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Abstract. This investigation is an approach to setup an analytical solution of

steady plane aligned magnetohydrodynamic (MHD) fluid flow having infinite elec-

trical conductivity in a rotating frame through porous media by Martins method.

The governing non-linear equations of the fluid flow are transformed into a new

form called Martins form by employing differential geometry where the curvilinear

co-ordinates (Φ, Ψ) in the plane of flow shows that, the co-ordinate lines Ψ are

the streamlines of flow and the co-ordinate lines Φ are arbitrary constants. Exact

solution is obtained and velocity, vorticity, current density magnetic field and pres-

sure distribution are found out. Also, the diagrams have been plotted to sketch

the streamline patterns and to study variation of pressure function with angular

velocity.

Key words and Phrases: MHD, porous medium, exact solution, rotating frame,

stream function.

1. INTRODUCTION

At present time rotating fluids considering, the problems of stretching surface,
finds huge importance due to its numerous applications such as rotating machinery,
gas turbine design, disk cleaners, food processing, rotor-stator system and product
applications, providing design and modelling capability for diverse products such
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as jet engines, pumps as well as geophysical flow and many studies have been made
on the rotating fluid and several surveys have been carried out on several types of
flows. It is also important because of its appearance in many natural phenomena
and its application divided into oceanography, meteorology, atmospheric science
and limnology. Many researcher [1-10] have studied fluid flow in rotating frame
in different flow problems. A large number of applications of fluid flow through a
porous medium has applied in industries dealing with polymer processing, metal-
lurgical processing, geographical and allied areas. A porous medium is a solid with
pores in it. Pores are void spaces, which must be distributed more or less frequently
throughout the material. When a fluid permeates through a porous medium, the
actual path of an individual fluid particle cannot be found because of the fluid-rock
boundary conditions, which must be considered. Thus, in a porous medium one
generally considers the fluid motion in terms of volume or ensemble average of the
motion of individual fluid elements over regions of space. This was usually done by
famous Darcys law, as a result of this, the viscous term in the equations of fluid

motion will be replaced by the resistance term −ηk ~V , where η is the viscosity of the

fluid, k is the permeability of the medium and ~V is the seepage velocity of the fluid.
Many researchers [11-19] have studied fluid flows through porous medium in dif-
ferent flow problems. The basic equations and Navier-Stokes equations governing
the flow of magnetohydrodynamic (MHD) fluid are non-linear partial differential
equations and have no general solution. Only a small number of exact solutions
have been found since the non-linear term do not vanish normally. The governing
equations of motion of MHD fluid flow are second and third order partial differen-
tial equations which are non-linear in nature and hence are quite complex to solve.
Various transformation techniques serve as the powerful analytical tools for solving
non-linear partial differential equations.

Martin [20] employed differential geometry and developed new technique to
convert equations into solvable form, by using the curvilinear coordinates (Φ,Ψ),
in the plane of flow and keeping co-ordinate lines Ψ = constant which is taken to
be streamlines of flow and the co-ordinate lines Φ= constant, are left arbitrary.
Martins approach has been followed in this paper. The von-Mises co-ordinates
(x,Ψ) that require the use of Φ = x in Martins co-ordinates (Φ,Ψ) has been used
in this investigation. Exact solutions by Martin’s method were found in [21-37]
for various fluid flow problems involving viscous, incompressible, steady, unsteady,
rotating, non-rotating MHD and non-MHD fluids. In recent discoveries, MHD
[38-43] received a lots of attention towards boundary value conditions.

In this investigation, we have found the exact solutions of steady plane aligned
MHD flows of an incompressible rotating viscous fluid through porous media with
infinite electrical conductivity using Martins method. There are number of pub-
lished researched articles which deal with the importance of steady flow over a
rotating frame through porous media under the influence of magnetic field. But
further investigation in this regard is needed to clarify more, the effect of Martins
method which is the main motivation of this paper. The aim of the present work is
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to analyze the new aspects of the studies mentioned above. This method definitely
has a strong impact on the solutions obtained.

