-
integrable function, i.e.

L2(µ) ∼=

( ∞⊕
k=0

L2
s(Rk, k!dkx)

)⊗d

,

via the so-called Wiener-Itô-Segal isomorphism. Thus, we have the unique chaos
decomposition of an element F ∈ L2(µ),

F (ω1, . . . , ωd) =
∑

(m1,...,md)∈Nd
0

⟨
: ω⊗m1

1 : ⊗ . . .⊗ : ω⊗md

d :, f⃗(m1,...,md)

⟩
, (2)

with kernel functions f⃗(m1,...,md) of the m-th chaos are in the Fock space. Here

: ω
⊗mj

j : denotes the mj-th Wick tensor power of ωj ∈ S ′
1(R). We also introduce

the following notations

m = (m1, . . . ,md) ∈ Nd
0, m =

d∑
j=1

mj , m! =
d∏

j=1

mj !,

which simplify (2) to

F (ω⃗) =
∑

m∈Nd
0

⟨
: ω⃗⊗m :, f⃗m

⟩
, ω⃗ ∈ S ′

d(R).

Using, for example, the Wiener-Itô chaos decomposition theorem and the second
quantization operator of the Hamiltonian of a harmonic oscillator we can construct
the Gel’fand triple

(S) ↪→ L2(µ) ↪→ (S)∗

where (S) is the space of white noise test functions obtained by taking the inter-
section of a family of Hilbert subspaces of L2(µ). It is equipped with the projective
limit topology and has the structure of nuclear Frechet space. The space of white
noise distributions (S)∗ is defined as the topological dual space of (S). Elements
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of (S) and (S)∗ are also known as Hida test functions and Hida distributions, re-
spectively.

The rest of this section is devoted to the characterization of a Hida distri-
bution via the so-called S-transform, which can be considered as an analogue of
the Gauss-Laplace transform on infinite-dimensional spaces. The S-transform of
an element Φ ∈ (S)∗ is defined as

(SΦ) (f⃗) :=
⟨⟨

Φ, : exp
(⟨

·, f⃗
⟩)

:
⟩⟩

, f⃗ ∈ Sd(R),

where

: exp
(⟨

·, f⃗
⟩)

::=
∑

m∈Nd
0

⟨
: ·⊗m :, f⃗⊗m

⟩
= C(f⃗) exp

(⟨
·, f⃗
⟩)

,

is the so-called Wick exponential and ⟨⟨·, ·⟩⟩ denotes the dual pairing between (S)∗
and (S). We define this dual pairing as the bilinear extension of the sesquilinear

inner product on L2(µ). The decomposition SΦ(f⃗) =
∑

m∈Nd
0

⟨
Fm, f⃗⊗m

⟩
extends

the chaos decomposition to Φ ∈ (S)∗ with distribution-valued kernels Fm such
that ⟨⟨Φ, φ⟩⟩ =

∑
m∈Nd

0
m! ⟨Fm, φ⃗m⟩ , for every Hida test function φ ∈ (S) with

kernel functions φ⃗m. The S-transform provides a quite useful way to identify a
Hida distribution Φ ∈ (S)∗, in particular, when it is very hard or impossible to find
the explicit form for the Wiener-Itô chaos decomposition of Φ.

Theorem 2.1. [5] A function F : Sd(R) → C is the S-transform of a unique Hida
distribution in (S)∗ if and only if it satisfies the conditions:

(1) F is ray analytic, i.e., for every f⃗ , g⃗ ∈ Sd(R) the mapping R ∋ λ 7→
F
(
λf⃗ + g⃗

)
has an entire extension to λ ∈ C, and

(2) F has growth of second order, i.e., there exist constants K1,K2 > 0 and a

continuous seminorm ∥·∥ on Sd(R) such that for all z ∈ C, f⃗ ∈ Sd(R)∣∣∣F (zf⃗)
∣∣∣ ≤ K1 exp

(
K2|z|2

∥∥∥f⃗∥∥∥2) .

There are two important consequences of the above characterization theorem. The
first one deals with the Bochner integration of a family of Hida distributions which
depend on an additional parameter and the second one concerns the convergence
of sequences of Hida distributions. For details and proofs see [5].

