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Abstract. Recently Jun and Hur proposed (m,n)-fuzzy sets which can handle

vagueness and uncertainty in information very efficiently in the process of solv-

ing complex problems. They defined basic operations over (m,n)-fuzzy sets. The

present paper created some new operations over this super class of fuzzy sets and

established many theorems related to the their properties. Further some distance

and similarity measures of (m,n)-fuzzy sets are proposed and their properties are

examined. Moreover, the proposed similarity measures are applied to the problem

of pattern recognition.
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1. INTRODUCTION

The fusion of technology and generalized forms of classical sets is very useful
to solve many real world complex problems which involve the vague and uncertain
information. A classical set is defined by its characteristic function from universe
of discourse to two point set {0,1}. Classical set theory is insufficient to handle
the complex problems involving vague and uncertain information. To handle the
vagueness and uncertainty of complex problems, Zadeh [19] in 1965, created fuzzy
sets (FSs) as a generalization of classical sets which characterised by membership
function from universe of discourse to closed interval [0,1]. FS theory is applicable
in various areas such as control theory, artificial intelligence, pattern recognition,
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database system and medical diagnosis. Atanassov [2] created a super class of FSs
called intuitionistic fuzzy sets (IFS). IFSs are widely used in the many fields of
mathematics, computer science, management and medical sciences. Szmidt [15],
Szmidt and Kacprzyk [16], and Wang and Xin [17] proposed various distances and
similarity measures between IFS and studies applications of distance and similarity
measures in pattern recognition and medical diagnosis. After the occurrence of
Atanassov [2] paper, several generalizations of IFSs have been appeared in the
literature. In the year 2013, Yager [18] presented a super class of IFSs called
Pythagorean fuzzy set (PFS). Husain and Yang [5] and Zeng, Li and Yin [20] are
initially contributed to similarity measures of PFSs. In 2019, Senapati and Yager
[13] created Fermatean fuzzy sets (FFS) and defined basic operations over FFSs.
In another paper Senapati and Yager [14] proposed some more operations over
FFS and develped a FFWPM to solve MCDM problems. Recently Sahoo [12],
Krisci [9], and Ejegwa and Onyeke [4] proposed various similarity measures for
FFSs and studied their applications in MADM and MCDM problems. In 2020, a
new notion called n-Pythagorean fuzzy sets (n-PFS) was created by Bryniarska [3]
as a super class of FFSs and studied Yeger’s aggregation operations for n-PFSs.
The distance and similarity measures on n-PFS and their applications in MCDM
problems are studied by Liu, Chen and Peng [10] and Peng and Liu [11]. Ibrahim
and his coworkers [6, 7] initiated the study of (3,2)-Fuzzy sets and (3,4)-Fuzzy sets
and proposed topological structures using these super classes of IFSs. The notion
of (2,1)-fuzzy sets was created by AI-Shami [1] and presented their applications
to MCDM methods. Recently Jun and hur[8] created the class of (m,n)-fuzzy
sets ((m,n)-FSs) as a super class of n-PFSs. They defined some operations and
properties on (m,n)-FSs and presented its applications in BCK-algebra.

The motivation of writing this research are first to redefined the complement
of (m,n)-FSs which overcome the drawback of complement defined by Jun and
Hur [8] in which ”the complement of (m,n)-FS is not an (m,n)-FS but (n,m)-FS”.
Second, proposed some new operations over (m,n)-FSs which are not considered by
Jun and Hur [8]. Third, to extend some distance and similarity measures of PFSs,
FFSs to (m,n)-FSs and examine their applications in pattern recognition. Now the
organization of paper is as follows. The second section of this paper reviews the
notion of (m,n)-FSs and its relations to other generalized classes of IFSs. Third
section proposed some new operations over (m,n)-FSs presents their properties.
Section four proposed some distances and similarity measures over (m,n)-FSs and
showed their validity using numerical examples. Section five gives an applications
of similarity of (m,n)-FSs in pattern recognition.

2. PPRELIMINARIES

Throughout this paper P be a universe of discourse, N referred the set of all
natural numbers and m,n ∈ N.
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Definition 2.1. A structure M = {< p, ϱM(p), σM(p) >: p ∈ P} where, ϱM :
P → [0, 1] and σM : P → [0, 1] denotes the degree of membership and the degree of
nonmembership of each p ∈ P to M is called:

(a) Intuitionistic fuzzy set [2] in P if 0 ≤ ϱM(p) + σM(p) ≤ 1, ∀p ∈ P.
(b) (2,1)-fuzzy set [1] in P if 0 ≤ ϱ2M(p) + σ1

M(p) ≤ 1, ∀p ∈ P.
(c) Pythagorean fuzzy set [18] in P if 0 ≤ ϱ2M(p) + σ2

M(p) ≤ 1, ∀p ∈ P.
(d) Fermatean fuzzy set [13] in P if 0 ≤ ϱ3M(p) + σ3

M(p) ≤ 1, ∀p ∈ P.
(e) (3,2)-fuzzy set [6] in P if 0 ≤ ϱ3M(p) + σ2

M(p) ≤ 1, ∀p ∈ P.
(f) (3,4)-fuzzy set [7] in P if 0 ≤ ϱ3M(p) + σ4

M(p) ≤ 1, ∀p ∈ P.
(g) n-Pythagorean fuzzy set [3] where n ∈ N in P if 0 ≤ ϱnM(p) + σn

M(p) ≤ 1,
∀p ∈ P.

