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Abstract.

Let G be a finite group. Associate a simple undirected graph ΓG with G, called
a bipartite graph associated to elements and cosets of subgroups of G, as follows :

Take G ∪ SG as the vertices of ΓG, with SG is the set of all subgroups of group G

and a ∈ G and H ∈ SG if and only if aH = Ha. In this paper, hamiltonicity and
Eulerianity of ΓG for some finite groups G are studied. In particular, the results

obtained that for any cyclic group G, ΓG is hamiltonian if and only if |G| = 2 and

ΓG is Eulerian if and only if |G| is an even non-perfect square number. Also, we
prove that ΓDn is Eulerian if k is even and n = 2k and Γ(Dn) is not Eulerian for

some other cases of n.

Key words and Phrases: bipartite graph, hamiltonian graph, Eulerian graph, semi-

Eulerian graph, finite group.

1. INTRODUCTION

Let Γ be a connected graph. We denote the sets of vertices and edges of Γ
by V (Γ) and E(Γ), respectively. The degree of a vertex a in Γ is the number of
edges incident to a and it is denoted by deg(a). A graph Γ is bipartite graph if its
vertices can be split into two independent sets so that no two vertices within the
same set are adjacent. Bipartite graph Γ is said to be complete if every vertex in
one set is adjacent to each vertex in other. A connected graph Γ is hamiltonian if
there exists a cycle containing every vertex in Γ exactly once. Such a cycle is called
hamiltonian cycle. A closed trail that meets every edge of Γ is called Eulerian trail.
A graph Γ that contains Eulerian trail is called Eulerian graph. Non Eulerian graph
is semi-Eulerian if there exists a trail that contains every edge of Γ.

Throughout this paper, for any subgroup H of G and a ∈ G, the left and
the right coset of H containing a is aH = {ah : h ∈ H} and Ha = {ha : h ∈ H},
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respectively. If aH = Ha for every a ∈ G, then H is called normal subgroup of G.
Moreover, Dn denotes a dihedral group of degree n. For other elemental definitions
in graph and group theory, we refer to [1],[2],[3],[4],[5].

Algebraic graph theory has become a substantial attention in the last seve-
ral decades. The first notion of such interplay is the concept of Cayley graph [6],
which is connecting graph theory and group theory. Other different concept of a
graph defined on group theory can be found in [7],[8],[9]. In 2021, Al-Kaseasbeh
and Erfanian [10] defined a bipartite graph associated to elements and cosets of
subgroups of a finite graph. Moreover, they gave some basic properties of ΓG in-
cluding diameter, girth, connectivity, completeness, dominating number, planarity
and outer planarity. Also, they shed light on the hamiltonicity of ΓDn

.

In section 2, we recall some definitions, examples, and basic characteristics of
ΓG for arbitrary group G including connectivity, completeness, and hamiltonicity.
Also, we give the chromatic index and Eulerianity of the graph. In section 3,
we give a necessary and sufficient condition of ΓG connected to hamiltonicity and
Eulerianity for cyclic group G. In section 4, we recall some definitions and properties
of dihedral group Dn and determine Eulerianity of ΓDn for many cases of n.

2. SOME PROPERTIES OF ΓG

In this section, we recall a definition of ΓG and give some examples in order
to give a perspective of this graph. Also, we recall some basic properties of ΓG
from [10] and give some other characteristics of this graph.

Definition 2.1. [10] Let G be a finite group. A bipartite graph associated to ele-
ments and cosets of subgroups of G denoted by ΓG is the simple undirected graph
with the vertex set V (ΓG) = G ∪ SG and two vertices a ∈ G and H ∈ SG are
adjacent if and only if aH = Ha.

In following example, we give ΓG for a non abelian group G.

Example 2.2. Consider the dihedral group D3 = {e, a, b, b2, ab, ab2}. Then, we
have SD3 = {{e}, 〈e, a〉, 〈e, ab〉, 〈e, ab2〉, 〈b〉, 〈b, a〉}. It it clear that e ∈ D3 is adjacent
with all vertices in SD3 . It is also obvious that the subgroups {e}, 〈b〉, and 〈b, a〉 are
normal in D3. Therefore, {e}, 〈b〉, and 〈b, a〉 are adjacent with all vertices in the set
D3. By definition, the vertices a, ab, ab2 ∈ D3 are adjacent with 〈e, a〉, 〈e, ab〉, and
〈e, ab2〉, respectively. The graph Γ(D3) is the graph as shown in Figure 1.
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e a ab ab2 b b2

{e} 〈e, a〉 〈e, ab〉 〈e, ab2〉 〈b〉 〈b, a〉

Figure 1. Γ(D3)

In the following example we give ΓG for an abelian group G.