Corollary 2.2. [5] Let (Ω,A, ν) be a measure space and λ 7→ Φλ be a mapping
from Ω to (S)∗. If the S-transform of Φλ fulfils the following two conditions:

(1) the mapping λ 7→ S(Φλ)(f⃗) is measurable for all f⃗ ∈ Sd(R), and
(2) there exist C1(λ) ∈ L1 (Ω,A, ν), C2(λ) ∈ L∞ (Ω,A, ν) and a continuous

seminorm ∥·∥ on Sd(R) such that for all z ∈ C, f⃗ ∈ Sd(R)∣∣∣S(Φλ)(zf⃗)
∣∣∣ ≤ C1(λ) exp

(
C2(λ)|z|2

∥∥∥f⃗∥∥∥2) ,
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then Φλ is Bochner integrable with respect to some Hilbertian norm which topolo-
gizing (S)∗. Hence

∫
Ω
Φλ dν(λ) ∈ (S)∗, and furthermore

S

(∫
Ω

Φλ dν(λ)

)
=

∫
Ω

S(Φλ) dν(λ).

Corollary 2.3. [5] Let (Φn)n∈N be a sequence in (S)∗ such that

(1) for all f⃗ ∈ Sd(R),
(
S(Φn)(f⃗)

)
n∈N

is a convergent sequence in C, and
(2) there exist constants K1,K2 > 0 and a continuous seminorm ∥·∥ on Sd(R)

such that
∣∣∣S(Φn)(zf⃗)

∣∣∣ ≤ K1 exp

(
K2|z|2

∥∥∥f⃗∥∥∥2), for all z ∈ C, f⃗ ∈ Sd(R),

n ∈ N.
Then (Φn)n∈N converges strongly in (S)∗ to a unique Hida distribution Φ ∈ (S)∗.

3. Main Results

In several applications, we need to ”pin” a b-Gaussian process at some point
c ∈ Rd. For this purpose, we consider the Donsker’s delta function of b-Gaussian
process which is defined as the informal composition of the Dirac delta distribution
δd ∈ S ′(Rd) with a d-dimensional b-Gaussian process (Xt)t∈[0,T ], i.e., δd (Xt − c).

We can give a precise meaning to the Donskers’s delta function as a Hida distribu-
tion.

Proposition 3.1. Let X = (Xt)t∈[0,T ] be a d-dimensional b-Gaussian process and

c ∈ Rd. The Bochner integral

δd (Xt −Xs − c) :=

(
1

2π

)d ∫
Rd

exp (iλ (Xt −Xs − c)) dλ, t ̸= s

is a Hida distribution with S-transform given by

S(δd (Xt −Xs − c))(f⃗) (3)

=

(
1

2π
∫ s∨t

s∧t
|f(u)|2 du

)d/2

× exp

− 1

2
∫ s∨t

s∧t
|f(u)|2 du

d∑
j=1

(∫ s∨t

s∧t

fj(u)f(u) du− cj

)2
 ,

for all f⃗ = (f1, . . . , fd) ∈ Sd(R).

Proof. Without loss of generality, we may assume t > s. Define a mapping Fλ :

Sd(R) → C by Fλ := S (exp (iλ(Xt −Xs − c))). Then we have for any f⃗ ∈ Sd(R)

Fλ(f⃗) =
⟨⟨

exp
(
iλ
(⟨
·,1[0,t]f

⟩
−
⟨
·,1[0,s]f

⟩
− c
))

, : exp
(⟨

·, f⃗
⟩)

:
⟩⟩



A White Noise Approach 117

= exp

(
−1

2

∣∣∣f⃗ ∣∣∣2
0

)
exp (−iλc)

∫
S′
d(R)

exp
(⟨

ω⃗, iλ1[s,t]f + f⃗
⟩)

dµ(ω⃗)

= exp

(
−1

2
|λ|2

∫ t

s

|f(u)|2 du
)
exp

(
iλ
(⟨

f⃗ ,1[s,t]f
⟩
− c
))

.