(h) (m,n)- fuzzy set [8] where m,n ∈ N in P if 0 ≤ ϱmM(p) + σn
M(p) ≤ 1, ∀p ∈ P.

Remark 2.2. [2] Every fuzzy set M over P with membership function ϱM will be
considered as an intuitionistic fuzzy set M = {< p, ϱM(p), 1− ϱM(p) >: p ∈ P}.

Remark 2.3. Since a + b ≤ 1 ⇒ a2 + b ≤ 1 ⇒ a2 + b2 ≤ 1 ⇒ a3 + b2 ≤ 1 ⇒
a3+b3 ≤ 1 ⇒ a3+b4 ≤ 1 ⇒ an+bn ≤ 1 ⇒ am+bn ≤ 1,∀a, b ∈ [0, 1] and m,n ≥ 4,
from Definition 2.1 we obtain the following diagram of implications for the above
generalizations of FSs:

IFS
⇓

(2,1)-FS
⇓

PFS
⇓

(3,2)-FS
⇓

FFS
⇓

(3,4)-FS
⇓

n-PFS(n ≥ 4)
⇓

(m,n)-FS(m,n ≥4).

The following example shows that the reverse implications are not true.
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Example 2.4. Let P = {p1, p2} and consider the following structures defined over
P:

M1 = {< p1, 0.6, 0.5 >,< p2, 0.4, 0.7 >}.
M2 = {< p1, 0.6, 0.7 >,< p2, 0.8, 0.5 >}.
M3 = {< p1, 0.85, 0.6 >,< p2, 0.9, 0.5 >}.
M4 = {< p1, 0.8, 0.7 >,< p2, 0.8, 0.75 >}.
M5 = {< p1, 0.9, 0.7 >,< p2, 0.9, 0.7 >}.
M6 = {< p1, 0.85, 0.8 >,< p2, 0.85, 0.8 >}.
M7 = {< p1, 0.9, 0.85 >,< p2, 0.85, 0.9 >}.

Then

(a) M1 is (2,1)-FS but not IFS.
(b) M2 is PFS but not (2,1)-FS.
(c) M3 is (3,2)-FS but not PFS.
(d) M4 is FFS but not (3,2)-FS.
(e) M5 is (3,4)-FS but not FFS.
(f) M6 is (4,4)-FS but not (3,4)-FS.
(g) M7 is (6,5)-FS but not (5,5)-FS.

Definition 2.5. [8] Let M = (ϱM, σM),M1 = (ϱM1
, σM1

),M2 = (ϱM2
, σM2

) ∈
Fn

m(P). Then the basic operations over Fn
m(P) are defined as follows:

(a) M1 ⋐ M2 ⇔ ϱM1
≤ ϱM2

and σM1
≥ σM2

.
(b) M1 = M2 ⇔ ϱM1

= ϱM2
and σM1

= σM2
.

(c) M1 ⋓M2 = (max{ϱM1
, ϱM2

},min{σM1
, σM2

}).
(d) M1 ⋒M2 = (min{ϱM1 , ϱM2},max{σM2 , σM2}).
(e) Mc = (σM, ϱM).

Theorem 2.6. [8] Let M1 = (ϱM1
, σM1

), M2 = (ϱM2
, σM2

) and M3 = (ϱM3
, σM3

)
be three (m,n)-FSs on P. Then:

(a) M1 ⋓M2 = M2 ⋓M1.
(b) M1 ⋒M2 = M2 ⋒M1.
(c) (M1 ⋒M2) ⋒M3 = M1 ⋒ (M2 ⋒M3).
(d) (M1 ⋓M2) ⋓M3 = M1 ⋓ (M2 ⋓M3).
(e) (Mc

1)
c = M1.

(f) (M1 ⋓M2)
c = Mc

1 ⋒Mc
2.

(g) (M1 ⋒M2)
c = Mc

1 ⋓Mc
2.
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Table 1: Notations and their descriptions
Notation Description
FS Fuzzy set
IFS Intuitionistic fuzzy set
(2,1)-FS (2,1)-fuzzy set
PFS Pythagorean fuzzy set
(3,2)-FS (3,2)-fuzzy set
FFS Fermatean fuzzy set
(3,4)-FS (3,4)-fuzzy set
n-FS n-Pythagorean fuzzy set
(m,n)-FS (m,n)-fuzzy set
ϱM(p) Degree of membership of p in M
σM(p) Degree of non-membership of p in M
Fn

m(P) The family of all (m,n)-FSs defined over P
(ϱM, σM) (m,n)-FS M = {< p, ϱM(p), σM(p) >: p ∈ P}
Mc Complement of M in the sense of Jun and Hur [8]
∁M Complement of M proposed in this paper
πM(p) Degree of indeterminacy of p to M
2M Necessity measure of M
3M Possibility measure of M

3. SOME NEW OPERATIONS OVER (m,n)-FUZZY SETS

Definition 3.1. Let M = (ϱM, σM) ∈ Fn
m(P) and p ∈ P. Then the expression

πM(p) = (1−ϱmM(p)−σn
M(p))

2
m+n is called the degree of indeterminacy of p to M.

Remark 3.2. Clearly, π
m+n

2

M (p) + ϱmM(p) + σn
M(p) = 1,∀p ∈ P.