Example 2.3. Let G = Z6. We have SZ6 = {{e}, 〈2〉, 〈3〉,Z6}. Since all subgroup
of Z6 are normal, every vertex in SZ6 is adjacent with all vertices in S3. Hence,
Γ(Z6) is a complete bipartite graph as shown in Figure 2.

0 1 2 3 4 5

{e} 〈2〉 〈3〉 Z6

Figure 2. Γ(Z6)

In 2021, Al-Kaseasbeh and Erfanian determined the connectivity of ΓG and
gave a necessary and sufficient condition of ΓG to be a complete bipartite graph for
any group G as follows.

Theorem 2.4. [10] The graph ΓG is connected with diam(ΓG) ≤ 3.

Theorem 2.5. [10] The finite group G is Dedekind group if and only if ΓG is a
complete bipartite graph.

The chromatic index of Γ is the minimum number of colors coloring edges of
Γ such that no two adjacent edges have the same color. Note that the chromatic
index of a bipartite graph Γ is the largest vertex degree of Γ [5]. Based on this fact,
we give the following proposition.
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Proposition 2.6. Let G be a group. Then the chromatic index of ΓG is max{|G|, |SG|}.

Al-Kaseasbeh and Erfanian gave a necessary condition of ΓG to be a hamil-
tonian graph.

Theorem 2.7. [10] Let ΓG be a hamiltonian graph. Then |G| = |SG|.

Recall that a connected graph Γ is Eulerian if and only if the degree of each
vertex of Γ is even [5]. By this fact, we determine a necessary condition of ΓG to
be Eulerian graph.

Theorem 2.8. If ΓG is a Eulerian graph, then both |G| and |SG| are even.

Proof. Suppose that ΓG is Eulerian and V (ΓG) = G∪SG. Assume that |G| or |SG|
is odd. Note that the vertex {e} ∈ SG is adjacent to all vertices in G. Therefore,
if |G| is odd, then the vertex {e} ∈ SG has odd degree which is a contradiction to
Eulerianity of ΓG. Also, note that the vertex e ∈ G is adjacent to all vertices in
SG. Again, if |SG| is odd, then the vertex e ∈ G has odd degree which implies a
contradiction. �

3. HAMILTONICITY AND EULERIANITY OF ΓG WITH G IS CYCLIC

In this section, we examine hamiltonicity and Eulerianity of ΓG for arbitrary
finite cyclic group G. Let G be a finite cyclic group of order n. Recall that the
number of all subgroups of G is τ(n), with τ(n) is the number of divisors of n.
Hence, |SG| = τ(n).

In the following theorem, we give the necessary and sufficient condition of ΓG
to be a hamiltonian graph.

Theorem 3.1. Let G be a nontrivial finite cyclic group. The graph Γ(G) is hamil-
tonian if and only if |G| = 2.

Proof. Consider that G is a cyclic group of order n ≥ 3. Note that every natural
number n > 1 can be written as n = pα1

1 pα2
2 . . . pαm

m for some different prime
numbers p1, p2, . . . , p3 and αi ∈ N for every i = 1, 2, . . . ,m. Therefore, we have

τ(n) = (α1 + 1)(α2 + 1) . . . (αm + 1).

Moreover, for pi 6= 2 and αi 6= 1 we have

pαi
i > αi + 1

for every i = 1, 2, . . . ,m. Thus, we have

pα1
1 pα2

2 . . . pαm
m > (α1 + 1)(α2 + 1) . . . (αm + 1)

n > τ(n)

|G| > |SG|.
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In other words, |G| 6= |SG| implies that ΓG is not hamiltonian.
(⇐) Suppose G = {e, x}. We know that the set of all subgroups of G is SG =
{{e}, G}. It is obvious that both e ∈ G and x ∈ G are adjacent to every vertex in
SG. Thus, the graph ΓG is a cyclic graph which is obviously hamiltonian. �

Also, we give the necessary and sufficient condition of ΓG to be a Eulerian
graph.