The mapping λ 7→ Fλ(f⃗) is measurable for all f⃗ ∈ Sd(R). Furthermore, let z ∈ C
and f⃗ ∈ Sd(R), then∣∣∣Fλ(zf⃗)

∣∣∣ ≤ exp

(
−1

2
|λ|2

∫ t

s

|f(u)|2 du
)
exp

(
|λ||z|

∣∣∣⟨f⃗ ,1[s,t]f
⟩∣∣∣)

≤ exp

(
−1

2
|λ|2

∫ t

s

|f(u)|2 du
)
exp

|λ||z|β(t− s)
d∑

j=1

sup
u∈R

|fj(u)|


≤ exp

(
−1

4
|λ|2

∫ t

s

|f(u)|2 du
)
exp

(
β2(t− s)2∫ t

s
|f(u)|2 du

|z|2∥f⃗∥2∞

)

≤ exp

(
−1

4
|λ|2α2(t− s)

)
exp

(
β2

α2
T |z|2∥f⃗∥2∞

)
,

for some positive constants α and β, and ∥ · ∥∞ is a continuous seminorm on Sd(R)
defined as

∥f⃗∥∞ :=
d∑

j=1

sup
u∈R

|fj(u)|.

The first factor is an integrable function of λ, and the second factor is constant
with respect to λ. Hence, according to the Corollary 2.2 δd (Xt −Xs − c) ∈ (S)∗.
Now, we integrate Fλ over Rd to obtain an explicit expression for the S-transform.

S (δd (Xt −Xs − c)) (f⃗)

=

(
1

2π

)d ∫
Rd

S (exp (iλ(Xt −Xs − c))) (f⃗) dλ

=

(
1

2π

)d ∫
Rd

exp

(
−1

2
|λ|2

∫ t

s

|f(u)|2 du
)
exp

(
iλ
(⟨

f⃗ ,1[s,t]f
⟩
− c
))

dλ

=

(
1

2π

)d
(

2π∫ t

s
|f(u)|2 du

)d/2 d∏
j=1

exp


(
i
(∫ t

s
fj(u)f(u) du− cj

))2
2
∫ t

s
|f(u)|2 du


=

(
1

2π
∫ t

s
|f(u)|2 du

)d/2

exp

− 1

2
∫ t

s
|f(u)|2 du

d∑
j=1

(∫ t

s

fj(u)f(u) du− cj

)2
 .

Now we prove our main results on self-intersection local times LX(T ) and their

subtracted counterparts L
(N)
X (T ). In the sequel we fix the following notations:

∆ := {(s, t) ∈ R2 : 0 < s < t < T} and d2(s, t) is the Lebesgue measure on ∆. For
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simplicity, we also take c = 0. Moreover, we define the truncated exponential series

exp(N)(x) :=

∞∑
m=N

xm

m!

and the truncated Donsker’s delta function

δ
(N)
d (Xt −Xs)

via

S(δ
(N)
d (Xt −Xs))(f⃗)

=

(
1

2π
∫ t

s
|f(u)|2 du

)d/2

exp(N)

− 1

2
∫ t

s
|f(u)|2 du

d∑
j=1

(∫ t

s

fj(u)f(u) du

)2
 ,

for every f⃗ ∈ Sd(R). Using Theorem 2.1, one can verify easily that δ
(N)
d (Xt −Xs)

is a well-defined element from (S)∗.

Theorem 3.2. Let X = (Xt)t∈[0,T ] be a d-dimensional b-Gaussian process. For

any pair of integers d ≥ 1 and N ≥ 0 such that 2N > d− 2, the Bochner integral

L
(N)
X (T ) :=

∫
∆

δ
(N)
d (Xt −Xs) d

2(s, t)

is a Hida distribution.

Proof. From the definition of the truncated Donsker’s delta function we see

immediately that S
(
δ
(N)
d (Xt −Xs)

)
(f⃗) is a measurable function for every f⃗ ∈

Sd(R). Furthermore, for every z ∈ C and f⃗ ∈ Sd(R)∣∣∣S (δ(N)
d (Xt −Xs)

)
(zf⃗)

∣∣∣
≤

(
1

2π
∫ t

s
|f(u)|2 du

)d/2

exp(N)

(
β2(t− s)2

2
∫ t

s
|f(u)|2 du

|z|2
∥∥∥f⃗∥∥∥2

∞

)

≤
(

1

2πα2

)d/2
1

(t− s)d/2
exp(N)

(
β2

2α2
(t− s)|z|2

∥∥∥f⃗∥∥∥2
∞

)
≤
(

1

2πα2

)d/2(
1

T

)N

(t− s)N−d/2 exp

(
β2T

2α2
|z|2

∥∥∥f⃗∥∥∥2
∞

)
,

where (t−s)N−d/2 is integrable with respect to d2(s, t) on ∆ if and only if N−d/2 >

−1. Therefore we can conclude, using Corollary 2.2, that L
(N)
X (T ) ∈ (S)∗.