Remark 3.3. The degree of indeterminacy of p ∈ P to n-PFS (resp. FFS, PFS,
IFS, (2,1)-FS, (3,2)-FS, (3,4)-FS) M is a special case of degree of indeterminacy
of p to (m,n)-FS M for m = n (resp. m = n = 3;m = n = 2;m = n = 1;m =
2, n = 1;m = 3, n = 2;m = 3, n = 4).

Jun and Hur [8] pointed out that the complement of an (m,n)-FS is (n,m)-
FS but not (m,n)-FS. We modified the definition of complement of (m,n)-FS as
follows:

Definition 3.4. Let M = (ϱM, σM) ∈ Fn
m(P). Then the complement of M de-

noted by ∁M is defined as follows:

∁M = (ϱ∁M, σ∁M) = (σ
n
m

M, ϱ
m
n

M).
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Theorem 3.5. Let M = (ϱM, σM),M1 = (ϱM1
, σM1

),M2 = (ϱM2
, σM2

) ∈
Fn

m(P). Then:

(i) ∁M ∈ Fn
m(P).

(ii) ∁∁M = M.
(iii) ∁(M1 ⋓M2) = ∁M1 ⋒ ∁M2.
(iv) ∁(M1 ⋒M2) = ∁M1 ⋓ ∁M2.

Proof. (i) Since,

∁M =(ϱ∁M, σ∁M)

=(σ
n
m

M, ϱ
m
n

M),

we have,

0 ≤ ϱm∁M + σn
∁M =(σ

n
m

M)m + (ϱ
m
n

M)n

=σn
M + ϱmM

=ϱmM + σn
M ≤ 1.

Hence ∁M ∈ Fn
m(P).

(ii) Easy and left to the readers.
(iii) We have,

∁(M1 ⋓M2) =∁(max{ϱM1 , ϱM2},min{σM1 , σM2})

=(min{σ
n
m

M1
, σ

n
m

M2
},max{ϱ

m
n

M1
, ϱ

m
n

M2
})

=(σ
n
m

M1
, ϱ

m
n

M1
) ⋒ (σ

n
m

M2
, ϱ

m
n

M2
)

=∁M1 ⋒ ∁M2.

(iv) Follows on the similar process to (iii).

□

Definition 3.6. Let M = (ϱM, σM) ∈ Fn
m(P). Then the necessity and the possi-

bility measures on M are defined as follows:

(i) 2M = (ϱM, (1− ϱmM)
1
n ).

(ii) 3M = ((1− σn
M)

1
m , σM).

Example 3.7. Let P = {p} and M = {< p, 0.85, 0.9 >} ∈ F5
6 (P). Then:

πM(p) = 0.5359121938.

2M = {< p, 0.85, 0.9096551054 >}.
3M = {< p, 0.8593159181, 0.9 >}.
∁M = {< p, 0.9159436536, 0.8228159673 >}.

Theorem 3.8. If M = (ϱM, σM) ∈ Fn
m(P), then
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(i) 2M ∈ Fn
m(P).

(ii) 3M ∈ Fn
m(P).

Proof. (i) Follows on noting that:

ϱm2M + σn
2M =ϱmM + ((1− ϱmM)

1
n )n

=ϱmM + (1− ϱmM)

=1.

(ii) Follows on noting that:

ϱm3M + σn
3M =((1− σn

M)
1
m )m + σn

M

=(1− σn
M) + σn

M

=1.

□

Definition 3.9. Let M = (ϱM, σM),M1 = (ϱM1 , σM1),M2 = (ϱM2 , σM2) ∈
Fn

m(P) and κ ∈ N. Then the operations, M1 ⊕ M2,M1 ⊗ M2, κM and Mκ are
defined as follows:

(i) M1 ⊕M2 = (ϱmM1
+ ϱmM2

− ϱmM1
ϱmM2

, σn
M1

σn
M2

).
(ii) M1 ⊗M2 = (ϱmM1

ϱmM2
, σn

M1
+ σn

M2
− σn

M1
σn
M2

).
(iii) κM = (1− (1− ϱmM)κ, σnκ

M).
(iv) Mκ = (ϱmκ

M , 1− (1− σn
M)κ).

Theorem 3.10. Let M = (ϱM, σM),M1 = (ϱM1
, σM1

),M2 = (ϱM2
, σM2

) ∈
Fn

m(P) and κ ∈ N. Then:

(i) M1 ⊕M2 ∈ Fn
m(P).

(ii) M1 ⊗M2 ∈ Fn
m(P).

(iii) M1 ⋓M2 ∈ Fn
m(P).

(iv) M1 ⋒M2 ∈ Fn
m(P).

(v) κM ∈ Fn
m(P).

(vi) Mκ ∈ Fn
m(P).

Proof. (i) Since,

M1 ⊕M2 = (ϱmM1
+ ϱmM2

− ϱmM1
ϱmM2

, σn
M1

σn
M2

),

we have

ϱmM1⊕M2
+ σn

M1⊕M2
=(ϱmM1

+ ϱmM2
− ϱmM1

ϱmM2
)m + (σn

M1
σn
M2

)n

=(ϱmM1
(1− ϱmM2

) + ϱmM2
)m + (σn

M1
σn
M2

)n

≥0
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and

ϱmM1⊕M2
+ σn

M1⊕M2
=(ϱmM1

+ ϱmM2
− ϱmM1

ϱmM2
)m + (σn

M1
σn
M2

)n

≤((1− σn
M1

) + (1− σn
M2

)− (1− σn
M1

)(1− σn
M2

))m + (σn
M1

σn
M2

)n

=(1− σn
M1

σn
M2

)m + (σn
M1

σn
M2

)n

≤1,

because 0 ≤ σn
M1

σn
M2

≤ 1 and m,n ≥ 1. Hence M1 ⊕M2 ∈ Fn
m(P).