2. BASIC FLOW EQUATIONS

The general governing equations of the plane, viscous, incompressible fluid of
infinite electrical conductivity through porous media in the presence of magnetic
field is given by

~∇ · ~V = 0, (1)

ρ[(~V · ~∇)~V + 2~Ω× ~V + ~Ω× (~Ω× ~r)] = −~∇p+ η∇2~V + µ(∇×
−→
H )×

−→
H − η

k
~V , (2)

∇× (
−→
V ×

−→
H ) = 0, (3)

∇ ·
−→
H = 0, (4)

where
−→
V is velocity field vector,

−→
H is magnetic field vector, p is dynamic pressure

function, ρ is the constant fluid field density,
−→
Ω is angular velocity vector, −→r is

radius vector, η is coefficient of dynamic viscosity, µ is constant magnetic perme-
ability and k is the permeability of the medium. We consider two dimensional flow
~V=~V (x, y) and all variable are function of x and y. Also we introduce vorticity
function and Bernoulli function

ω =
∂v

∂x
− ∂u

∂y
, (Vorticity function) (5)

Z =
∂H2

∂x
− ∂H1

∂y
, (Current density function) (6)

B =
1

2
ρV 2 + p′ +

1

2
ρ|~Ω× ~r|2, (Bernoulli function) (7)

V 2 = u2 + v2, ω= vorticity, Z = current density function and p
′

is the reduced

pressure function given by p
′

= p− 1
2ρ
∣∣∣~Ω×−→r ∣∣∣2.

The last term being the centrifugal contribution of pressure, u, v are the

components of velocity vector
−→
V , H1, H2 are components of magnetic field vector−→

H . Separating into components Equations (1) to (4) are replaced by the following
equations;

∂u

∂x
+
∂v

∂y
= 0, (8)

∂B

∂x
+ η

∂ω

∂y
− 2ρΩv − ρvω + µH2Z +

µ

k
u = 0, (9)

∂B

∂y
− η ∂ω

∂x
+ 2ρΩu+ ρuω − µH1Z +

µ

k
v = 0, (10)

uH2 − vH1 = C, (11)

∂H1

∂x
+
∂H2

∂y
= 0, (12)
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∂H2

∂x
− ∂H1

∂y
= Z, (13)

ω =
∂v

∂x
− ∂u

∂y
, (14)

where C is arbitrary constant of integration. We consider aligned flow in which
magnetic field is everywhere parallel to velocity field, so that;

−→
H = β

−→
V ⇒ H1 = βu, H2 = βv, (15)

where β is some unknown scalar field such that
−→
V · ∇β = 0, (16)

is the condition satisfied by β as obtained from Equation (1), (4) and (15). Using
(15) in the above system of equations (8) to (14) we get the following system of
partial differential equations

∂v

∂x
+
∂u

∂y
= 0, (17)

∂B

∂x
+ η

∂ω

∂y
− 2ρΩv − ρvω + µβvZ +

µ

k
u = 0, (18)

∂B

∂y
− η ∂ω

∂x
+ 2ρΩu− ρuω − µβuZ +

µ

k
v = 0, (19)

u
∂β

∂x
+ v

∂β

∂y
= 0, (20)

ω =
∂v

∂x
− ∂u

∂y
, (21)

βω + v
∂β

∂x
− u∂β

∂y
= Z, (22)

above are six partial differential equations in six unknown functions u(x, y), v(x, y),
β(x, y), ω(x, y), Z(x, y) and β(x, y). Once a solution of these equations are deter-

mined, pressure function p(x, y) and the velocity vector
−→
V can be determined.

