HAMILTONICITY AND EULERIANITY OF SOME BIPARTITE GRAPHS ASSOCIATED TO FINITE GROUPS

NISWAH QONITA^a AND YENI SUSANTI^b

Department of Mathematics, Universitas Gadjah Mada, Bulaksumur, Yogyakarta, 55281, Indonesia.

^aniswahqanita@gmail.com, ^byeni_math@ugm.ac.id

Abstract.

Let G be a finite group. Associate a simple undirected graph Γ_G with G, called a bipartite graph associated to elements and cosets of subgroups of G, as follows : Take $G \cup S_G$ as the vertices of Γ_G , with S_G is the set of all subgroups of group G and $a \in G$ and $H \in S_G$ if and only if aH = Ha. In this paper, hamiltonicity and Eulerianity of Γ_G for some finite groups G are studied. In particular, the results obtained that for any cyclic group G, Γ_G is hamiltonian if and only if |G| = 2 and Γ_G is Eulerian if and only if |G| is an even non-perfect square number. Also, we prove that Γ_{D_n} is Eulerian if k is even and $n = 2^k$ and $\Gamma(D_n)$ is not Eulerian for some other cases of n.

Key words and Phrases: bipartite graph, hamiltonian graph, Eulerian graph, semi-Eulerian graph, finite group.

1. INTRODUCTION

Let Γ be a connected graph. We denote the sets of vertices and edges of Γ by $V(\Gamma)$ and $E(\Gamma)$, respectively. The degree of a vertex a in Γ is the number of edges incident to a and it is denoted by deg(a). A graph Γ is bipartite graph if its vertices can be split into two independent sets so that no two vertices within the same set are adjacent. Bipartite graph Γ is said to be complete if every vertex in one set is adjacent to each vertex in other. A connected graph Γ is hamiltonian if there exists a cycle containing every vertex in Γ exactly once. Such a cycle is called hamiltonian cycle. A closed trail that meets every edge of Γ is called Eulerian trail. A graph Γ that contains Eulerian trail is called Eulerian graph. Non Eulerian graph is semi-Eulerian if there exists a trail that contains every edge of Γ .

Throughout this paper, for any subgroup H of G and $a \in G$, the left and the right coset of H containing a is $aH = \{ah : h \in H\}$ and $Ha = \{ha : h \in H\}$,

²⁰²⁰ Mathematics Subject Classification: 05C25, 05C45 Received: 21-11-2022, accepted: 10-05-2023.

¹⁶⁶

respectively. If aH = Ha for every $a \in G$, then H is called normal subgroup of G. Moreover, D_n denotes a dihedral group of degree n. For other elemental definitions in graph and group theory, we refer to [1], [2], [3], [4], [5].

Algebraic graph theory has become a substantial attention in the last several decades. The first notion of such interplay is the concept of Cayley graph [6], which is connecting graph theory and group theory. Other different concept of a graph defined on group theory can be found in [7],[8],[9]. In 2021, Al-Kaseasbeh and Erfanian [10] defined a bipartite graph associated to elements and cosets of subgroups of a finite graph. Moreover, they gave some basic properties of Γ_G including diameter, girth, connectivity, completeness, dominating number, planarity and outer planarity. Also, they shed light on the hamiltonicity of Γ_{D_n} .

In section 2, we recall some definitions, examples, and basic characteristics of Γ_G for arbitrary group G including connectivity, completeness, and hamiltonicity. Also, we give the chromatic index and Eulerianity of the graph. In section 3, we give a necessary and sufficient condition of Γ_G connected to hamiltonicity and Eulerianity for cyclic group G. In section 4, we recall some definitions and properties of dihedral group D_n and determine Eulerianity of Γ_{D_n} for many cases of n.

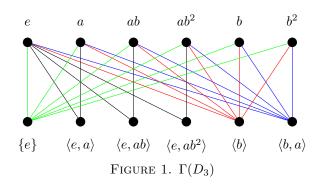
2. SOME PROPERTIES OF Γ_G

In this section, we recall a definition of Γ_G and give some examples in order to give a perspective of this graph. Also, we recall some basic properties of Γ_G from [10] and give some other characteristics of this graph.