(ii) Similar to (i).
(iii) Suppose max{ϱM1

, ϱM2
} = ϱM1

. Since min{σM1
, σM2

} ≤ σM1
, we have

0 ≤ϱmM1⋓M2
+ σn

M1⋓M2

=(max{ϱM1
, ϱM2

})m + (min{σM1
, σM2

})n

≤ϱmM1
+ σn

M1

≤1.

Suppose now max{ϱM1 , ϱM2} = ϱM2 . Since min{σM1 , σM2} ≤ σM2 we have

0 ≤ϱmM1⋓M2
+ σn

M1⋓M2

=(max{ϱM1
, ϱM2

})m + (min{σM1
, σM2

})n

≤ϱmM2
+ σn

M2

≤1.

Proof of (iii) is complete.
(iv) Similar to (iii).
(v) Since M ∈ Fn

m(P), we have 0 ≤ ϱmM ≤ 1, 0 ≤ σn
M ≤ 1 and 0 ≤ ϱmM + σn

M ≤ 1.
Since,

κM = (1− (1− ϱmM)κ, σnκ
M),

we have

0 ≤ϱmκM + σn
κM

=(1− (1− ϱmM)κ)m + (σnκ
M)n

≤(1− (σn
M)κ)m + (σnκ

M)n

=(1− σnκ
M)m + (σnκ

M)n

≤1,

because 0 ≤ σnκ
M ≤ 1,∀n,m, k ≥ 1.

□

Theorem 3.11. Let M = (ϱM, σM),M1 = (ϱM1 , σM1),M2 = (ϱM2 , σM2) ∈
Fn

m(P) and κ, κ1, κ2 ∈ N.Then:
(i) M1 ⊕M2 = M2 ⊕M1.
(ii) M1 ⊗M2 = M2 ⊗M1.
(iii) κ(M1 ⊕M2) = κM1 ⊕ κM2.
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(iv) (κ1 + κ2)M = κ1M+ κ2M.
(v) (M1 ⊗M2)

κ = Mκ
1 ⊗Mκ

2 .
(vi) Mκ1 ⊗Mκ2 = M(κ1+κ2).

Proof. Proofs are easy and left to the readers.

□

Theorem 3.12. Let M = (ϱM, σM) ∈ Fn
m(P) and p ∈ P. If πM(p) = 0, then

πMκ(p) = 0,∀κ ∈ N.

Proof. Since,

πM(p) = (1− ϱmM(p)− σn
M(p))

2
m+n ,

we have

πM(p) = 0 ⇒(1− ϱmM(p)− σn
M(p))

2
m+n = 0

⇒ϱmM(p) + σn
M(p) = 1

⇒ϱmM(p) = 1− σn
M(p).

By using this result we have,

Mκ =(ϱmκ
M , 1− (1− σn

M)κ)

=(ϱmκ
M , 1− (ϱmM)κ)

=(ϱmκ
M , 1− (ϱmκ

M )).

Hence,

πMκ(p) =(1− (ϱmκ
M (p))m − (1− (ϱmκ

M (p)))n)
2

m+n

⇒π
m+n

2

Mκ (p) = 1− (ϱmκ
M (p))m − (1− (ϱmκ

M (p)))n

⇒πMκ(p) = 0.

Theorem 3.13. Let M = (ϱM, σM) ∈ Fn
m(P) and p ∈ P and κ, κ1, κ2 ∈ N. Then:

(i) κ1 ≥ κ2 ⇒ Mκ1 ⋐ Mκ2 .
(ii) κ1 ≥ κ2 ⇒ κ2M ⋐ κ1M.

Proof. (i) Since,

Mκ1 = (ϱmκ1

M , 1− (1− σn
M)κ1)

Mκ2 = (ϱmκ2

M , 1− (1− σn
M)κ2)

we have,

κ1 ≥ κ2 ⇒ϱκ2

M ≥ ϱκ1

M and (1− σn
M)κ1 ≤ (1− σn

M)κ2

⇒ϱmκ2

M ≥ ϱmκ1

M and 1− (1− σn
M)κ2 ≤ 1− (1− σn

M)κ1

⇒ϱMκ2 ≥ ϱMκ1 and σMκ2 ≤ σMκ1 .
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Hence Mκ1 ⋐ Mκ2 .
(ii) Similar to that of (i).

□

Theorem 3.14. Let M1 = (ϱM1 , σM1),M2 = (ϱM2 , σM2) ∈ Fn
m(P) and κ ∈ N.

Then:

(i) M1 ⋐ M2 ⇒ κM1 ⋐ κM2.
(ii) M1 ⋐ M2 ⇒ Mκ

1 ⋐ Mκ
2 .

(iii) (M1 ⋓M2)
κ ⇒ Mκ

1 ⋓Mκ
2 .

(iv) κ(M1 ⋓M2) ⇒ κM1 ⋓ κM2.
(v) (M1 ⋒M2)

κ ⇒ Mκ
1 ⋒Mκ

2 .
(vi) κ(M1 ⋒M2) ⇒ κM1 ⋒ κM2.