3. Some results of differential geometry

The equation of continuity of Equation (17) implies the existence of a stream
function Ψ= Ψ(x, y) such that;

∂Ψ

∂x
= −v and

∂Ψ

∂y
= u. (23)

We take Φ(x, y)= constant to be some arbitrary family of curves which generates
with the streamline Ψ(x, y) = constant, curvilinear coordinate so that in the phys-
ical plane the independent variables x, y can be replaced by Φ, Ψ.
Let

x = x(Φ,Ψ), y = y(Φ,Ψ), (24)
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define a curvilinear coordinate in the (x, y) plane with the squared element of arc
length along any curve given by

ds2 = E (Φ,Ψ) dΦ2 + 2F (Φ,Ψ) dΦdΨ +G (Φ,Ψ) dΨ2, (25)

where

E =

(
∂x

∂Φ

)2

+

(
∂y

∂Φ

)2

,

F =
∂x

∂Φ

∂x

∂Ψ
+
∂y

∂Φ

∂y

∂Ψ
,

G =

(
∂x

∂Ψ

)2

+

(
∂y

∂Ψ

)2

. (26)

Equation (24) can be solved to obtain Φ=Φ(x, y), Ψ = Ψ(x, y) such that

∂x

∂Φ
= J

∂Ψ

∂y
,

∂x

∂Ψ
= −J ∂Φ

∂y
,

∂y

∂Φ
= −J ∂Ψ

∂x
,

∂y

∂Ψ
= J

∂Φ

∂x
. (27)

Provided 0 < |J | <∞, where J is the Jacobian transformation

J =
∂x

∂Φ

∂y

∂Ψ
− ∂x

∂Ψ

∂y

∂Φ
= ±

√
EG− F 2 = ±W. (28)

If α be the local angle of inclination of the tangent to the coordinate line Ψ=
constant, directed in the sense of increasing Φ, we have from differential geometry

∂x

∂Φ
=
√
E cosα,

∂y

∂Φ
=
√
E sinα,

∂x

∂Ψ
=

F√
E

cosα− J√
E

sinα,

∂y

∂Ψ
=

F√
E

sinα+
J√
E

cosα,
∂α

∂Φ
=
J

E
Γ11,

∂α

∂Ψ
=
J

E
Γ2

12 (29)

and

K =
1

W

[
∂

∂Ψ

(
W

E
Γ2

11

)
− ∂

∂Φ

(
W

E
Γ2

12

)]
= 0,

where

Γ2
11 =

1

2W 2

[
−F ∂F

∂Φ
+ 2E

∂F

∂Φ
− E∂E

∂Ψ

]
,

Γ2
12 =

1

2W 2

[
E
∂G

∂Φ
− F ∂E

∂Ψ

]
,

here K is the Gaussian curvature.

4. Martins form of flow equations

Equation (23), (27) and (29) gives

√
E cosα =

∂x

∂Φ
= J

∂Ψ

∂y
= Ju = JV cos θ,

√
E sinα =

∂y

∂Φ
= −J ∂Ψ

∂x
= Jv = JV sin θ,
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where V =
√
u2 + v2 and θ is the direction of flow in the physical plane. This

pair of equations shows that the fluid flows along the streamlines towards higher
or lower parameter values of Φ according as to whether J>0 or J<0. We consider
here fluid flows towards the higher parameter values of Φ so that J= W > 0.

Using (23) in Equations (18) and (19) and considering (27), the equations in
(Φ, Ψ) co-ordinate are given by

∂B

∂Φ

∂y

∂Ψ
− ∂B

∂Ψ

∂y

∂Φ
+ η

(
−∂ω
∂Φ

∂x

∂Ψ
+
∂ω

∂Ψ

∂x

∂Φ

)
− [ρ (2Ω + ω)− µβZ]

∂y

∂Φ
+
η

κ

∂x

∂Φ
= 0,

(30)
∂B

∂Φ

∂x

∂Ψ
− ∂B

∂Ψ

∂x

∂Φ
+ η

(
∂ω

∂Φ

∂y

∂Ψ
− ∂ω

∂Ψ

∂y

∂Φ

)
− [ρ (2Ω + ω)− µβZ]

∂x

∂Φ
− η

κ

∂y

∂Φ
= 0.