Theorem 3.2. Let G be a cyclic group of order n. The graph ΓG is Eulerian if
and only if n is an even non-square number.

Proof. (⇒) Assume that ΓG is Eulerian. Therefore, the degree of each vertex of ΓG
is even. Note that the group G is a Dedekind group since G is an abelian group.
Thus, the graph ΓG is a complete bipartite graph. Based on those two facts, both
|G| = n and |SG| = τ(n) are even. Note that n is a square number if and only if it
has odd number of positive divisors. Hence, n is an even non-square number.
(⇐) Since n is an even non-square number, n has even number of positive divisors.
Hence, |SG| = τ(n) is even. Note that ΓG is a complete bipartite group, since G
is an abelian group. Therefore, every vertex in G is adjacent to all vertices in SG
and every vertex in SG is adjacent to all vertices in G. Hence, the degree of every
vertex a ∈ G and H ∈ SG is |SG| and |G|, respectively. Since both |G| and |SG| are
even, the degree of every vertex of ΓG are even implying that ΓG is Eulerian. �

4. EULERIANITY OF BIPARTITE GRAPH ΓDn

A group generated by two elements a and b such that a2 = bn = e and
ba = ab−1 is dihedral group of order 2n and denoted by Dn. In this section, we
examine the Eulerianity of the graph ΓDn

. We prove that for even number k, ΓD
2k

is Eulerian and we show that ΓDn is not Eulerian for several cases. First, we start
with some properties of dihedral group Dn.

Next, we recall some properties of dihedral group Dn in the following lemmas.
For simplicity, we write Dn = 〈a, b : a2 = bn = e, ba = ab−1〉 to define this group.

Lemma 4.1. Every subgroup 〈bd〉 of dihedral group Dn is normal, with d|n.

Lemma 4.2. If n is odd, then Z(Dn) = {e}. If n is even, then Z(Dn) = {e, bn
2 }.

Lemma 4.3. [2] The number of subgroups of dihedral group Dn is τ(n) + σ(n),
with τ(n) is the number of divisors of n and σ(n) is the sum of divisors of n.

Also, we give the following lemma.

Lemma 4.4. Let Dn = 〈a, b : a2 = bn = e, ba = ab−1〉 be a dihedral group of order
2n and m = n

d such that d|n. Let 〈bd, abi〉 be a subgroup of Dn with 0 ≤ i < d.
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Then, x〈bd, abi〉 = 〈bd, abi〉x if and only if

x ∈ {bj , abt : j =
dp

2
, t =

dp

2
+ i, 0 ≤ p < 2m},

for every x ∈ Dn.

Proof. For 〈bd, abi〉 with d|n and n = md, we have

〈bd, abi〉 = {bdk : 0 ≤ k < m} ∪ {abi+kd : 0 ≤ k < m}

= 〈bd〉 ∪ {abi+kd : 0 ≤ k < m}.

By Lemma 4.1, we know that 〈bd〉 for d|n is a normal subgroup of Dn. Then, it is
obvious that x〈bd〉 = 〈bd〉x for every x ∈ Dn. Hence, we only examine the set

{abi+kd : 0 ≤ k < m} ⊂ 〈bd, abi〉.

Then, we may consider the following two cases.

(1) For x = bj with 0 ≤ j < n, we have

bj{abi+kd : 0 ≤ k < m} = {abi+kd : 0 ≤ k < m}bj

{ab(i+kd)−j : 0 ≤ (i + kd)− j < n, 0 ≤ k < m} = {ab(i+kd)+j : 0 ≤ (i + kd) + j < n, 0 ≤ k < m},

if and only if i+ kd− j ≡ i+ kd+ j mod n. Therefore, by some properties
of modular arithmetic we get j ≡ d

2 mod n. Hence, we have j ∈ {dp2 : 0 ≤
p < 2m}.

(2) For x = abt with 0 ≤ t < n, we have

abt{abi+kd : 0 ≤ k < m} = {abi+kd : 0 ≤ k < m}abt

{b−t+(i+kd) : 0 ≤ −t + (i + kd) < n, 0 ≤ k < m} = {bt−(i+kd) : 0 ≤ t− (i + kd) < n, 0 ≤ k < m},

if and only if −t+ i+kd ≡ t− i−kd mod n. Therefore, by some properties
of modular arithmethic we get t ≡ d

2 + i mod n. Hence, t ∈ {dp2 + i : 0 ≤
p < 2m}.