Definition 2.1. [10] Let G be a finite group. A bipartite graph associated to elements and cosets of subgroups of G denoted by Γ_G is the simple undirected graph with the vertex set $V(\Gamma_G) = G \cup S_G$ and two vertices $a \in G$ and $H \in S_G$ are adjacent if and only if aH = Ha.

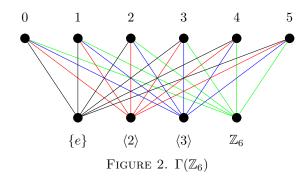
In following example, we give Γ_G for a non abelian group G.

Example 2.2. Consider the dihedral group $D_3 = \{e, a, b, b^2, ab, ab^2\}$. Then, we have $S_{D_3} = \{\{e\}, \langle e, a \rangle, \langle e, ab \rangle, \langle e, ab^2 \rangle, \langle b \rangle, \langle b, a \rangle\}$. It it clear that $e \in D_3$ is adjacent with all vertices in S_{D_3} . It is also obvious that the subgroups $\{e\}, \langle b \rangle$, and $\langle b, a \rangle$ are normal in D_3 . Therefore, $\{e\}, \langle b \rangle$, and $\langle b, a \rangle$ are adjacent with all vertices in the set D_3 . By definition, the vertices $a, ab, ab^2 \in D_3$ are adjacent with $\langle e, a \rangle, \langle e, ab \rangle$, and $\langle e, ab^2 \rangle$, respectively. The graph $\Gamma(D_3)$ is the graph as shown in Figure 1.



In the following example we give Γ_G for an abelian group G.

Example 2.3. Let $G = \mathbb{Z}_6$. We have $S_{\mathbb{Z}_6} = \{\{e\}, \langle 2 \rangle, \langle 3 \rangle, \mathbb{Z}_6\}$. Since all subgroup of \mathbb{Z}_6 are normal, every vertex in $S_{\mathbb{Z}_6}$ is adjacent with all vertices in S_3 . Hence, $\Gamma(\mathbb{Z}_6)$ is a complete bipartite graph as shown in Figure 2.



In 2021, Al-Kaseasbeh and Erfanian determined the connectivity of Γ_G and gave a necessary and sufficient condition of Γ_G to be a complete bipartite graph for any group G as follows.

Theorem 2.4. [10] The graph Γ_G is connected with diam $(\Gamma_G) \leq 3$.

Theorem 2.5. [10] The finite group G is Dedekind group if and only if Γ_G is a complete bipartite graph.

The chromatic index of Γ is the minimum number of colors coloring edges of Γ such that no two adjacent edges have the same color. Note that the chromatic index of a bipartite graph Γ is the largest vertex degree of Γ [5]. Based on this fact, we give the following proposition.

Proposition 2.6. Let G be a group. Then the chromatic index of Γ_G is $\max\{|G|, |S_G|\}$.

Al-Kaseasbeh and Erfanian gave a necessary condition of Γ_G to be a hamiltonian graph.

Theorem 2.7. [10] Let Γ_G be a hamiltonian graph. Then $|G| = |S_G|$.

Recall that a connected graph Γ is Eulerian if and only if the degree of each vertex of Γ is even [5]. By this fact, we determine a necessary condition of Γ_G to be Eulerian graph.

Theorem 2.8. If Γ_G is a Eulerian graph, then both |G| and $|S_G|$ are even.

Proof. Suppose that Γ_G is Eulerian and $V(\Gamma_G) = G \cup S_G$. Assume that |G| or $|S_G|$ is odd. Note that the vertex $\{e\} \in S_G$ is adjacent to all vertices in G. Therefore, if |G| is odd, then the vertex $\{e\} \in S_G$ has odd degree which is a contradiction to Eulerianity of Γ_G . Also, note that the vertex $e \in G$ is adjacent to all vertices in S_G . Again, if $|S_G|$ is odd, then the vertex $e \in G$ has odd degree which implies a contradiction.