Proof. (i) Since M1 ⋐ M2, we have

ϱM1
≤ ϱM2

⇒ϱmM1
≤ ϱmM2

⇒1− ϱmM2
≤ 1− ϱmM1

⇒(1− ϱmM2
)κ ≤ (1− ϱmM1

)κ

⇒1− (1− ϱmM1
)κ ≤ 1− (1− ϱmM2

)κ

⇒ϱκM1 ≤ ϱκM2 ,

and

σM1
≥ ϱM2

⇒σn
M1

≥ σn
M2

⇒σnκ
M1

≥ σnκ
M2

⇒σκM1
≥ σκM2

.

Hence κM1 ⋐ κM2.
(ii) Similar to that of (i).
(iii) Follows since,

M1 ⋓M2 = (max{ϱM1 , ϱM2},min{σM1 , σM2})
and

(M1 ⋓M2)
κ =(ϱM1⋓M2

, σM1⋓M2
)

=((max{ϱM1 , ϱM2})mκ, 1− (1− (min{σM1 , σM2})n)κ)
=(max{ϱmκ

M1
, ϱmκ

M2
}, 1− (1−min{σn

M1
, σn

M2
})κ)

=(max{ϱmκ
M1

, ϱmκ
M2

}, 1− (max{1− σn
M1

, 1− σn
M2

})κ)
=(max{ϱmκ

M1
, ϱmκ

M2
}, 1− (max{(1− σn

M1
)κ, (1− σn

M2
)κ}))

=(max{ϱmκ
M1

, ϱmκ
M2

},min{1− (1− σn
M1

)κ, 1− (1− σn
M2

)κ})
=Mκ

1 ⋓Mκ
2 .

(iv) Follows since,

M1 ⋒M2 = (min{ϱM1 , ϱM2}, max{σM1 , σM2})
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and

(M1 ⋒M2)
κ =(ϱM1⋒M2 , σM1⋒M2)

=((min{ϱM1 , ϱM2})mκ, 1− (1− (max{σM1 , σM2})n)κ)
=(min{ϱmκ

M1
, ϱmκ

M2
}, 1− (1−max{σn

M1
, σn

M2
})κ)

=(min{ϱmκ
M1

, ϱmκ
M2

}, 1− (min{1− σn
M1

, 1− σn
M2

})κ)
=(min{ϱmκ

M1
, ϱmκ

M2
}, 1− (min{(1− σn

M1
)κ, (1− σn

M2
)κ}))

=(min{ϱmκ
M1

, ϱmκ
M2

},max{1− (1− σn
M1

)κ, 1− (1− σn
M2

)κ})
=Mκ

1 ⋒Mκ
2 .

(v) Similar to that of (iii).
(vi) Similar to that of (v).

□

Definition 3.15. Let M = (ϱM, σM) ∈ Fn
m(P) and α ∈ [0, 1] then the operator

Dα(M) is defined as follows:

Dα(M) = ((ϱmM + απ
m+n

2 )
1
m , (σn

M + (1− α)π
m+n

2 )
1
n ).

Theorem 3.16. Let M = (ϱM, σM) ∈ Fn
m(P) and α, β ∈ [0, 1]. Then:

(i) α ≤ β ⇒ Dα(M) ⋐ Dβ(M).
(ii) D0(M) = 2M.
(iii) D1(M) = 3M.

Proof. (i) The proof (i) is immediate.
(ii) Since,

Dα(M) = ((ϱmM + απ
m+n

2 )
1
m , (σn

M + (1− α)π
m+n

2 )
1
n )

we have,

D0(M) =((ϱmM + (0)π
m+n

2 )
1
m , (σn

M + (1− 0)π
m+n

2 )
1
n )

=(ϱM, (σn
M + π

m+n
2 )

1
n )

=(ϱM, (σn
M + 1− ϱmM − σn

M)
1
n )

=(ϱM, (1− ϱmM)
1
n )

=2M.

This completes the proof.
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(iii) It follows on noting that,

D1(M) =((ϱmM + (1)π
m+n

2 )
1
m , (σn

M + (1− 1)π
m+n

2 )
1
n )

=((ϱmM + π
m+n

2 )
1
m , (σn

M)
1
n )

=((ϱmM + (1− ϱmM − σn
M)

1
m , σM)

=((1− σn
M)

1
m , σM)

=3M.

□

Definition 3.17. Let M = (ϱM, σM) ∈ Fn
m(P) and α, β ∈ [0, 1] where α+ β ≤ 1.

We define the operator Fα,β(M) as:

Fα,β(M) = ((ϱmM + απ
m+n

2 )
1
m , (σn

M + βπ
m+n

2 )
1
n ).

Theorem 3.18. For any M = (ϱM, σM) ∈ Fn
m(P) and α, β ∈ [0, 1] where α+β ≤

1. We have:

(i) Fα,β(M) ∈ Fn
m(P).

(ii) 0 ≤ γ ≤ α ⇒ Fγ,β(M) ⋐ Fα,β(M).
(iii) 0 ≤ γ ≤ β ⇒ Fα,β(M) ⋐ Fα,γ(M).
(iv) Dα(M) = Fα,1−α(M).
(v) 2M = F0,1(M).
(vi) 3M = F1,0(M).
(vii) ∁(Fα,β(∁M)) = Fβ,α(M).