Moreover, we are able to derive the chaos decomposition for the (truncated) self-

intersection local times L
(N)
X (T ).
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Proposition 3.3. Let X = (Xt)t∈[0,T ] be a d-dimensional b-Gaussian process. For

any pair of integers d ≥ 1 and N ≥ 0 such that 2N > d − 2, the kernel functions

F2m of L
(N)
X (T ) are given by

F2m(u1, . . . , u2m) =

(
−1

2

)m
m!

(
1

2π

)d/2 ∫
∆

∏2m
l=1

(
1[s,t]f

)
(ul)(∫ t

s
|f(u)|2 du

)m+d/2
d2(s, t)

for each m ∈ Nd
0 such that m ≥ N . All other odd kernel functions Fm vanish.

Proof. Let f⃗ = (f1, . . . , fd) ∈ Sd(R). The S-transform of L
(N)
X (T ) is obtained as

follow:

S
(
L
(N)
X (T )

)
(f⃗) =

∫
∆

1(
2π
∫ t

s
|f(u)|2 du

)d/2
× exp(N)

− 1

2
∫ t

s
|f(u)|2 du

d∑
j=1

(∫ t

s

fj(u)f(u) du

)2
 d2(s, t)

=

(
1

2π

)d/2 ∫
∆

∞∑
m=N

(
−1

2

)m
1(∫ t

s
|f(u)|2 du

)m+d/2

×
∑

m1,...,md
m1+...+md=m

1

m!

d∏
j=1

(∫ t

s

fj(u)f(u) du

)2mj

d2(s, t).

Remember the general form of the chaos decomposition

L
(N)
X (T ) =

∑
m∈Nd

0

⟨
: ω⃗⊗m :, Fm

⟩
and S

(
L
(N)
X (T )

)
(f⃗) =

∑
m∈Nd

0

⟨
Fm, f⃗⊗m

⟩
.

Hence, we can read off the kernel functions Fm for L
(N)
X (T ):

Fm =

(
−1

2

)m
m!

(
1

2π

)d/2 ∫
∆

(
1[s,t]f

)⊗2m(∫ t

s
|f(u)|2 du

)m+d/2
d2(s, t).

More precisely, for every m ∈ Nd
0 such that m ≥ N and u1, . . . , u2m ∈ R it holds

F2m(u1, . . . , u2m) =

(
−1

2

)m
m!

(
1

2π

)d/2 ∫
∆

∏2m
l=1

(
1[s,t]f

)
(ul)(∫ t

s
|f(u)|2 du

)m+d/2
d2(s, t),

while all other odd kernels Fm are identically equal to zero.

Theorem 3.2 asserts that for one-dimensional b-Gaussian process all self-intersection

local times L
(N)
X (T ) are well-defined as Hida distributions. For d ≥ 2, self-intersection

local times only become well-defined after omission of the divergent terms. In par-
ticular, we obtain the generalized expectation of renormalized self-intersection local
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times L
(N)
X (T ) which is given by

Eµ(L
(N)
X (T )) = F0 =

(
1

2π

)d/2 ∫
∆

1(∫ t

s
|f(u)|2 du

)d/2 d2(s, t).

It is immediate that the generalized expectation is finite only in dimension one,
and for higher dimension (d ≥ 2) the expectation blows up. Now we extend the
result in Theorem 3.2 to local times of intersection of higher order m ∈ N. The
basic motivation for this investigation comes from the situation when we want to
count the amount of time in which the sample path of a b-Gaussian process spends
intersect itself m-times within the time interval [0, T ]. The following theorem gives
a generalization to a result of Mendonca and Streit [8] on Brownian motion.

Theorem 3.4. Let X = (Xt)t∈[0,T ] be a b-Gaussian process. For any pair of
integers d ≥ 1 and N ≥ 0 such that 2N > d−2 the (truncated) m-tuple intersection
local time of X

L
(N)
X,m(T ) :=

∫
∆m

δ
(N)
d (Xt2 −Xt2) . . . δ

(N)
d (Xtm −Xtm−1) d

mt, (4)

where ∆m := {(t1, · · · , tm) ∈ Rm : 0 < t1 < · · · < tm < T} and dmt denotes the
Lebesgue measure on ∆m, is a Hida distribution.