3. HAMILTONICITY AND EULERIANITY OF Γ_G WITH G IS CYCLIC

In this section, we examine hamiltonicity and Eulerianity of Γ_G for arbitrary finite cyclic group G. Let G be a finite cyclic group of order n. Recall that the number of all subgroups of G is $\tau(n)$, with $\tau(n)$ is the number of divisors of n. Hence, $|S_G| = \tau(n)$.

In the following theorem, we give the necessary and sufficient condition of Γ_G to be a hamiltonian graph.

Theorem 3.1. Let G be a nontrivial finite cyclic group. The graph $\Gamma(G)$ is hamiltonian if and only if |G| = 2.

Proof. Consider that G is a cyclic group of order $n \ge 3$. Note that every natural number n > 1 can be written as $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_m^{\alpha_m}$ for some different prime numbers p_1, p_2, \dots, p_3 and $\alpha_i \in \mathbb{N}$ for every $i = 1, 2, \dots, m$. Therefore, we have

 $\tau(n) = (\alpha_1 + 1)(\alpha_2 + 1)\dots(\alpha_m + 1).$

Moreover, for $p_i \neq 2$ and $\alpha_i \neq 1$ we have

$$p_i^{\alpha_i} > \alpha_i + 1$$

for every $i = 1, 2, \ldots, m$. Thus, we have

$$p_1^{\alpha_1} p_2^{\alpha_2} \dots p_m^{\alpha_m} > (\alpha_1 + 1)(\alpha_2 + 1) \dots (\alpha_m + 1)$$
$$n > \tau(n)$$
$$|G| > |S_G|.$$

In other words, $|G| \neq |S_G|$ implies that Γ_G is not hamiltonian. (\Leftarrow) Suppose $G = \{e, x\}$. We know that the set of all subgroups of G is $S_G = \{\{e\}, G\}$. It is obvious that both $e \in G$ and $x \in G$ are adjacent to every vertex in S_G . Thus, the graph Γ_G is a cyclic graph which is obviously hamiltonian.

Also, we give the necessary and sufficient condition of Γ_G to be a Eulerian graph.

Theorem 3.2. Let G be a cyclic group of order n. The graph Γ_G is Eulerian if and only if n is an even non-square number.

Proof. (\Rightarrow) Assume that Γ_G is Eulerian. Therefore, the degree of each vertex of Γ_G is even. Note that the group G is a Dedekind group since G is an abelian group. Thus, the graph Γ_G is a complete bipartite graph. Based on those two facts, both |G| = n and $|S_G| = \tau(n)$ are even. Note that n is a square number if and only if it has odd number of positive divisors. Hence, n is an even non-square number.

(⇐) Since *n* is an even non-square number, *n* has even number of positive divisors. Hence, $|S_G| = \tau(n)$ is even. Note that Γ_G is a complete bipartite group, since *G* is an abelian group. Therefore, every vertex in *G* is adjacent to all vertices in S_G and every vertex in S_G is adjacent to all vertices in *G*. Hence, the degree of every vertex $a \in G$ and $H \in S_G$ is $|S_G|$ and |G|, respectively. Since both |G| and $|S_G|$ are even, the degree of every vertex of Γ_G are even implying that Γ_G is Eulerian.

4. EULERIANITY OF BIPARTITE GRAPH Γ_{D_n}

A group generated by two elements a and b such that $a^2 = b^n = e$ and $ba = ab^{-1}$ is dihedral group of order 2n and denoted by D_n . In this section, we examine the Eulerianity of the graph Γ_{D_n} . We prove that for even number k, $\Gamma_{D_{2^k}}$ is Eulerian and we show that Γ_{D_n} is not Eulerian for several cases. First, we start with some properties of dihedral group D_n .

Next, we recall some properties of dihedral group D_n in the following lemmas. For simplicity, we write $D_n = \langle a, b : a^2 = b^n = e, ba = ab^{-1} \rangle$ to define this group.

Lemma 4.1. Every subgroup $\langle b^d \rangle$ of dihedral group D_n is normal, with d|n.

Lemma 4.2. If *n* is odd, then $Z(D_n) = \{e\}$. If *n* is even, then $Z(D_n) = \{e, b^{\frac{n}{2}}\}$.