(31)

Multiplying (30) by ∂x
∂Φ and (31) by ∂y

∂Φ and subtracting we get

J
∂B

∂x
= η

(
E
∂ω

∂Ψ
− J ∂ω

∂Φ
+

1

κ
E

)
, (32)

Again multiplying equation (30) by ∂x
∂Ψ and (31) by ∂y

∂Ψ and subtracting

J
∂B

∂Ψ
= η

(
G
∂ω

∂Φ
− E ∂ω

∂Ψ
− 1

κ
F

)
− J [ρ (2Ω + ω)− µβZ] . (33)

4.1. Solenoidal equation. Using (23) in the Equation (20) and transforming the
resulting equations to (Φ, Ψ) co-ordinate we get

∂Ψ

∂y

[
∂B

∂Φ

∂Φ

∂x
+
∂β

∂Ψ

∂Ψ

∂x

]
− ∂Ψ

∂x

[
∂β

∂Φ

∂Φ

∂y
+
∂β

∂Ψ

∂Ψ

∂y

]
= 0, (34)

which on simplification gives
∂β

∂Φ
= 0. (35)

Current density equation

Employing (23) in Equation (22) we have

βω − ∂Ψ

∂x

∂β

∂x
− ∂Ψ

∂y

∂β

∂y
= Z, (36)

using (27) and employing (35) and (26) we get

βω − E

J2

∂β

∂Ψ
= Z. (37)

4.2. Equations of continuity and vorticity. Martins [20] obtained the neces-
sary and sufficient condition for the flow of a fluid along the coordinate lines Ψ
= constant of curvilinear co-ordinate system with ds2 given by (25) to satisfy the
principle of conservation of mass to be

WV =
√
E , u+ iv =

√
E

W
eiα. (38)
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He has also proven that the vorticity equation takes the form:

ω =
1

W

[
∂

∂Φ

(
F

W

)
− ∂

∂Ψ

(
E

W

)]
. (39)

5. Exact solution

We consider the given flow problem in the form (y − f(x))/g(x) = constant,
where f(x) and g(x) 6= 0 are continuously differentiable functions. For a given flow
problem with (y − f(x))/g(x) = constant as the family of streamlines, we have

y = f(x) + g (x) γ (Ψ) , (40)

where γ (Ψ) is an unknown functions satisfying γ
′
(Ψ) = 0. Employing von Mises

co-ordinates Φ(x, y) = x and Equation (40) in Equation (26) and (28) we get

E = 1 +
[
f

′
(x) + g

′
(x)γ(Ψ)

]2
,

F =
[
g (x) f

′
(x) + g (x) γ (Ψ)

]
γ

′
(Ψ) ,

G = g2 (x) γ
′2 (x) ,

J = W = g (x) γ
′
(Ψ) . (41)

Thus, we obtain parabolic flows along y −m1x
2 −m2x = constant.

Since the family of parabolic curves are the streamlines, it follows that, there exists
some functions γ (Ψ) such that

y = m1x
2 +m2x+ γ (Ψ) , γ

′
(Ψ) 6=0. (42)

Comparing (42) with (40), we have
f (x) = m1x

2 +m2x, g (x) = 1. Using these expressions for f(x), g(x) in (41) we
get

E = 1 + (2m1x+m2)
2
, F = (2m1x+m2) γ

′
(Ψ)

G = γ
′2 (Ψ) , J = W = γ

′
(Ψ) . (43)

Now, we write the Equations (32), (33), (37) and (39) in von Mises co-ordinates
(γ, Ψ) we have,

∂B

∂x
= η

[
(1 + (2m1x+m2)2)

(
− 2m1

γ
′′
(

Ψ
)

γ′3
(

Ψ
) +

1

γ′
(

Ψ
)[ γ′′

(
Ψ
)

γ′3
(

Ψ
)]′

+(2m1x+m2)
1

γ′
(

Ψ
)[γ′′

(
Ψ
)

γ′3
(

Ψ
)]′)

−4m1(2m1x+m2)
γ

′′(
Ψ
)

γ′3
(
Ψ
) +

1

k
(1 + (2m1x+m2)2)

1

γ′(Ψ)],
(44)
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∂B

∂Ψ
= η

(
2m1(2m1x+m2)