By two cases above, we have considered all cases of x ∈ Dn. Thus, the proof is
complete. �

As a consequence of Lemma 4.4, we give the following corollaries.

Corollary 4.5. Let bj ∈ Dn, with 0 ≤ j < n. Then, bj〈bd, abi〉 = 〈bd, abi〉bj if and
only if d|2j.

Corollary 4.6. Let abt ∈ Dn, with 0 ≤ t < n. Then, abt〈bd, abi〉 = 〈bd, abi〉abt if
and only if i ≡ t mod d.

Now, we want to show for what values of n, ΓDn is Eulerian or not. Obviously
|Dn| = 2n is even. Therefore, by Theorem 2.8, if |SDn | is odd, then ΓDn cannot be
Eulerian. We give a value of n where |SDn

| is odd in Theorem 4.8. We also show
that for that n, Graph ΓDn

is not semi-Eulerian based on the fact that a connected
graph is semi-Eulerian if and only if it has exactly two vertices of odd degree [5].
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Lemma 4.7. Let n = 2kpα1
1 pα2

2 . . . pαm
m for some different odd prime numbers

p1, p2, . . . , pn. If k is odd and αi is even for every i = 1, 2, . . . ,m, then τ(n) +σ(n)
is odd.

Proof. Since k is odd, τ(n) = (k+1)(α1 +1)(α2 +1) . . . (αm+1) is even. Now, note
that every factor of pα1

1 pα2
2 . . . pαm

m is odd since pi for i = 1, 2, . . . ,m are different
odd prime numbers, and τ(pα1

1 pα2
2 . . . pαm

m ) = (α1 + 1)(α2 + 1) . . . (αm + 1) is odd
since αi is even for every i = 1, 2, . . . ,m. Thus, σ(pα1

1 pα2
2 . . . pαm

m ) is odd. Also, note
that all odd factors of n are all factors of pα1

1 pα2
2 . . . pαm

m . Consequently, σ(n) is
odd. Thus, τ(n) + σ(n) is odd. �

Theorem 4.8. Let n = 2kpα1
1 pα2

2 . . . pαm
m with pi for i = 1, 2, . . . n are different odd

prime numbers, k is odd, and αi for every i = 1, 2, . . . ,m are even. Then, ΓDn is
not Eulerian. Moreover, ΓDn is not semi-Eulerian.

Proof. By Lemma 4.7, we know that |SDn
| = τ(n) + σ(n) is odd. Therefore, ΓDn

is not Eulerian. Next, we are going to show that ΓDn is not semi-Eulerian. It
is obvious that n is even. Therefore, by Lemma 4.2, we have Z(Dn) = {e, bn

2 }.
Thus, the vertices e, b

n
2 ∈ Dn are adjacent to every vertex in SDn . Consequently,

deg(e) = deg(b
n
2 ) = |SDn

| is odd. Moreover, by Lemma 4.1 and Corollary 4.5, the
vertex b ∈ Dn is adjacent to every vertex in {〈bd〉 : d|n}∪{〈bd, abi〉 : d|2, 0 ≤ i < d}.
Hence, deg(b) = |{〈bd〉 : d|n}|+ |{〈bd, abi〉 : d|2, 0 ≤ i < d}| = τ(n) + 3. Since τ(n)
is even, deg(b) is odd. Thus, at least we have three vertices with odd degree. In
other words, ΓDn is not semi-Eulerian. �

For some cases of n such that |SDn
| is even, we should investigate the degree

of each vertex in V (ΓDn) to determine whether the graph is Eulerian or not. We
start with the following simple lemmas.

Lemma 4.9. For every 0 ≤ j < n, degree of vertex bj ∈ Dn is τ(n) +
∑
d|2j d.

Proof. By Lemma 4.1, every vertex in Dn is adjacent to every vertex 〈bd〉 ∈ SDn
,

with d|n. By Corollary 4.5, every bj ∈ Dn is adjacent to every vertex in {〈bd, abi〉 :
0 ≤ i < d, d|2j}. Hence, deg(bj) = τ(n) + |{〈bd, abi〉 : 0 ≤ i < d, d|2j}| = τ(n) +∑
d|2j d. �

Lemma 4.10. For every 0 ≤ t < n, degree of vertex abt ∈ Dn is 2τ(n).