Lemma 4.3. [2] The number of subgroups of dihedral group D_n is $\tau(n) + \sigma(n)$, with $\tau(n)$ is the number of divisors of n and $\sigma(n)$ is the sum of divisors of n.

Also, we give the following lemma.

Lemma 4.4. Let $D_n = \langle a, b : a^2 = b^n = e, ba = ab^{-1} \rangle$ be a dihedral group of order 2n and $m = \frac{n}{d}$ such that d|n. Let $\langle b^d, ab^i \rangle$ be a subgroup of D_n with $0 \le i < d$.

Then, $x\langle b^d, ab^i \rangle = \langle b^d, ab^i \rangle x$ if and only if

$$x \in \{b^j, ab^t : j = \frac{dp}{2}, t = \frac{dp}{2} + i, 0 \le p < 2m\},\$$

for every $x \in D_n$.

Proof. For $\langle b^d, ab^i \rangle$ with d|n and n = md, we have

$$\begin{split} \langle b^d, ab^i \rangle &= \{ b^{dk} : 0 \le k < m \} \cup \{ ab^{i+kd} : 0 \le k < m \} \\ &= \langle b^d \rangle \cup \{ ab^{i+kd} : 0 \le k < m \}. \end{split}$$

By Lemma 4.1, we know that $\langle b^d \rangle$ for d|n is a normal subgroup of D_n . Then, it is obvious that $x \langle b^d \rangle = \langle b^d \rangle x$ for every $x \in D_n$. Hence, we only examine the set

$$\{ab^{i+kd} : 0 \le k < m\} \subset \langle b^d, ab^i \rangle$$

Then, we may consider the following two cases.

(1) For $x = b^j$ with $0 \le j < n$, we have

$$b^{j} \{ ab^{i+kd} : 0 \le k < m \} = \{ ab^{i+kd} : 0 \le k < m \} b^{j}$$

$$\{ab^{(i+kd)-j}: 0 \leq (i+kd) - j < n, 0 \leq k < m\} = \{ab^{(i+kd)+j}: 0 \leq (i+kd) + j < n, 0 \leq k < m\}$$

if and only if $i + kd - j \equiv i + kd + j \mod n$. Therefore, by some properties of modular arithmetic we get $j \equiv \frac{d}{2} \mod n$. Hence, we have $j \in \{\frac{dp}{2} : 0 \leq p < 2m\}$.

(2) For $x = ab^t$ with $0 \le t < n$, we have

$$ab^t \{ ab^{i+kd} : 0 \le k < m \} = \{ ab^{i+kd} : 0 \le k < m \} ab^t$$

 $\{b^{-t+(i+kd)}: 0 \leq -t+(i+kd) < n, 0 \leq k < m\} = \{b^{t-(i+kd)}: 0 \leq t-(i+kd) < n, 0 \leq k < m\},$

if and only if $-t+i+kd \equiv t-i-kd \mod n$. Therefore, by some properties of modular arithmethic we get $t \equiv \frac{d}{2} + i \mod n$. Hence, $t \in \{\frac{dp}{2} + i : 0 \le p < 2m\}$.

By two cases above, we have considered all cases of $x \in D_n$. Thus, the proof is complete.

As a consequence of Lemma 4.4, we give the following corollaries.

Corollary 4.5. Let $b^j \in D_n$, with $0 \le j < n$. Then, $b^j \langle b^d, ab^i \rangle = \langle b^d, ab^i \rangle b^j$ if and only if d|2j.

Corollary 4.6. Let $ab^t \in D_n$, with $0 \le t < n$. Then, $ab^t \langle b^d, ab^i \rangle = \langle b^d, ab^i \rangle ab^t$ if and only if $i \equiv t \mod d$.

Now, we want to show for what values of n, Γ_{D_n} is Eulerian or not. Obviously $|D_n| = 2n$ is even. Therefore, by Theorem 2.8, if $|S_{D_n}|$ is odd, then Γ_{D_n} cannot be Eulerian. We give a value of n where $|S_{D_n}|$ is odd in Theorem 4.8. We also show that for that n, Graph Γ_{D_n} is not semi-Eulerian based on the fact that a connected graph is semi-Eulerian if and only if it has exactly two vertices of odd degree [5].

