AN OTHER PROOF OF THE INSOLUBILITY OF FERMAT'S CUBIC EQUATION IN EISENSTEIN'S RING

Elias Lampakis

Kiparissia, T.K: 24500, Greece
eliaslampakis@yahoo.gr

Abstract

We present an other proof of the well known insolubility of Fermat's equation $x^{3}+y^{3}=z^{3}$ in Eisenstein's ring $\mathbb{Z}[\omega]$ when $\omega^{3}=1, \omega \neq 1, x y z \neq 0$. Assuming the existence of a nontrivial solution $\left(a_{1}+b_{1} \omega, a_{2}+b_{2} \omega, a_{3}+b_{3} \omega\right)$ the proof exploits the algebraic properties, (degree, kind of roots, coefficients' relations), of the polynomial $f(x)=\left(a_{1}+b_{1} x\right)^{3}+\left(a_{2}+b_{2} x\right)^{3}-\left(a_{3}+b_{3} x\right)^{3}$. In the course of action, the well known algebraic structure of the group of rational points of the elliptic curve $y^{2}=x^{3}+16$ provides the final result.

Key words: Fermat's cubic equation, Eisenstein's ring, elliptic curves.