Proof. Let

Im :=
m−1∏
k=1

δ
(N)
d (Xtk+1

−Xtk)

denote the integrand in (4). Then

S(Im)(f⃗) =
m−1∏
k=1

( 1

2π
∫ tk+1

tk
|f(u)|2 du

)d/2

× exp(N)

− 1

2
∫ tk+1

tk
|f(u)|2 du

d∑
j=1

(∫ tk+1

tk

fj(u)f(u) du

)2
 ,

which is a measurable function for every f⃗ ∈ Sd(R). Now, we check the boundedness

condition. Let z ∈ C and f⃗ ∈ Sd(R). Let us also define a continuous seminorm
|·|∞,k on S(R) by |fj |∞,k := supu∈[tk,tk+1]

|fj(u)| and a continuous seminorm ∥·∥∞,k

on Sd(R) by ∥f⃗∥2∞,k :=
∑d

j=1 |fj |2∞,k. Then, we have

∣∣∣S(Im)(zf⃗)
∣∣∣ = m−1∏

k=1

( 1

2π
∫ tk+1

tk
|f(u)|2 du

)d/2

× exp(N)

(
1

2
∫ tk+1

tk
|f(u)|2 du

|z|2∥f⃗∥2∞,k

(∫ tk+1

tk

|f(u)| du
)2
))
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≤
m−1∏
k=1

(
1

2πα2(tk+1 − tk)

)d/2

exp(N)

(
m−1∑
k=1

β2

2α2
(tk+1 − tk)|z|2∥f⃗∥2∞,k

)
.

Finally, by defining another continuous seminorm ∥ · ∥∗ on Sd(R) by

∥f⃗∥2∗ :=
m−1∑
k=1

∥f⃗∥2∞,k

we obtain that∣∣∣S(Im)(zf⃗)
∣∣∣ ≤ (m−1∏

k=1

(
1

2πα2

)d/2(
1

T

)N

(tk+1 − tk)
N−d/2

)
exp

(
p|z|2∥f⃗∥2∗

)
,

for some p > 0. To conclude the proof, we notice that for N − d/2 + 1 > 0 the
coefficient in the front of the exponential is integrable with respect to dmt, that is∫

∆m

m−1∏
k=1

(tk+1 − tk)
N−d/2 dmt =

(Γ(1 +N − d/2))
m−1

Γ (m+ 1 + (m− 1)(N − d/2))
,

where Γ(·) denotes the usual Gamma function. Therefore we may apply Corollary
2.2 to establish the existence of the Bochner integral asserted in the theorem.

To conclude the section, we present a regularization result corresponding
to the renormalization procedure as described in Theorem 3.2. We define the
regularized Donsker’s delta function of b-Gaussian process as

δd,ε(Xt −Xs) :=

(
1

2πε

)d/2

exp

(
−|Xt −Xs|2

2ε

)
and the corresponding regularized self-intersection local time of b-Gaussian process
as

LX,ε(T ) :=

∫
∆

δd,ε(Xt −Xs) d
2(s, t).

Theorem 3.5. Let X = (Xt)t∈[0,T ] be a d-dimensional b-Gaussian process. For

all ε > 0 and d ≥ 1 the regularized self-intersection local time LX,ε(T ) is a Hida
distribution with kernel functions in the chaos decomposition given by

Fε,2m(u1, . . . , u2m) =

(
− 1

2

)m
m!

(
1

2π

)d/2 ∫
∆

∏2m
l=1

(
1[s,t]f

)
(ul)(

ε+
∫ t

s
|f(u)|2 du

)m+d/2
d2(s, t)

for each m ∈ Nd
0, and Fε,m is identically to zero if m is an odd number. Moreover,

the (truncated) regularized self-intersection local times

L
(N)
X,ε(T ) :=

∫
∆

δ
(N)
d,ε (Xt −Xs) d

2(s, t)

converges strongly as ε → 0 in (S)∗ to the (truncated) local times L
(N)
X (T ), provided