Lemma 4.7. Let $n = 2^k p_1^{\alpha_1} p_2^{\alpha_2} \dots p_m^{\alpha_m}$ for some different odd prime numbers p_1, p_2, \dots, p_n . If k is odd and α_i is even for every $i = 1, 2, \dots, m$, then $\tau(n) + \sigma(n)$ is odd.

Proof. Since k is odd, $\tau(n) = (k+1)(\alpha_1+1)(\alpha_2+1)\dots(\alpha_m+1)$ is even. Now, note that every factor of $p_1^{\alpha_1} p_2^{\alpha_2} \dots p_m^{\alpha_m}$ is odd since p_i for $i = 1, 2, \dots, m$ are different odd prime numbers, and $\tau(p_1^{\alpha_1} p_2^{\alpha_2} \dots p_m^{\alpha_m}) = (\alpha_1 + 1)(\alpha_2 + 1)\dots(\alpha_m + 1)$ is odd since α_i is even for every $i = 1, 2, \dots, m$. Thus, $\sigma(p_1^{\alpha_1} p_2^{\alpha_2} \dots p_m^{\alpha_m})$ is odd. Also, note that all odd factors of n are all factors of $p_1^{\alpha_1} p_2^{\alpha_2} \dots p_m^{\alpha_m}$. Consequently, $\sigma(n)$ is odd. Thus, $\tau(n) + \sigma(n)$ is odd.

Theorem 4.8. Let $n = 2^k p_1^{\alpha_1} p_2^{\alpha_2} \dots p_m^{\alpha_m}$ with p_i for $i = 1, 2, \dots n$ are different odd prime numbers, k is odd, and α_i for every $i = 1, 2, \dots, m$ are even. Then, Γ_{D_n} is not Eulerian. Moreover, Γ_{D_n} is not semi-Eulerian.

Proof. By Lemma 4.7, we know that $|S_{D_n}| = \tau(n) + \sigma(n)$ is odd. Therefore, Γ_{D_n} is not Eulerian. Next, we are going to show that Γ_{D_n} is not semi-Eulerian. It is obvious that n is even. Therefore, by Lemma 4.2, we have $Z(D_n) = \{e, b^{\frac{n}{2}}\}$. Thus, the vertices $e, b^{\frac{n}{2}} \in D_n$ are adjacent to every vertex in S_{D_n} . Consequently, $\deg(e) = \deg(b^{\frac{n}{2}}) = |S_{D_n}|$ is odd. Moreover, by Lemma 4.1 and Corollary 4.5, the vertex $b \in D_n$ is adjacent to every vertex in $\{\langle b^d \rangle : d|n\} \cup \{\langle b^d, ab^i \rangle : d|2, 0 \leq i < d\}$. Hence, $\deg(b) = |\{\langle b^d \rangle : d|n\}| + |\{\langle b^d, ab^i \rangle : d|2, 0 \leq i < d\}| = \tau(n) + 3$. Since $\tau(n)$ is even, $\deg(b)$ is odd. Thus, at least we have three vertices with odd degree. In other words, Γ_{D_n} is not semi-Eulerian.

For some cases of n such that $|S_{D_n}|$ is even, we should investigate the degree of each vertex in $V(\Gamma_{D_n})$ to determine whether the graph is Eulerian or not. We start with the following simple lemmas.

Lemma 4.9. For every $0 \le j < n$, degree of vertex $b^j \in D_n$ is $\tau(n) + \sum_{d \ge j} d$.

Proof. By Lemma 4.1, every vertex in D_n is adjacent to every vertex $\langle b^d \rangle \in S_{D_n}$, with d|n. By Corollary 4.5, every $b^j \in D_n$ is adjacent to every vertex in $\{\langle b^d, ab^i \rangle : 0 \le i < d, d|2j\}$. Hence, $\deg(b^j) = \tau(n) + |\{\langle b^d, ab^i \rangle : 0 \le i < d, d|2j\}| = \tau(n) + \sum_{d|2j} d$.