γ
′′(

Ψ
)

γ′3
(
Ψ
) − (2m1x+m2)

[ γ′′(
Ψ
)

γ′3
(
Ψ
)]′ − (2m1x+m2)3 γ

′′(
Ψ
)

γ′3
(
Ψ
)

−1

k
(2m1x+m2)

)
−
[
ρ
(

2Ω +
1

γ′3
(
Ψ
){2m1γ

′2
(
Ψ
)

+ γ
′′(

Ψ
)

+(2m1x+m2)2γ
′′(

Ψ
)})
− µβ

{
beta

( 1

γ′3
(
Ψ
){2m1γ

′2
(
Ψ
)

+ γ
′′(

Ψ
)

+(2m1x+m2)2γ
′′(

Ψ
)})
− Big(1 + (2m1x+m2)2

) γ′′(
Ψ
)

γ′3
(
Ψ
)}],

(45)

Z = β (Ψ)ω −

[
1 + (2m1x+m2)

2

γ′2 (Ψ)

]
β

′
(Ψ) , (46)

and

ω =
1

γ′3 (Ψ)

[
2m1γ

′2 (Ψ) + γ
′′

(Ψ) + (2m1x+m2)
2
γ

′′
(Ψ)
]
. (47)

Now, eliminating ω and Z from the integrability condition ∂2B
∂x∂Ψ = ∂2B

∂Ψ∂x using (44)
to (47) we have

4∑
n=0

an (Ψ) [2m1x+m2]
n

= 0, (48)

where

a0 (Ψ) = a4 (Ψ) + 2ηm1

[
γ

′′
(Ψ)

γ′3 (Ψ)

]′

+
1

k

1

γ′2 (Ψ)
− 2m1η

k
,

a1 (Ψ) = 4m1

[
µβ2 γ

′′
(Ψ)

γ′3 (Ψ)
− µββ

′ 1

γ′2 (Ψ)
− ρ γ

′′
(Ψ)

γ′3 (Ψ)

]

a2 (Ψ) = −2ηa4 (Ψ) + 2ηm1

[
γ

′′
(Ψ)

γ′3 (Ψ)

]′

, a3 (Ψ) = 0,

and

a4 (Ψ) = η

 1

γ′ (Ψ)

(
γ

′′
(Ψ)

γ′3 (Ψ)

)′
′

.

Since x and Ψ are independent variables the identity (48) can only hold if a0 (Ψ),
a1 (Ψ), a2 (Ψ), a3 (Ψ), and a4 (Ψ), vanish identically. Using the consequences
a4 (Ψ) = 0, a2 (Ψ) = 0 in a0 (Ψ) = 0, a1 (Ψ) = 0, we find

γ (Ψ) = c1Ψ + c2 and β (Ψ) = β0 (49)

where c1 6= 0 and β0 6= 0 are arbitrary constants. From (49) and (42), we get

c1Ψ (x, y) + c2 = y −m1x
2 −m2x. (50)
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Streamline Profile
The family of streamlines flow of the given problem can be shown in the Figure 1
which shows that streamline of flow equation are concentric parabola.

Figure 1. Streamline for the stream function y − x2 − x = Constant

Velocity Profile
Velocity profile of the given problem is as shown in Figure 2 which shows parallel
straight lines.

Figure 2. Velocity Profile
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For the chosen parabolic flow pattern, using (49), and (50) in (23), (15), (5),
(6), (7) and (17) to (22) we find

u =
1

c1
, (51)

v =

(
2m1x+m2

c1

)
, (52)

H1 =
β0

c21
, (53)

H2 = β0

(
2m1x+m2

c1

)
, (54)

p =
2m1

c21

[
µβ2

0 − ρ
(

1 +
c1Ω

m1

)]
y − ρ

2c21

(
1 +m2

2

)
− 2

[(
m1µβ

2
0

c21

)
−
(
ρΩ

c1

)] (
m1x

2 +m2x
)
− η

k
(x+ y) + p0, (55)

ω =
2m1

c1
, (56)

Z =
2m1

c1
β0, (57)

where p0 is arbitrary constant.