Proof. (i) Follows since

ϱmFα,β(M) + σn
Fα,β(M) =((ϱmM + απ

m+n
2 )

1
m )m + ((σn

M + βπ
m+n

2 )
1
n )n

=ϱmM + α(1− ϱmM − σn
M) + σn

M + β(1− ϱmM − σn
M)

=(ϱmM + σn
M) + (α+ β)(1− ϱmM − σn

M)

=(ϱmM + σn
M) + (α+ β)− (α+ β)(ϱmM + σn

M)

≤1.

The proofs of (ii) and (iii) are easy and left to the readers.

(iv) Follows on noting that:

Fα,1−α(M) =((ϱmM + απ
m+n

2 )
1
m , (σn

M + (1− α)π
m+n

2 )
1
n )

=Dα(M).

(v) Follows since,

Fα,1−α(M) = Dα(M) ⇒F0,1(M) = D0(M)

⇒F0,1(M) = 2M.
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(vi) Follows on noting that:

Fα,1−α(M) = Dα(M) ⇒F1,0(M) = D1(M)

⇒F1,0(M) = 3M.

(vii) Since, ∁M = (σ
n
m

M, ϱ
m
n

M), we have

Fα,β(∁M) =(((σ
n
m

M)m + απ
m+n

2 )
1
m , ((ϱ

m
n

M)n + βπ
m+n

2 )
1
n )

=((σn
M + απ

m+n
2 )

1
m , (ϱmM + βπ

m+n
2 )

1
n ).

And so,

∁(Fα,β(∁M)) =(((ϱmM + βπ
m+n

2 )
1
n )

n
m , ((σn

M + απ
m+n

2 )
1
m )

m
n )

=((ϱmM + βπ
m+n

2 )
1
m , (σn

M + απ
m+n

2 )
1
n )

=Fβ,α(M).

This completes the proof.

□

4. DISTANCES AND SIMILARITIES OVER Fn
m(P)

Definition 4.1. Let P = {p1, p2, . . . , pr} be a universe of discourse and M1 =
(ϱM1 , σM1),M2 = (ϱM2 , σM2),M3 = (ϱM3 , σM3) ∈ Fn

m(P), the distance function
d : Fn

m(P)×Fn
m(P) → [0, 1] is defined as:

(i) 0 ≤ d(M1,M2) ≤ 1 (boundedness).
(ii) d(M1,M2) = 0 ⇔ M1 = M2 (separability).
(iii) d(M1,M2) = d(M2,M1) (symmetric).
(iv) d(M1,M3) + d(M2,M3) ≥ d(M1,M2) (triangle inequality).

Definition 4.2. Let P = {p1, p2, . . . , pr} be a universe of discourse. For any
M1 = (ϱM1 , σM1),M2 = (ϱM2 , σM2) ∈ Fn

m(P), the Hamming distance is defined
as:

dHFn
m
(M1,M2) =

1

2

r∑
1

{|ϱM1(pi)−ϱM2(pi)|+|σM1(pi)−σM2(pi)|+|πM1(pi)−πM2(pi)|}.

Definition 4.3. Let P = {p1, p2, . . . , pr} be a universe of discourse. For any
M1 = (ϱM1

, σM1
),M2 = (ϱM2

, σM2
) ∈ Fn

m(P), the normalize Hamming distance
is defined as:

dnHFn
m
(M1,M2) =

1

2r

r∑
1

{|ϱM1(pi)−ϱM2(pi)|+|σM1(pi)−σM2(pi)|+|πM1(pi)−πM2(pi)|}.
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Definition 4.4. Let P = {p1, p2, . . . , pr} be a universe of discourse. For any
M1 = (ϱM1

, σM1
),M2 = (ϱM2

, σM2
) ∈ Fn

m(P), the Euclidean distance is defined
as:

dEFn
m
(M1,M2) =

√√√√1

2

r∑
1

{(ϱM1
(pi)− ϱM2

(pi))2 + (σM1
(pi)− σM2

(pi))2 + (πM1
(pi)− πM2

(pi))2}.

Definition 4.5. Let P = {p1, p2, . . . , pr} be a universe of discourse. For any
M1 = (ϱM1 , σM1),M2 = (ϱM2 , σM2) ∈ Fn

m(P), the normalized Euclidean distance
is defined as:

dnEFn
m
(M1,M2) =

√√√√ 1

2r

r∑
1

{(ϱM1(pi)− ϱM2(pi))
2 + (σM1(pi)− σM2(pi))

2 + (πM1(pi)− πM2(pi))
2}.

Example 4.6. Let P = {p1, p2} be a universe of discourse and M1,M2,M3 ∈
F5

6 (P), where

M1 = {< p1, 0.7, 0.8 >,< p2, 0.4.0.6 >},
M2 = {< p1, 0.9, 0.2 >,< p2, 0.9.0.4 >},
M3 = {< p1, 0.5, 0.6 >,< p2, 0.7.0.3 >}.