Lemma 4.10. For every $0 \le t < n$, degree of vertex $ab^t \in D_n$ is $2\tau(n)$.

Proof. By Corollary 4.6, every vertex $ab^t \in D_n$ is adjacent to every vertex in $\{\langle b^d, ab^i \rangle : d | n, 0 \leq i < d, \text{ and } i \equiv t \mod n\}$. Also, by Lemma 4.1, every vertex in D_n is adjacent to every vertex in $\{\langle b^d \rangle : d | n\}$. Hence, $\deg(ab^t) = |\{\langle b^d, ab^i \rangle : d | n, 0 \leq i < d, \text{ and } i \equiv t \mod n\}| + |\{\langle b^d \rangle : d | n\}| = \tau(n) + \tau(n) = 2\tau(n)$. \Box

Lemma 4.11. Every vertex $H \in S_{D_n}$ has even degree.

Proof. By Lemma 4.1, every vertex $\langle b^d \rangle \in S_{D_n}$ is adjacent to every vertex in D_n , with d|n. Hence, $\deg(\langle b^d \rangle) = |D_{2^k}|$, which is obviously even. Moreover, by Lemma

4.4, every vertex $\langle b^d, ab^i \rangle$ is adjacent to every vertex in $\{b^j, ab^t : j = \frac{dp}{2}, t = \frac{dp}{2} + i, 0 \le p < 2m\}$, with $d|n, m = \frac{n}{d}$, and $0 \le i < d$. Hence,

$$\begin{aligned} \deg(\langle b^d, ab^i \rangle) &= |\{b^j, ab^t : j = \frac{dp}{2}, t = \frac{dp}{2} + i, 0 \le p < 2m\}| \\ &= |\{b^j : j = \frac{dp}{2}, 0 \le p < 2m\}| + |\{ab^t : t = \frac{dp}{2} + i, 0 \le p < 2m\}| \\ &= 2|\{\frac{p}{2} : 0 \le p < 2m\}|, \end{aligned}$$

which is also obviously even.

By Lemma 4.9, 4.10, and 4.11, we know that to determine whether the graph Γ_{D_n} is Eulerian or not, it is enough to investigate the degree of each vertex $b^j \in D_n$. In the following theorem, we show that Γ_{D_n} for $n = 2^k$ is Eulerian, with k is even.

Theorem 4.12. For every even number k, $\Gamma_{D_{2k}}$ is Eulerian.

Proof. Since k is even, both $\tau(2^k) = k + 1$ and $\sigma(2^k) = 1 + 2 + 2^2 + \cdots + 2^k$ are odd. Let us start by investigating degree of every vertex $b^j \in D_{2^k}$. By Lemma 4.9, we have

$$\begin{aligned} \deg(b^j) &= |\{\langle b^d, ab^i \rangle : 0 \le i < d, d|2j\}| + \tau(2^k) \\ &= |\{\langle b, a \rangle\}| + |\{\langle b^d, ab^i \rangle : 0 \le i < d, d|2j, d \ne 1\}| + \tau(2^k) \\ &= 1 + \sum_{d|2j, d \ne 1} d + \tau(2^k). \end{aligned}$$

Since k is even, d is even whenever $d|2^k$ and $d \neq 1$. Therefore, $\sum_{d|2j,d\neq 1} d$ is even. Thus, $\deg(b^j)$ is even for every $b^j \in D_{2^k}$. Moreover, by Lemma 4.10, it is obvious that the degree of every vertex $ab^t \in D_{2^k}$ is even. Thus, the degree of every vertex in D_{2^k} is even. Also, by Lemma 4.11, every vertex in $S_{D_{2^k}}$ is even. Hence, the degree of every vertex in $V(\Gamma_{D_{2^k}})$ is even which implies $\Gamma_{D_{2^k}}$ is Eulerian.

In the next remaining theorems, we give several cases of n such that $|S_{D_n}|$ is even, but Γ_{D_n} is not Eulerian.