Proof. By Corollary 4.6, every vertex abt ∈ Dn is adjacent to every vertex in
{〈bd, abi〉 : d|n, 0 ≤ i < d, and i ≡ t mod n}. Also, by Lemma 4.1, every vertex
in Dn is adjacent to every vertex in {〈bd〉 : d|n}. Hence, deg(abt) = |{〈bd, abi〉 :
d|n, 0 ≤ i < d, and i ≡ t mod n}|+ |{〈bd〉 : d|n}| = τ(n) + τ(n) = 2τ(n). �

Lemma 4.11. Every vertex H ∈ SDn
has even degree.

Proof. By Lemma 4.1, every vertex 〈bd〉 ∈ SDn
is adjacent to every vertex in Dn,

with d|n. Hence, deg(〈bd〉) = |D2k |, which is obviously even. Moreover, by Lemma
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4.4, every vertex 〈bd, abi〉 is adjacent to every vertex in {bj , abt : j = dp
2 , t =

dp
2 + i, 0 ≤ p < 2m}, with d|n,m = n

d , and 0 ≤ i < d. Hence,

deg(〈bd, abi〉) = |{bj , abt : j =
dp

2
, t =

dp

2
+ i, 0 ≤ p < 2m}|

= |{bj : j =
dp

2
, 0 ≤ p < 2m}|+ |{abt : t =

dp

2
+ i, 0 ≤ p < 2m}|

= 2|{p
2

: 0 ≤ p < 2m}|,

which is also obviously even. �

By Lemma 4.9, 4.10, and 4.11, we know that to determine whether the graph
ΓDn

is Eulerian or not, it is enough to investigate the degree of each vertex bj ∈ Dn.
In the following theorem, we show that ΓDn for n = 2k is Eulerian, with k is even.

Theorem 4.12. For every even number k, ΓD
2k

is Eulerian.

Proof. Since k is even, both τ(2k) = k + 1 and σ(2k) = 1 + 2 + 22 + · · · + 2k are
odd. Let us start by investigating degree of every vertex bj ∈ D2k . By Lemma 4.9,
we have

deg(bj) = |{〈bd, abi〉 : 0 ≤ i < d, d|2j}|+ τ(2k)

= |{〈b, a〉}|+ |{〈bd, abi〉 : 0 ≤ i < d, d|2j, d 6= 1}|+ τ(2k)

= 1 +
∑

d|2j,d 6=1

d+ τ(2k).

Since k is even, d is even whenever d|2k and d 6= 1. Therefore,
∑
d|2j,d 6=1 d is even.

Thus, deg(bj) is even for every bj ∈ D2k . Moreover, by Lemma 4.10, it is obvious
that the degree of every vertex abt ∈ D2k is even. Thus, the degree of every vertex
in D2k is even. Also, by Lemma 4.11, every vertex in SD

2k
is even. Hence, the

degree of every vertex in V (ΓD
2k

) is even which implies ΓD
2k

is Eulerian. �

In the next remaining theorems, we give several cases of n such that |SDn
| is

even, but ΓDn
is not Eulerian.

Theorem 4.13. The graph ΓD
3k

is semi-Eulerian, for k = 1, 2.

Proof. For k = 1, we have ΓD3
represented in Figure 1. From the figure, we know

that every vertex of ΓD3
is of even degree except b and b2. Hence, ΓD3

is semi-
Eulerian. For k = 2, we should investigate the degree of every vertex bj ∈ ΓD9 . By
Lemma 4.9, we have deg(bj) = τ(9) +

∑
d|2j d = 3 +

∑
d|2j d. For every 0 ≤ j < 9,

the degree of bj is in the following table.
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j d|2j
∑
d|2j d deg(bj)

1 1 1 4
2 1 1 4
3 1,3 4 7
4 1 1 4
5 1 1 4

j d|2j
∑
d|2j d deg(bj)

6 1,3 4 7
7 1 1 4
8 1 1 4
9 1,3,9 13 16

Table 1. Degree of bj ∈ D9

From the table, it is clear that ΓD9
has two vertices in the form of bj of odd degree.