Then

dHF 5
6
(M1,M2) =

1

2
{(|0.7− 0.9|+ |0.8− 0.2|+ |.9027842192− 0.8501396989|)

+(|0.4− 0.9|+ |0.6− 0.4|+ |0.989405842− 0.848611401|)}

=
1

2
(0.8526445211 + 0.840794441)

=0.8467194811.

dEF 5
6
(M1,M2) =(

1

2
{((0.7− 0.9)2 + (0.8− 0.2)2 + (0.9027842192− 0.8501396989)2)

+((0.4− 0.9)2 + (0.6− 0.4)2 + (0.989405842− 0.848611401)2)}) 1
2

=(
1

2
(0.4027670223 + 0.5592645321))

1
2

=0.6935529091.

dnHF 5
6
(M1,M2) =

1

2× 2
{(|0.7− 0.9|+ |0.8− 0.2|+ |.9027842192− 0.8501396989|)

+(|0.4− 0.9|+ |0.6− 0.4|+ |0.989405842− 0.848611401|)}

=
1

4
(0.8526445211 + 0.840794441)

=0.4233597405.
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dnEF 5
6
(M1,M2) =(

1

2× 2
{((0.7− 0.9)2 + (0.8− 0.2)2 + (0.9027842192− 0.8501396989)2)

+((0.4− 0.9)2 + (0.6− 0.4)2 + (0.989405842− 0.848611401)2)}) 1
2

=(
1

4
(0.4027670223 + 0.5592645321))

1
2

=0.4903395646.

Similarly,

dHF 5
6
(M1,M3) = 0.46994264, dEF 5

6
(M1,M3) = 0.36559781.

dnHF 5
6
(M1,M3) = 0.23497132, dnEF 5

6
(M1,M3) = 0.25851669.

dHF 5
6
(M2,M3) = 0.44601147, dEF 5

6
(M2,M3) = 0.4484904468.

dnHF 5
6
(M2,M3) = 0.22300573, dnEF 5

6
(M2,M3) = 0.31713063.

Remark 4.7. It follows from Example 4.6 that the four proposed distances satisfy
all the conditions of Definition 4.1 in the case where the objects in (m,n)-FSs are
equal.

Example 4.8. Let P = {p1, p2, p3, p4} and M1,M2,M3 ∈ F5
5 (P), where

M1 = {< p1, 0.3, 0.8 >,< p3, 0.8.0.6 >},
M2 = {< p2, 0.9, 0.4 >,< p4, 0.6.0.6 >},
M3 = {< p3, 0.5, 0.6 >,< p4, 0.7.0.3 >}.

Then

dHF 5
5
(M1,M2) = 3.811621212, dEF 5

5
(M1,M2) = 1.719216928.

dnHF 5
5
(M1,M2) = 0.952905303, dnEF 5

5
(M1,M2) = 0.859608464.

dHF 5
5
(M1,M3) = 2.761952567, dEF 5

5
(M1,M3) = 1.221811482.

dnHF 5
5
(M1,M3) = 0.690488141, dnEF 5

5 S
(M1,M3) = 0.610905741.

dHF 5
5
(M2,M3) = 2.230644175, dEF 5

5
(M2,M3) = 1.243517948.

dnHF 5
5
(M2,M3) = 0.576610438, dnEF 5

5
(M2,M3) = 0.62175897.

Remark 4.9. In Example 4.8, dHFn
m

and dEFn
m

(for m = n = 5) do not satisfy all

the conditions of Definition 4.1 in the case where the objects in (m,n)-FSs are
not equal. Therefore, they can not be adopted into finding the distance between
(m,n)-FSs. Thus dnHFn

m
and dnEFn

m
are reliable distance measures for (m,n)-FSs.
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Definition 4.10. Let P = {p1, p2, . . . , pr} be a universe of discourse and M1 =
(ϱM1

, σM1
),M2 = (ϱM2

, σM2
),M3 = (ϱM3

, σM3
) ∈ Fn

m(P), the similarity mea-
sure of s : Fn

m(P)×Fn
m(P) → [0, 1] is defined as:

(i) 0 ≤ s(M1,M2) ≤ 1 (boundedness).
(ii) s(M1,M2) = 1 ⇔ M1 = M2 (separability).
(iii) s(M1,M2) = s(M2,M1) (symmetric).
(iv) s(M1,M3) + s(M2,M3) ≥ s(M1,M2) (triangle inequality).

The following theorems can be easily proved by using Definitions 4.1 and
4.10.

Theorem 4.11. Let M1 = (ϱM1
, σM1

),M2 = (ϱM2
, σM2

) ∈ Fn
m(P). If d(M1,M2)

is a distance measure between (m,n)-FSs M1 and M2, then

s(M1,M2) = 1− d(M1,M2)

is a similarity measure of M1 and M2.

Theorem 4.12. Let M1 = (ϱM1
, σM1

),M2 = (ϱM2
, σM2

) ∈ Fn
m(P). If s(M1,M2)

is a similarity measure between (m,n)-FSs M1 and M2, then

d(M1,M2) = 1− s(M1,M2)

is a distance measure of M1 and M2.

Theorem 4.13. Let M1 = (ϱM1 , σM1), M2 = (ϱM2 , σM2),M3 = (ϱM3 , σM3) ∈
Fn

m(P). Suppose M1 ⋐ M2 ⋐ M3, then:

(i) d(M1,M3) ≥ d(M1,M2) and d(M1,M3) ≥ d(M2,M3).
(ii) s(M1,M3) ≤ s(M1,M2) and d(M1,M3) ≤ d(M2,M3).

Theorem 4.14. Let M1 = (ϱM1
, σM1

),M2 = (ϱM2
, σM2

) ∈ Fn
m(P). Then:

(i) d(M1,M2) = d(Mc
1,Mc

2).
(ii) s(M1,M2) = s(Mc

1,Mc
2).