Theorem 4.13. The graph $\Gamma_{D_{3k}}$ is semi-Eulerian, for k = 1, 2.

Proof. For k = 1, we have Γ_{D_3} represented in Figure 1. From the figure, we know that every vertex of Γ_{D_3} is of even degree except b and b^2 . Hence, Γ_{D_3} is semi-Eulerian. For k = 2, we should investigate the degree of every vertex $b^j \in \Gamma_{D_9}$. By Lemma 4.9, we have $\deg(b^j) = \tau(9) + \sum_{d|2j} d = 3 + \sum_{d|2j} d$. For every $0 \le j < 9$, the degree of b^j is in the following table.

j	d 2j	$\sum_{d 2j} d$	$\deg(b^j)$]	i	d 2i	$\sum_{n \in \mathcal{A}} d$	$\deg(b^j)$
1	1	1	4		<i>ј</i> 6	1 2	$\sum_{d 2j} a$	7
2	1	1	4		7	1,5	4	1
3	1,3	4	7		1	1	1	4
4	1	1	4		0	120	19	4
5	1	1	4		9	1,3,9	15	10

TABLE 1. Degree of $b^j \in D_9$

From the table, it is clear that Γ_{D_9} has two vertices in the form of b^j of odd degree. Note that by Lemma 4.10 and Lemma 4.11, the degree of each vertex $ab^t \in D_9$ and $H \in S_{D_9}$ is even, respectively. Thus, the graph Γ_{D_9} has exactly two vertices of odd degree which implies that the graph is semi-Eulerian.

Theorem 4.14. For every $k \geq 3$, the graph $\Gamma_{D_{3^k}}$ is neither Eulerian nor semi-Eulerian.

Proof. To prove that $\Gamma_{D_{3^k}}$ is neither Eulerian nor semi-Eulerian, it is enough to show that at least there are three vertices in $V(\Gamma_{D_{3^k}})$ that have odd degree, for every $k \geq 3$. We may consider the following two cases.

- (1) For k is odd, $\tau(3^k)$ is even. Since $k \ge 3$, we have $3^k \ge 27$. Therefore, vertices $b, b^2, b^3 \in D_{3^k}$. On the other hand, by Lemma 4.9 we have $\deg(b^j) = \tau(3^k) + \sum_{d|2j,d|3^k} d = \tau(3^k) + 1$, which is odd for every j = 1, 2, 4.
- (2) For k is even, $\tau(3^k)$ is odd. Since $k \ge 3$, we have $3^k \ge 27$. Therefore, vertices $b^3, b^6, b^{12} \in D_{3^k}$. On the other hand, by Lemma 4.9 we have $\deg(b^j) = \tau(3^k) + \sum_{d|2j,d|3^k} d = \tau(3^k) + (1+3) = \tau(3^k) + 4$, which is odd for every j = 3, 6, 12.

Since for all $k \ge 3$ we can find three vertices of odd degree, it is proved that $\Gamma_{D_{3^k}}$ is neither Eulerian nor semi-Eulerian.

Theorem 4.15. For all $k \ge 1$ and prime numbers $p \ge 5$, the graph Γ_{D_n} is neither Eulerian nor semi-Eulerian if $n = p^k$.

Proof. We consider the following cases.

- (1) For k is odd, $\tau(p^k)$ is even. Note that for every $k \ge 1$ and $p \ge 5$, we have $p^k \ge 5$. Therefore, the vertices $b, b^2, b^3 \in \Gamma_{D_{p^k}}$. Moreover, by Lemma 4.9 we have $\deg(b^j) = \tau(p^k) + \sum_{d|2j,d|p^k} d = \tau(p^k) + 1$ for every j = 1, 2, 3. Since $\tau(p^k)$ is even, $\deg(b^j)$ is odd for every j = 1, 2, 3.
- (2) For k is even, $\tau(p^k)$ is odd. Note that for every $k \ge 2$ and $p \ge 5$, we have $p^k \ge p^2 > 3p$. Therefore, the vertices $b^p, b^2p, b^3p \in D_{p^k}$. Moreover, by Lemma 4.9 we have $\deg(b^j) = \tau(p^k) + \sum_{d|2j,d|p^k} d = \tau(p^k) + (p+1)$ for every j = p, 2p, 3p. Since $\tau(p^k)$ is odd $\deg(b^j)$ is odd for every j = p, 2p, 3p.