2N > d− 2.
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Proof. The first part of the proof again follows by an application of Corollary 2.2

with respect to the Lebesgue measure on ∆. For all f⃗ ∈ Sd(R) we obtain

S (δd,ε (Xt −Xs)) (f⃗)

=

 1

2π
(
ε+

∫ t

s
|f(u)|2 du

)
d/2

× exp

− 1

2
(
ε+

∫ t

s
|f(u)|2 du

) d∑
j=1

(∫ t

s

fj(u)f(u) du

)2
,

which is evidently measurable. Hence for all z ∈ C we have∣∣∣S (δd,ε (Xt −Xs)) (zf⃗)
∣∣∣

≤

 1

2π
(
ε+

∫ t

s
|f(u)|2 du

)
d/2

exp

 (t− s)2β2

2
(
ε+

∫ t

s
|f(u)|2 du

) |z|2 ∥∥∥f⃗∥∥∥2
∞

 .

We observe that (t−s)2

ε+
∫ t
s
|f(u)|2 du

is bounded on ∆ and

(
1

2π(ε+
∫ t
s
|f(u)|2 du)

)d/2

is in-

tegrable on ∆. Hence, by Corollary 2.2, we have that LX,ε(T ) ∈ (S)∗. Moreover,

for every f⃗ ∈ Sd(R),

S(LX,ε(T ))(f⃗) =

(
1

2π

)d/2 ∫
∆

∞∑
m=0

(
−1

2

)m
1(

ε+
∫ t

s
|f(u)|2 du

)m+d/2

×
∑

m1,...,md
m1+...+md=m

1

m!

d∏
j=1

(∫ t

s

fj(u)f(u) du

)2mj

d2(s, t).

It follows from the last expression that the kernel functions Fε,m appearing in the
chaos decomposition

LX,ε(T ) =
∑

m∈Nd
0

⟨
: ω⃗⊗m :, Fε,m

⟩
are of the form

Fε,2m(u1, . . . , u2m) =

(
−1

2

)m
m!

(
1

2π

)d/2 ∫
∆

∏2m
l=1

(
1[s,t]f

)
(ul)(

ε+
∫ t

s
|f(u)|2 du

)m+d/2
d2(s, t),

and are identically equal to zero if m is an odd number. Finally we have to check

the convergence of L
(N)
X,ε(T ) as ε → 0. For all z ∈ C and all f⃗ ∈ Sd(R) we have∣∣∣S (L(N)

X,ε(T )
)
(zf⃗)

∣∣∣ ≤ ∫
∆

∣∣∣S (δ(N)
d,ε (Xt −Xs)

)
(zf⃗)

∣∣∣ d2(s, t)
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≤
(

1

2πε

)d/2(
1

T

)N

exp

(
Tβ2

2ε
|z|2

∥∥∥f⃗∥∥∥2
∞

)
,

giving the boundedness condition. Furthermore, using similar calculations as in the
proof of Theorem 3.2 we obtain that for all (s, t) ∈ ∆∣∣∣S (δ(N)

d,ε (Xt −Xs)
)
(f⃗)
∣∣∣

≤

(
1

2π
∫ t

s
|f(u)|2 du

)d/2

exp(N)

(
β2

2
∫ t

s
|f(u)|2 du

(t− s)2
∥∥∥f⃗∥∥∥2

∞

)

≤
(

1

2πα2

)d/2(
1

T

)N

(t− s)N−d/2 exp

(
β2T

2α2

∥∥∥f⃗∥∥∥2
∞

)
.

The last upper bound is an integrable function with respect to d2(s, t). Finally, we
can apply Lebesgue’s dominated convergence theorem to get the other condition
needed for the application of Corollary 2.3. This finishes the proof.

4. Concluding Remarks

We have proved under some conditions on the number of divergent terms
must be subtracted and the spatial dimension, that self-intersection local times of d-
dimensional b-Gaussian process as well as their regularizations, after appropriatelly
renormalized, are Hida distributions. The power of the method of truncation based
on the fact that the kernel functions in the chaos decomposition of decreasing order
are more and more singular in the sense of Lebesgue integrable function. Explicit
expressions for the chaos decompositions of the self-intersection local times are also
presented. We also remark that white noise approach provides a general idea on
renormalization procedures. This idea can be further developed using another tools
such as Malliavin calculus to obtain regularity results.
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