Definition 4.15. Let P = {p1, p2, . . . , pr} be a universe of discourse. For any
M1 = (ϱM1 , σM1),M2 = (ϱM2 , σM2) ∈ Fn

m(P). On the basis of Theorems
4.11, 4.12 and Definitions 4.3, 4.5 we define the two similarity measures as fol-
lows:

s1(M1,M2) = 1− dnHFn
m
(M1,M2)

where,

dnHFn
m
(M1,M2) =

1

2r

r∑
1

{|ϱM1(pi)−ϱM2(pi)|+|σM1(pi)−σM2(pi)|+|πM1(pi)−πM2(pi)|},
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and

s2(M1,M2) = 1− dnEFn
m
(M1,M2)

where,

dnEFn
m
(M1,M2) =

√√√√ 1

2r

r∑
1

{(ϱM1
(pi)− ϱM2

(pi))2 + (σM1
(pi)− σM2

(pi))2 + (πM1
(pi)− πM2

(pi))2}.

Remark 4.16. The similarity measures s1 and s2 satisfy all the conditions of
Definition 4.10 in the case when the objects in (m,n)-FSs are equal. Consider
P = {p1, p2} and M1,M2,M3 ∈ F5

6 (P) in Example 4.6. Then

s1(M1,M2) = 1− dnHF 5
6
(M1,M2) = 1− 0.4233597405 = 0.5766402595.

s1(M1,M3) = 1− dnHF 5
6
(M1,M3) = 1− 0.23497132 = 0.760502868.

s1(M2,M3) = 1− dnHF 5
6
(M2,M3) = 1− 0.22300573 = 0.77699427.

s2(M1,M2) = 1− dnEF 5
6
(M1,M2) = 1− 0.4903395646 = 0.5096604354.

s2(M1,M3) = 1− dnEF 5
6
(M1,M3) = 1− 0.2585166 = 0.7414834.

s2(M2,M3) = 1− dnEF 5
6
(M2,M3) = 1− 0.31713063 = 0.68286937.

Clearly s1 and s2 satisfy all the conditions of similarity measures.

Remark 4.17. The similarity measures s1 and s2 satisfy all the conditions of
Definition 4.10 in the case when the objects in (m,n)-FSs are not equal. Let P =
{p1, p2, p3, p4} and M1,M2,M3 ∈ F5

5 (P) are defined in Example 4.8. Then

s1(M1,M2) = 1− dnHF 5
5
(M1,M2) = 1− 0.952905303 = 0.047094697.

s1(M1,M3) = 1− dnHF 5
5
(M1,M3) = 1− 0.690488141 = 0.309511859.

s1(M2,M3) = 1− dnHF 5
5
(M2,M3) = 1− 0.576610438 = 0.423389562.

s2(M1,M2) = 1− dnEF 5
5
(M1,M2) = 1− 0.859608464 = 0.140391536.

s2(M1,M3) = 1− dnEF 5
5
(M1,M3) = 1− 0.610905741 = 0.38909426.

s2(M2,M3) = 1− dnEF 5
5
(M2,M3) = 1− 0.62175897 = 0.37824103.

Clearly the similarity measures s1 and s2 satisfy all the conditions of Definition
4.10 in the case when the objects in (m,n)-FSs are not equal.
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5. APPLICATIONS OF (m,n)-FUZZY SETS IN PATTERN
RECOGNITION

The proposed similarity measures can be used in students selection in uni-
versity, medical diagnosis of disease, plant leaf disease classifications, construction
material selections and other MADM problems. The following example illustrate
to recognized an unknown pattern using proposed similarity measures.

Example 5.1. Let us consider three known patterns Mi(i = 1, 2, 3) which are rep-
resented by the (4,5)-fuzzy sets Mi(= 1, 2, 3) in the feature space as P = {p1, p2, p3}:

M1 = {< p1, 0.5, 0.6 >,< p2, 0.7, 0.7 >,< p3, 0.4, 0.7 >},
M2 = {< p1, 0.9, 0.8 >,< p2, 0.8, 0.8 >,< p3, 0.7, 0.6 >},
M3 = {< p1, 0.5, 0.7 >,< p2, 0.6, 0.6 >,< p3, 0.7, 0.5 >}.

Consider an unknown pattern M ∈ F5
4 (P) that will be recognized, where

M = {< p1, 0.9, 0.7 >,< p2, 0.8, 0.7 >,< p3, 0.6, 0.8 >}.

Then, the proposed similarity measures s1 and s2 which have been computed from
M to Mi(i = 1, 2, 3) are given in Table 2. From the numerical results presented in
Table 1, we know that the similarity measures between M2 and M are the largest.

Table 2: Similarity measures between Mi(i = 1, 2, 3) and M
Similarity Measure (M1,M) (M2,M) (M3,M)

s1(Mi,M) 0.7780050828 0.8487350560 0.7588517561
s2(Mi,M) 0.7679178398 0.8382484863 0.7624882976

6. CONCLUDING REMARKS

The complement, necessity, possibility, and arithmetic operations over (m,n)-
FSs are defined and several theorems related to properties of these operations have
been established in this paper. Furthermore some distance and similarity measures
over (m,n)-FSs are created and their validity are verified by taking suitable exam-
ples. An example of the applications of similarity measures proposed in pattern
recognition is presented. In the future studied the hybrid structure of (m,n)-fuzzy
sets with soft sets and rough sets can be created and thier applications in differnt
filed of mathematics can be studied. Further more the dice, cosine and cotan-
gent similarity measures and weighted aggradation operators of (m,n)-FSs can be
created and their applications in MADM and MCDM problems can be examined.
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