6. RESULT AND DISCUSSION

In this present investigation, we have considered steady plane aligned MHD
fluid flow having infinite electrical conductivity in a rotating frame through porous
media. By applying the concept of differential geometry the governing non-linear
partial differential equations of the fluid flow are converted into a new form called
Martins form and then an approach for the determination of exact solution has
been carried out. The expressions for velocity, magnetic field, vorticity, current
density and pressure distribution are found out. Also, graphs have been plotted
to sketch the streamline pattern, velocity profile and variation of pressure function
with the change in angular velocity for different values of η

k and fluid density ρ.
The main outcomes of the present investigation are listed below:

(1) The component of velocity u, component of magnetic field H1, the vorticity
function ω and the current density function Z are found to be constants.

(2) The expression for velocity does not involve the term for permeability of
the porous medium k and the angular velocity Ω of the rotating frame.

(3) The pressure function depends on the magnetic permeability µ, fluid density
ρ, angular velocity Ω of the rotating frame and the porosity of the medium
k.
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(4) Pressure versus angular velocity Ω below 10 rad/sec (Figure 3 to Figure
6) for different values of η

k with constant fluid density ρ up to 3000 kg/m3

shows that the pressure variation with angular velocity is almost constant
for higher values of permeability of the porous medium k, but decreases
considerably for lower values of permeability k.

(5) Pressure versus angular velocity (Figure 7 to Figure 11) for different values
of η

k for higher values of fluid density ρ more than 3000 kg/m3 shows that
decrease of pressure to a minimum value and then considerable increase
with increase in angular velocity Ω. Increase of pressure function is quite
sharp for higher values of permeability of the porous medium k.

(6) The pressure function versus angular velocity (Figure 12 to Figure 18) for
different fluid density ρ with constant value of η

k (for higher values of k)
show decrease of pressure function to a minimum value and then increase
with increase in angular velocity Ω. This is similar for other values of fluid
density ρ.

(7) Pressure function versus angular velocity (Figure 19 to Figure 28) for dif-
ferent values of fluid density for constant η

k (for lower values of k) shows
decrease of pressure function almost linearly with angular velocity for rel-
atively smaller angular velocity Ω irrespective of the value of fluid density.
Beyond the value of η

k = 20 × 106Pa.s/m2 (low value of permeability k),
variation of pressure with smaller values of angular velocity Ω is almost
same for any value of the fluid density and pressure function for different
values of fluid density overlaps with each other which indicates that the lin-
ear decrease of pressure with smaller angular velocity Ω for very low values
of permeability k is independent of the fluid density. On increasing the an-
gular velocity Ω there is decrease in pressure linearly up to a certain value
beyond that decrease is non-linear to a minimum value and then there is
increase in pressure with increasing angular velocity.
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Figure 3. Pressure for density 1200 with variable η
k

Figure 4. Pressure for density 1500 with variable η
k
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Figure 5. Pressure for density 1900 with variable η
k

Figure 6. Pressure for density 7000 with variable η
k
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Figure 7. Pressure for variable density for η
k = 1× 106

Figure 8. Pressure for variable density for η
k = 2× 106
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Figure 9. Pressure for variable density for η
k = 3× 106

Figure 10. Pressure for variable density for η
k = 4× 106
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Figure 11. Pressure for variable density for η
k = 5× 106

Figure 12. Pressure for variable density for η
k = 10× 106.
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Figure 13. Pressure for variable density for η
k = 15× 106

Figure 14. Pressure for variable density for η
k = 20× 106
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Figure 15. Pressure for variable density for η
k = 25× 106

Figure 16. Pressure for variable density for η
k = 30× 106
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Figure 17. Pressure for variable density for η
k = 35× 106

Figure 18. Pressure for variable density for η
k = 40× 106
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Figure 19. Pressure for variable density for η
k = 45× 106

Figure 20. Pressure for variable density for η
k = 50× 106
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Figure 21. Pressure for variable density for η
k = 100× 106
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