Note that by Lemma 4.10 and Lemma 4.11, the degree of each vertex abt ∈ D9 and
H ∈ SD9

is even, respectively. Thus, the graph ΓD9
has exactly two vertices of odd

degree which implies that the graph is semi-Eulerian. �

Theorem 4.14. For every k ≥ 3, the graph ΓD
3k

is neither Eulerian nor semi-
Eulerian.

Proof. To prove that ΓD
3k

is neither Eulerian nor semi-Eulerian, it is enough to

show that at least there are three vertices in V (ΓD
3k

) that have odd degree, for
every k ≥ 3. We may consider the following two cases.

(1) For k is odd, τ(3k) is even. Since k ≥ 3, we have 3k ≥ 27. Therefore,
vertices b, b2, b3 ∈ D3k .On the other hand, by Lemma 4.9 we have deg(bj) =
τ(3k) +

∑
d|2j,d|3k d = τ(3k) + 1, which is odd for every j = 1, 2, 4.

(2) For k is even, τ(3k) is odd. Since k ≥ 3, we have 3k ≥ 27. Therefore, vertices
b3, b6, b12 ∈ D3k . On the other hand, by Lemma 4.9 we have deg(bj) =
τ(3k) +

∑
d|2j,d|3k d = τ(3k) + (1 + 3) = τ(3k) + 4, which is odd for every

j = 3, 6, 12.

Since for all k ≥ 3 we can find three vertices of odd degree, it is proved that ΓD
3k

is neither Eulerian nor semi-Eulerian. �

Theorem 4.15. For all k ≥ 1 and prime numbers p ≥ 5, the graph ΓDn is neither
Eulerian nor semi-Eulerian if n = pk.

Proof. We consider the following cases.

(1) For k is odd, τ(pk) is even. Note that for every k ≥ 1 and p ≥ 5, we have
pk ≥ 5. Therefore, the vertices b, b2, b3 ∈ ΓD

pk
. Moreover, by Lemma 4.9

we have deg(bj) = τ(pk) +
∑
d|2j,d|pk d = τ(pk) + 1 for every j = 1, 2, 3.

Since τ(pk) is even, deg(bj) is odd for every j = 1, 2, 3.
(2) For k is even, τ(pk) is odd. Note that for every k ≥ 2 and p ≥ 5, we

have pk ≥ p2 > 3p. Therefore, the vertices bp, b2p, b3p ∈ Dpk . Moreover, by

Lemma 4.9 we have deg(bj) = τ(pk) +
∑
d|2j,d|pk d = τ(pk) + (p + 1) for

every j = p, 2p, 3p. Since τ(pk) is odd deg(bj) is odd for every j = p, 2p, 3p.
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By the two cases above, we know that at least there are three vertices in V (ΓD
pk

)

that have odd degree, which implies that ΓD
pk

is neither Eulerian nor semi-Eulerian.

�

Theorem 4.16. Let n = p1p2 . . . pm for some different odd prime numbers p1, p2, . . . , pm
and m ≥ 2. The graph ΓDn

is neither Eulerian nor semi-Eulerian.

Proof. For n = p1p2 . . . pm with p1, p2, . . . , pm are some different odd prime numbers
and m ≥ 2, we have τ(n) = 2m and n ≥ 15. Therefore, the vertices b, b2, b4 ∈ Dn.
By Lemma 4.9, we have deg(bj) = τ(n) +

∑
d|j,d|n d = 2m + 1, for every j = 1, 2, 4.

Note that 2m is even. Thus, the degree of bj for every j = 1, 2, 4 is odd. In other
words, there are three vertices in V (ΓDn) that have odd degree which implies that
ΓDn

is neither Eulerian nor semi-Eulerian. �

5. Conclusions

We have already studied a bipartite graph ΓG which is especially connected
to hamiltonicity and Eulerianity for some finite groups. In this paper, we have
obtained the necessary and sufficient condition for hamiltonicity and Eulerianity of
ΓG with G is a finite cyclic group. However, we have not obtained a condition for
graph ΓG to be semi-Eulerian.

The hamiltonicity of the graph ΓDn
has been discussed in [10]. For the

Eulerianity of ΓDn , we have shown that ΓD
2k

is Eulerian for every even number k
and ΓD

3k
is semi Eulerian for k = 1, 2. Also, we have shown that ΓDn is neither

Eulerian nor semi-Eulerian for some cases of n. However, all cases of n given in
this paper do not cover all the existing cases. One may continue further research
for the remaining cases.
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