By the two cases above, we know that at least there are three vertices in $V(\Gamma_{D_{p^k}})$ that have odd degree, which implies that $\Gamma_{D_{p^k}}$ is neither Eulerian nor semi-Eulerian.

Theorem 4.16. Let $n = p_1 p_2 \dots p_m$ for some different odd prime numbers p_1, p_2, \dots, p_m and $m \ge 2$. The graph Γ_{D_n} is neither Eulerian nor semi-Eulerian.

Proof. For $n = p_1 p_2 \dots p_m$ with p_1, p_2, \dots, p_m are some different odd prime numbers and $m \ge 2$, we have $\tau(n) = 2^m$ and $n \ge 15$. Therefore, the vertices $b, b^2, b^4 \in D_n$. By Lemma 4.9, we have $\deg(b^j) = \tau(n) + \sum_{d|j,d|n} d = 2^m + 1$, for every j = 1, 2, 4. Note that 2^m is even. Thus, the degree of b^j for every j = 1, 2, 4 is odd. In other words, there are three vertices in $V(\Gamma_{D_n})$ that have odd degree which implies that Γ_{D_n} is neither Eulerian nor semi-Eulerian.

5. Conclusions

We have already studied a bipartite graph Γ_G which is especially connected to hamiltonicity and Eulerianity for some finite groups. In this paper, we have obtained the necessary and sufficient condition for hamiltonicity and Eulerianity of Γ_G with G is a finite cyclic group. However, we have not obtained a condition for graph Γ_G to be semi-Eulerian.

The hamiltonicity of the graph Γ_{D_n} has been discussed in [10]. For the Eulerianity of Γ_{D_n} , we have shown that $\Gamma_{D_{2^k}}$ is Eulerian for every even number k and $\Gamma_{D_{3^k}}$ is semi Eulerian for k = 1, 2. Also, we have shown that Γ_{D_n} is neither Eulerian nor semi-Eulerian for some cases of n. However, all cases of n given in this paper do not cover all the existing cases. One may continue further research for the remaining cases.

Acknowledgement. The authors are grateful to the referees for their helpful suggestions which helped to enhance the manuscript.

REFERENCES

- Dummit, D. S., Foote, R. M., Abstract Algebra Third Edition, John Wiley and Sons, Inc : United States of America, 2004.
- [2] Jensen, D. W., Bussian, E. R., "A Number-Theoretic Approach to Counting Subgroups of Dihedral Groups", Coll. Math. J. 1992, 23(2), 150 - 152.
- [3] Malik, D. S., Mordeson, J. N., Sen, M. K., Introduction to Abstract Algebra, United States of America, 2007.
- [4] Wallis, W. D., A Beginner's Guide to Graph Theory, Second Edition, Birkhäuser : New York, 2006.
- [5] Wilson, R. J., Introduction to Graph Theory, Fourth Edition, Addison Wesley Longman Limited : England, 1996.

- [6] Cayley, A., "Desiderata and suggestions: No. 2. The Theory of groups: graphical representation", Amer. J. Math 1878, 1(2), 174–176.
- [7] Abdollahi, A., Akbari, S., Maimani, H. R., "Non-commuting graph of a group", J. Algebra 2006, 298(2), 468–492.
- [8] Ma, X. L., Wei, H. Q., Yang, L. Y., "The coprime graph of a group", Int. J. Group Theory 2014, 3(3), 13–23.
- [9] Williams, J. S., "The prime graph components of finite groups", In The Santa Cruz Conference on Finite Groups (Univ California, Santa Cruz, Calif, 1979). Proc Sympos Pure Math 1981 (Vol. 37, pp. 195–196).
- [10] Al-Kaseasbeh, S., Erfanian, A., "A bipartite graph associated to elements and cosets of subgroups of a finite group", AIMS Mathematics 2021, 6(10), 10395–10404.